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On the asymptotic behaviour of the Aragón Artacho–Campoy algorithm
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Abstract

Aragón Artacho and Campoy recently proposed a new method for computing the projection onto the
intersection of two closed convex sets in Hilbert space; moreover, they proposed in 2018 a general-
ization from normal cone operators to maximally monotone operators. In this paper, we complete
this analysis by demonstrating that the underlying curve converges to the nearest zero of the sum of
the two operators. We also provide a new interpretation of the underlying operators in terms of the
resolvent and the proximal average.
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1 Introduction

Throughout this note,

X is a real Hilbert space (1)

with inner product 〈 · | · 〉 and associated norm ‖ · ‖. The notation of our paper is standard and mainly
follows [6] to which we also refer to basic results on convex analysis and monotone operator theory. A
central problem is to find a zero (critical point) of the sum of two maximally monotone operators. The
Douglas–Rachford and Peaceman–Rachford algorithms (see Fact 2.1 below) are classical approaches to
solve this problem. If the monotone operators are normal cone operators of closed convex nonempty
subsets of X, then one obtains a feasibility problem. Suppose, however, that we are interested in finding
the nearest point in the intersection. One may then apply several classical best approximation algo-
rithms (see, e.g., [6, Chapter 30]). In the recently published paper [1], Aragón Artacho and Campoy
presented a novel algorithm, which we term the Aaragón Artacho–Campoy Algorithm (AACA) to solve
this best approximation problem. Even more recently, they extended this algorithm in [2] to deal with
general maximally monotone operators.

The aim of this paper is to re-derive the AACA from the view point of the proximal and resolvent average. We
also complete their analysis by describing the asymptotic behaviour of the underlying curve.

∗Mathematics, University of British Columbia, Kelowna, B.C. V1V 1V7, Canada. Email: salihahalwadani@hotmail.com .
†Mathematics, University of British Columbia, Kelowna, B.C. V1V 1V7, Canada. Email: heinz.bauschke@ubc.ca.
‡Electrical Engineering, Stanford University, Stanford, CA 94305, USA and Mansoura University, Faculty of Science, Math-

ematics Department, Mansoura 35516, Egypt. Email: wmoursi@stanford.edu.
§Mathematics, University of British Columbia, Kelowna, B.C. V1V 1V7, Canada. Email: shawn.wang@ubc.ca.

1

http://arxiv.org/abs/1805.11165v1
mailto: salihahalwadani@hotmail.com
mailto: heinz.bauschke@ubc.ca
mailto: wmoursi@stanford.edu
mailto: shawn.wang@ubc.ca


This note is organized as follows. In Section 2, we collect a few facts and results that will make the
subsequent analysis more clear. Section 3 contains a new variant of a convergence result for AACA
(Theorem 3.2) as well as the announced asymptotic behaviour of the curve (Theorem 3.4).

2 Auxiliary results

Fact 2.1 (Douglas–Rachford and Peaceman–Rachford) Let A and B be maximally monotone on X. Sup-
pose that zer (A + B) = (A + B)−1(0) 6= ∅, let λ ∈ ]0, 1], and set

T = (1 − λ) Id+λRBRA, (2)

where JA = (Id+A)−1 and RA = 2JA − Id. Let x0 ∈ X and define

(∀n ∈ N) xn+1 = Txn. (3)

Then there exists x̄ ∈ Fix T such that z̄ = JA x̄ ∈ zer (A + B) and the following hold:

(i) If A or B is strongly monotone, then zer (A + B) = {z̄}.

(ii) If λ < 1, then xn ⇀ x̄ and JAxn ⇀ z̄.

(iii) If λ < 1 and A or B is strongly monotone, then JAxn → z̄.

(iv) If λ = 1 and A is strongly monotone, then JAxn → z̄.

Proof. This follows from [6, Theorem 26.11 and Proposition 26.13]. See also [8]. �

The proof of the following result, which is a slight generalization of [2, Proposition 3.1], is straight-
forward and hence omitted.

Proposition 2.2 Let C be maximally monotone on X, let w ∈ X, let γ ∈ ]0, 1], and set

Cγ : X ⇒X : x 7→ C(γ−1(x − (1 − γ)w)) + (1 − γ)γ−1(x − w). (4)

Then Cγ is maximally monotone and its resolvent is given by

JCγ
: X → X : x 7→ γJCx + (1 − γ)w. (5)

Remark 2.3 (resolvent and proximal average) Consider the setting of Proposition 2.2. Because JCγ
is a

convex combination of the resolvents JC and P{w}, we see that Cγ is nothing but a resolvent average of
C and N{w}. See [3] for a detailed study of resolvent averages. We note that if C is σC-monotone, i.e.,
C − σC Id is monotone, then

Cγ is γ−1(σC + 1 − γ)-monotone. (6)

This can be verified directly (as in [2, Proposition 3.1]) or it also follows from [3, Theorem 3.20].

