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Abstract

We show that families of symmetrically distributed Bernoulli ran-
dom variables have a maximal negative correlation that almost always
is strictly above the general lower limit.
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1 Minimum Correlation

Consider a family X1, ..., Xn of n ≥ 2 symmetrically distributed random
variables, with pairwise covariance rσ2, where σ2 > 0 is the variance and
r the correlation coeffi cient.1 The variances of the sum of all, and of the
difference between a pair i 6= j, of these random variables are

V
[∑n

i=1
Xi

]
= n (1 + (n− 1) r)σ2, V [Xi −Xj] = 2 (1− r)σ2.

For these variances to be non-negative, it is necessary that the correlation
coeffi cient lies in the interval2

− 1

n− 1 ≤ r ≤ 1. (1)

These are also the exact same conditions that guarantee that the variance-
covariance matrix of X1, ..., Xn is positive semi-definite.3 These facts are
known, see e.g. Vives (2011, p. 1924), though not widely so.
It is also immediate to see that (1) provides the tightest general limits on

the correlation coeffi cient: Joint normal distributions with exactly this type
of variance-covariance matrix exist for all r in this interval.
The question we are posing in this paper is the following: Are there

families of distributions for which the limit on negative correlation is strictly
tighter? The answer is yes, and the example we explore is the Bernoulli
distribution, i.e. Xi ∈ {0, 1} with P [Xi = 1] = p. This distribution has
one interesting aspect in common with the normal distribution, which is
that two random variables are pairwise independent if and only they are
uncorrelated (this is not true in general: independence is a stronger notion).
Still, the "lumpiness" of the Bernoulli distribution implies that in general the
"most negative" symmetric correlation in families of these random variables
is strictly higher than indicated by (1). We find the following:

Proposition 1 For n jointly and symmetrically distributed Bernoulli ran-
dom variables with expectation p ∈ (0, 1), the minimum correlation coeffi -
cient, for j

n
≤ p ≤ j+1

n
, j = 0, ..., n− 1, is

r∗ =
n

n− 1

(
j+1
n
− p
) (
p− j

n

)
p− p2 − 1

n− 1 .

1These are also called "exchangeable" random variables.
2At the endpoints we have full negative or positive correlation, i.e. degenerate distrib-

utions.
3This guarantees that the variance of any linear combination of X1, ..., Xn is non-

negative. The above sum and differences are special cases which correspond to the eigen-
vectors of the variance-covariance matrix.
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In particular:

1. The minimum correlation r∗ = − 1
n−1 is achieved if and only if p =

i
n
,

i = 1, ..., n− 1, while for all other p we have r∗ > − 1
n−1 .

2. For p < 1
n
we have r∗ = − p

1−p →p→0 0, and for p > n−1
n
we have

r∗ = −1−p
p
→p→1 0.

3. In each interval j
n
≤ p ≤ j+1

n
, j = 1, ..., n− 2, the maximal value of r∗

is equal to r∗ = − 1
n
if n is odd and p = 1

2
, and otherwise

r∗ = −2
√
j (j + 1) (n− 1− j) (n− j)− j (n− 1− j)

n (n− 1) ,

at p =
√
j(j+1)(n−1−j)(n−j)−j(1+j)

n(n−1−2j) .

Proof. The proof is provided in the next section.

As an illustration, in Figure 1 we outline the minimum correlation coef-
ficient r∗ for the case n = 3. It is clearly visible that the general lower limit
of −1

2
is only reached if either p = 1

3
or p = 2

3
. For most other values of p,

the limit r∗ is significantly higher.
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Figure 1: the minimum correlation coeffi cient r∗ for n = 3.

We also provide an example of a distribution that achieves exactly r∗, for any
given n: Fix some j = 1, ..., n− 1 and let all outcomes have zero probability
unless

∑n
i=1Xi = n−j. As there are

(
n
n−j
)
of these outcomes, their individual

probability is xj = 1/
(
n
n−j
)
. Following the exposition below, we obtain

p =

(
n− 1
n− j

)
xj =

(n− 1)!
(n− j)! (j − 1)!

