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The Undirected Two Disjoint Shortest Paths Problem

Marinus Gottschau1, Marcus Kaiser1, Clara Waldmann1

Abstract

The k disjoint shortest paths problem (k-DSPP) on a graph with k source-sink pairs (si, ti) asks for the existence of
k pairwise edge- or vertex-disjoint shortest si–ti-paths. It is known to be NP-complete if k is part of the input. Restricting
to 2-DSPP with strictly positive lengths, it becomes solvable in polynomial time. We extend this result by allowing zero
edge lengths and give a polynomial time algorithm based on dynamic programming for 2-DSPP on undirected graphs
with non-negative edge lengths.
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1. Introduction

Due to many practical applications, e.g., in communication
networks, the k disjoint paths problem (k-DPP) is a well
studied problem in the literature. The input of the prob-
lem is an undirected graph G = (V,E) as well as k pairs
of vertices (si, ti) ∈ V 2 for i ∈ [k] := {1, . . . , k} and the
task is to decide whether there exist k paths P1, . . . , Pk

such that Pi is an si–ti-path and all paths are pairwise
disjoint. Here, disjoint can either mean vertex-disjoint or
edge-disjoint.
The k disjoint shortest path problem (k-DSPP) is a gen-
eralization of the k disjoint paths problem. The input of
the problem is an undirected graph G = (V,E) with edge
lengths ℓ : E → R and k pairs of vertices (si, ti) ∈ V 2

for i ∈ [k]. But here, all paths Pi for i ∈ [k] are addition-
ally required to be shortest si–ti-paths. Note, if ℓ ≡ 0, this
agrees with k-DPP.
We shall refer to the versions of the problems in directed
graphs by k-dDPP and k-dDSPP.

1.1. Related Work

Probably most famously, Menger’s theorem [9] deals with
disjoint paths which gave rise to one of the most funda-
mental results for network flows: the max-flow-min-cut
theorem [4, 6]. Using these results, an application of any
flow algorithm solves the k-dDPP if si = sj for all i, j ∈ [k]
or ti = tj for all i, j ∈ [k]. Without restrictions on the in-
put instances, all variants of the discussed problems are
NP-complete if k is considered part of the input [5, 8].
Due to this, a lot of research focuses on the setting where
k is considered fixed. Robertson and Seymour [10] came
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up with an O
(

|V |3
)

algorithm for k-DPP.
In contrast to that, Fortune et al. [7] prove that k-dDPP is
still NP-hard, even if k = 2. They give an algorithm that
solves k-dDPP for any fixed k on directed acyclic graphs
in polynomial time. Zhang and Nagamochi [12] then ex-
tended the work of Fortune et al. [7] to solve the problem
on acyclic mixed graphs, which are graphs that contain
arcs and edges where directing any set of edges does not
close a directed cycle.
Since k-dDSPP and k-dDPP agree for ℓ ≡ 0, all hardness
results carry over. However, if all edge lengths are strictly
positive Bérczi and Kobayashi [1] give a polynomial time
algorithm for 2-dDSPP. Also, for 2-DSPP with strictly
positive edge lengths a polynomial time algorithm is due
to Eilam-Tzoreff [3]. However, the complexity of k-DSPP
on undirected graphs with non-negative edge lengths and
constant k ≥ 2 is unknown. We settle the case k = 2 in
this paper.
Other than restricting the paths to be shortest si–ti-paths,
e.g., Suurballe [11] gave a polynomial time algorithm min-
imizing the total length, if all arc lengths are non-negative
and si = sj , ti = tj for all i, j ∈ [k]. Björklund and Hus-
feldt [2] came up with a polynomial time algebraic Monte
Carlo algorithm for solving 2-DPP with unit lengths where
the total length of the paths is minimized.

ℓ ≡ 0 ℓ non-negative
k k-DPP k-dDPP k-DSPP k-dDSPP

arb. NP-hard [5, 8] NP-hard [5] NP-hard [3] NP-hard [3]
fixed P [10] NP-hard [7] open (ℓ > 0) open (ℓ > 0)

open (ℓ ≥ 0) NP-hard (ℓ ≥ 0) [7]
2 P [10] NP-hard [7] P (ℓ > 0) [3] P (ℓ > 0) [1]

P (ℓ ≥ 0) ∗ NP-hard (ℓ ≥ 0) [7]

Table 1: Complexity of the disjoint paths problem and its variants.
∗ A polynomial time algorithm for the 2-DSPP on undirected graphs
with non-negative edge lengths is the main result of this paper.
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1.2. Our Results

We give a polynomial time algorithm for 2-DSPP on undi-
rected graphs with non-negative edge lengths. Combining
techniques from [7] and [1] enables us to deal with edges
of length zero. We consider the following problem.

Problem 1 (Undirected Two Edge-Disjoint Shortest Paths
Problem)
Input: An undirected graph G = (V,E) with non-negative
edge lengths ℓ : E → R≥0, a tuple of sources s ∈ V 2, and
a tuple of sinks t ∈ V 2

Task: Decide whether there exist two edge-disjoint paths P1

and P2 in G such that P1 is a shortest s1–t1-path and P2

is a shortest s2–t2-path w.r.t. the edge lengths ℓ.