Now suppose that additionally C = ∂h for some proper lower semicontinuous convex function h on
X. Then Cγ = ∂hγ and JCγ

= Proxhγ
, where

hγ : X → ]−∞,+∞] (7a)

x 7→ inf

{

γh(y1) + (1 − γ)ι{w}(y2) +
γ(1 − γ)

2
‖y1 − y2‖

2

∣

∣

∣

∣

γy1 + (1 − γ)y2 = x

}

(7b)

= γh
(

γ−1(x − (1 − γ)w)
)

+
γ(1 − γ)

2
‖γ−1(x − (1 − γ)w)− w‖2 (7c)

= γh
(

γ−1(x − (1 − γ)w)
)

+
1 − γ

2γ
‖x − w‖2 (7d)

is the proximal average of h and ι{w}. See [7] and the reference therein for more on the proximal average.
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3 The Aragón Artacho–Campoy algorithm (AACA)

From now on, we suppose that

A and B are maximally monotone on X, w ∈ X, and γ ∈ ]0, 1[. (8)

Let σA > 0 and σB > 0 be such that

A − σA Id and B − σB Id are monotone, (9)

and we also assume that

A + B is maximally monotone (10)

which will make all results more tidy. (See also Remark 3.3 below.) Next, as in Remark 2.3, we introduce
the resolvent averages between A, B and N{w}:

Aγ : X ⇒X : x 7→ A
(

γ−1(x − (1 − γ)w)
)

+ γ−1(1 − γ)(x − w) (11)

and

Bγ : X ⇒X : x 7→ B
(

γ−1(x − (1 − γ)w)
)

+ γ−1(1 − γ)(x − w). (12)

Proposition 3.1 The following hold true:

(i) Aγ, Bγ, and Aγ + Bγ are maximally monotone.

(ii) Aγ, Bγ, and Aγ + Bγ are strongly monotone, with constants γ−1(σA + 1 − γ), γ−1(σB + 1 − γ), and
γ−1(σA + σB + 2 − 2γ), respectively.

(iii) zer (Aγ + Bγ) is nonempty and a singleton.

Proof. (i): Clear. (ii): This follows from (6). (iii): Items (i) and (ii) imply that Aγ + Bγ is maximally
monotone and strongly monotone. Now apply [6, Corollary 23.37(ii)]. �

In view of Proposition 3.1(iii), we denote the unique point in zer (Aγ + Bγ) by zγ:

zer (Aγ + Bγ) = {zγ}. (13)

We now essentially re-derive the central convergence result of Aragón–Artacho and Campoy [2, The-
orem 3.1]:

Theorem 3.2 (AACA for fixed γ) Given x0 ∈ X and λ ∈ ]0, 1], define the sequence (xn)n∈N via

(∀n ∈ N) xn+1 = (1 − λ)xn + λ
(

2γJB + 2(1 − γ)w − Id
)

◦
(

2γJA + 2(1 − γ)w − Id
)

xn. (14)

Then there exists x̄ ∈ Fix(RBγ
RAγ

) such that xn ⇀ x̄ and γJAxn + (1 − γ)w → zγ.

Proof. On the one hand, by Proposition 2.2,

JAγ
= γJA + (1 − γ)w and JBγ

= γJB + (1 − γ)w (15)

which implies

RAγ
= 2γJA + 2(1 − γ)w − Id and RBγ

= 2γJB + 2(1 − γ)w − Id (16)

and further

RBγ
RAγ

=
(

2γJB + 2(1 − γ)w − Id
)

◦
(

2γJA + 2(1 − γ)w − Id
)

(17)
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On the other hand, both Aγ and Bγ are strongly monotone with constant γ−1(1 − γ). Altogether, the
result follows from Fact 2.1 applied to (Aγ, Bγ) instead of (A, B). �

Remark 3.3 Several comments regarding Theorem 3.2 are in order.

(i) We have opted for a more explicit and thus easier-to-use version of AACA where the effect of w is
explicitly recorded.

(ii) While one could make λ depending on n as in [2], we decided instead to stress the new case when
λ = 1, corresponding to the Peaceman–Rachford version and notably absent in [2]. This case
deserves interest because it turned out to be the best parameter choice in [5].

(iii) Our assumption of maximal monotonicity makes for a tidy theory. It is used chiefly to guarantee
the existence of each zγ; in [2], this is replaced by some condition regarding the existence of zγ

which seems to be not so easy to check in practice.