/
n!

j! (n− j)! =
j

n
,

i.e. r∗ = − 1
n−1 .
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2 The Proof

Let the random variables Xk, k = 1, ..., n, have identical Bernoulli distribu-
tions on {0, 1} with expected value p and be symmetrically correlated. Their
joint distribution is described by the probabilities x0, ..., xn, where

xi = P (X1 = ... = Xi = 0, Xi+1 = ... = Xn = 1) ,

where the index i states the number of leading zeros in the ordered sequence
X1, ..., Xn where Xk = 1 for all k > i. It is easy to see that

1 =

n∑
i=0

(
n

i

)
xi, (2)

p = P (Xn = 1) =
n−1∑
i=0

(
n− 1
i

)
xi. (3)

Let

b = P (Xn−1 = 1, Xn = 1) =
n−2∑
i=0

(
n− 2
i

)
xi. (4)

The marginal distribution of (Xn−1, Xn) then has probabilities P (11) = b,
P (01) = P (10) = p− b and P (00) = 1 + b− 2p, with covariance

Cov [Xn−1, Xn] = (1− p)2 b+ 2 (1− p) (0− p) (p− b) + (0− p)2 (1 + b− 2p)
= b− p2.

The correlation coeffi cient is therefore r = (b− p2) /p (1− p). As a result, in
order to find the minimum correlation coeffi cient given the expectation p it
is necessary and suffi cient to find the minimum feasible value of b, subject
to the conditions x0, ..., xn ≥ 0, (2) and (3). We set up the following linear
program:

b∗ = min
x0,...,xn

n−2∑
i=0

(
n− 2
i

)
xi

s.t.

n∑
i=0

(
n

i

)
xi = 1,

n−1∑
i=0

(
n− 1
i

)
xi = p, x0, ..., xn ≥ 0 (5)

It is actually simpler to consider its dual. With s1 and s2 the shadow vari-
ables of the constraints (2) and (3), respectively, the dual problem is (see
Luenberger 1989, ch. 4.2)

max
s1,s2

s1 + ps2 s.t.

(
n

i

)
s1 +

(
n− 1
i

)
s2 ≤

(
n− 2
i

)
, i = 0, ..., n,
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which can be restated in simpler form as

max
s1,s2

s1 + ps2 s.t. s1 +
n− i
n

s2 ≤
(n− i) (n− 1− i)

n (n− 1) , i = 0 . . . n. (6)

This dual has three very useful features: First, it has only two variables,
which makes its solution easy. Second, the constraint set does not depend on
p. Therefore varying p simply involves sliding the objective along the upper
right border of the constraint set. Third, since both programs have a finite
solution, the value of the dual’s objective at its maximum is equal to the
value of the primal’s objective at its minimum, max s1 + ps2 = b∗.
It can be shown that the corners of the constraint set are given by the

intersections of the neighboring constraints i and i + 1, i = 0, ..., n − 1, at
coordinates s∗1 = −

(n−i)(n−1−i)
n(n−1) , s∗2 = 2

n−1−i
n−1 . The objective s1 + ps2 touches

the constraint set (and thus has an optimal solution) at corner (i, i+ 1) if
and only if n−i−1

n
≤ p ≤ n−i

n
. To make this more intuitive, change the index

to j = n− i− 1, for j = 0, .., n− 1, so that this range becomes j
n
≤ p ≤ j+1

n
.

The value of the objective at the corresponding corner is then

b∗ = s∗1 + ps∗2 =
j

n− 1

(
2p− j + 1

n

)
,

with correlation coeffi cient

r∗ =
b∗ − p2
p− p2 =

n

n− 1

(
j+1
n
− p
) (
p− j

n

)
p− p2 − 1

n− 1 .

Clearly r∗ = − 1
n−1 at either p =

j
n
or p = j+1

n
, while r∗ > − 1

n−1 otherwise.
Furthermore, for j = 0 this simplifies to r∗ = − p

1−p , while for j = n − 1 we
have r∗ = −1−p

p
. Both converge to zero as p approaches 0 or 1, respectively.

In order to identify the locally maximal value of r∗ on the interval
j
n
≤

p ≤ j+1
n
for j = 1, ..., n− 2, we take the derivative:

dr∗
dp

=
j (1 + j) (1− 2p)− n (n− 1− 2j) p2

n (n− 1) p2 (1− p)2
.

If n is odd then dr∗
dp
= 0 at p = 1

2
, with r∗ = − 1

n
. Evaluating dr∗

dp
at the

border values, we obtain dr∗
dp

> 0 at the left border and dr∗
dp

< 0 at the right
border. Since the numerator is quadratic in p there is exactly one critical
value in the interval, which must be a local maximum. Solving dr∗

dp
= 0, the

local maximum is obtained at the values indicated above.
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