(iv) One may apply Theorem 3.2 in a standard product space setting to handle the sum of finitely many
maximally monotone operators via AACA, as done in [2].

Of course, the remaining key question is:

What is the behaviour when γ → 1− for AACA?

While this was answered in some form in [1] when A and B are normal cone operators, no result was
offered in [2]. We conclude this paper by providing a complete and satisfying answer, relying on tools
by Combettes and Hirstoaga [9] and [10], packed also into [6, Theorem 23.44].

Theorem 3.4 (dichotomy for AACA when γ → 1−) Let zγ be as in (13). Then exactly one of the following
holds:

(i) zer (A + B) 6= ∅ and zγ → Pzer (A+B)w as γ → 1−.

(ii) zer (A + B) = ∅ and ‖zγ‖ → ∞ as γ → 1−.

Proof. Set δ = 2(1 − γ) and note that δ → 0+ ⇔ γ → 1−. Moreover, set

yδ = γ−1
(

zγ − (1 − γ)w
)

. (18)

We have, by definition of zγ and yδ,

0 ∈ (Aγ + Bγ)(zγ) = (A + B)yδ + δ(yδ − w). (19)

Two cases are now conceivable.

Case 1: zer (A + B) 6= ∅. By [6, Theorem 23.44(i)], we have

lim
δ→0+

yδ = Pzer (A+B)w; (20)

or equivalently, limγ→1− zγ = Pzer (A+B)w.

Case 2: zer (A + B) = ∅. By [6, Theorem 23.44(ii)], we have

lim
δ→0+

‖yδ‖ = +∞; (21)

or equivalently, limγ→1− ‖zγ‖ = +∞.

Altogether, the proof is complete. �

Remark 3.5 Here are some comments on Theorem 3.4.

(i) The information presented in Theorem 3.4(ii) is new even when A and B are normal cone operators
as in [1].
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(ii) Computing Pzer (A+B)w via Theorem 3.4 is cumbersome and “doubly iterative”: one must first em-
ploy an algorithm to find zγ, and the let γ tend to 1−. There are, however, some results that allow
us to avoid this double iteration and instead solve the problem via a single iteration; see, e.g., the
discussion in [4, Section 8].

Let us conclude with a simple example.

Example 3.6 Suppose that A = PU, where U is a closed linear subspace of X, and B ≡ −v, where v ∈ U⊥.
Then zer (A + B) = U⊥, if v = 0; zer (A + B) = ∅, if v 6= 0. Let w = 0 ∈ X, and let γ ∈ ]0, 1[. Then
(∀x ∈ X) Aγx = γ−1(PU(x) + (1 − γ)x) and Bγx = −v + γ−1(1 − γ)x. Hence zer (Aγ + Bγ) = {zγ},
where zγ = (2(1 − γ))−1γv.

Case 1: v = 0. Then zγ ≡ 0 → 0 = Pzer (A+B)(w).

Case 2: v 6= 0. Then ‖zγ‖ = (2(1 − γ))−1γ‖v‖ → +∞.

Both cases illustrate Theorem 3.4.
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[1] F. J. ARAGÓN ARTACHO AND R. CAMPOY, A new projection method for finding the closest point in the
intersection of convex sets, Comput. Optim. Appl., 69 (2018), pp. 99–132.
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paramonotonicity and operator splitting, J. Approx. Th., 164 (2012), pp. 1065–1084.

[5] H. H. BAUSCHKE, R. S. BURACHIK, AND C. Y. KAYA, Constraint splitting and projection methods for
optimal control of double integrator. https://arxiv.org/abs/1804.03767, 2018.

[6] H. H. BAUSCHKE AND P. L. COMBETTES, Convex Analysis and Monotone Operator Theory in Hilbert
Spaces, Springer, New York, second ed., 2017.

[7] H. H. BAUSCHKE, R. GOEBEL, Y. LUCET, AND X. WANG, The proximal average: basic theory, SIAM J.
Optim., 19 (2008), pp. 766–785.

[8] P. L. COMBETTES, Iterative construction of the resolvent of a sum of maximal monotone operators, J. Con-
vex Anal., 16 (2009), pp. 727–748.

[9] P. L. COMBETTES AND S. A. HIRSTOAGA, Approximating curves for nonexpansive and monotone opera-
tors, J. Convex Anal., 13 (2006), pp. 633–646.

[10] P. L. COMBETTES AND S. A. HIRSTOAGA, Visco-penalization of the sum of two monotone operators,
Nonlinear Anal., 69 (2008), pp. 579–591.

5

https://arxiv.org/abs/1805.09720
https://arxiv.org/abs/1804.03767

	1 Introduction
	2 Auxiliary results
	3 The Aragón Artacho–Campoy algorithm (AACA)