Our paper is organized as follows. In Section 2, based on
the ideas of [7], we give a dynamic algorithm that solves the
k-DPP in polynomial time on weakly acyclic mixed graphs,
which are a generalization of directed acyclic graphs.
These results are then used in Section 3 together with a
similar approach as in [1] to solve the undirected 2-DSPP
with non-negative edge lengths in polynomial time.

The results of this paper have been obtained independently
by Kobayashi and Sako.

2. Disjoint Paths in Weakly Acyclic Mixed Graphs

In this section, we give an algorithm that solves k-DPP
in a generalization of directed acyclic graphs. We first
define mixed graphs, introduce some notations, and state
the problem.

A graph G = (V,A ∪· E) is a mixed graph on the vertex
set V with arc set A ⊆ V 2 and edge set E ⊆

(

V
2

)

. We de-
fine Æ(G) := A∪· E. The set of ingoing (outgoing) arcs of a
set of vertices W ⊆ V is denoted by δ−A(W )

(

δ+A(W )
)

.

For pairwise disjoint vertex sets W1, . . . ,Wh, we denote
by G/{W1, . . . ,Wh} the graph that results from G by con-
tracting W1, . . . ,Wh into h vertices.

A (directed) u–w-path P in G is a sequence of h arcs and
edges (æ1, . . . ,æh) ∈ Æh such that there exists a sequence
of vertices (u = v1, . . . , vh+1 = w) ∈ V h+1 satisfying ei-
ther æi = (vi, vi+1) or æi = {vi, vi+1} for all i ∈ [h]. Two
paths are arc/edge-disjoint (vertex-disjoint) if they do not
have a common arc or edge (vertex).

Note that a directed acyclic graph induces natural order-
ings of its vertices. A linear ordering of the vertices is
called a topological ordering if, for every arc (v, w), the
tail v precedes the head w in the ordering. An ordering is
called a reverse topological ordering if its reverse ordering
is a topological ordering.

On a ground set U , a binary relation R is a subset of U2.
For (u, v) ∈ R, we write u R v. A relation R is called

reflexive, if u R u holds for all u ∈ U . For two binary
relations R,S ⊆ U2, the composition S ◦ R is defined
by

{

(u,w) ∈ U2 | ∃v ∈ U : u R v ∧ v S w
}

. Note that ◦ is
an associative operator.

We consider the following problem for fixed k.

Problem 2 (Mixed k Arc/Edge-Disjoint Paths Problem)
Input: A mixed graph G = (V,Æ), a k-tuple of sources
s ∈ V k, and a k-tuple of sinks t ∈ V k

Task: Decide whether there exist k pairwise arc/edge-
disjoint paths P1, . . . , Pk in G such that Pi is an si–ti-path,
for all i ∈ [k].

We give an algorithm that solves this problem on a class of
mixed graphs, that generalize directed acyclic graphs:

Definition 1 (Weakly Acyclic Mixed Graphs)
We call a mixed graph G = (V,A∪· E) weakly acyclic if the
contraction of all edges E yields a directed acyclic graph
without loops.

Note that a weakly acyclic mixed graph can contain (undi-
rected) cycles in its edge set.
For a mixed graph G = (V,Æ), we use the following nota-
tion in order to discuss the existence of disjoint paths.

Definition 2 (Arc/Edge-Disjoint Paths Relation)
For k ∈ N, we define the binary relation ⇒

Æ
on the set V k

as follows. For v, w ∈ V k, we have v⇒
Æ

w if there exist
pairwise arc/edge-disjoint vi–wi-paths for all i ∈ [k] in Æ.
We will also write ⇒G short for ⇒

Æ(G).

Since paths of length zero are allowed, the relation ⇒Æ

is reflexive. In general, it is not transitive. When con-
sidering two relations based on two disjoint sets of arcs
and edges, however, these two act in a transitive manner.
In that case, the respective underlying arc/edge-disjoint
paths from both relations can be concatenated. The re-
sulting arc/edge-disjoint paths correspond to an element
in the composition of the two relations.

Observation 3 (Partial Transitivity)
For disjoint arc/edge sets Æ1,Æ2 ⊆ Æ and vectors of ver-
tices u, v, w ∈ V k, it holds

u⇒
Æ1

v ∧ v⇒
Æ2

w =⇒ u⇒
Æ1∪·Æ2

w.

This observation is exploited in Algorithm 1 in order to
solve Problem 2 for fixed k for weakly acyclic mixed graphs.
It computes the relation ⇒G in polynomial time by deal-
ing with the edges and arcs in G separately.
For the undirected components, i.e., the connected com-
ponents of the subgraph (V,E), it uses an algorithm for
edge-disjoint paths in undirected graphs (e.g., [10]) to find
the relation ⇒ on each component.
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Algorithm 1: Dynamic Program for k-DPP in Weakly

Acyclic Mixed Graphs

Input: weakly acyclic mixed graph G = (V,A ∪· E)

Output: ⇒G on V k

1 Find connected components V1, . . . , Vh of the

subgraph (V,E) sorted according to a topological

ordering of G/{V1, . . . , Vh};

2 for j = 1, . . . , h do

Compute ⇒
G[Vj ]

using an algorithm for k-DPP;

3 Initialize ⇒ to the relation
{

(v, v) | v ∈ V k
}

;

4 for j = 1, . . . , h do

Update ⇒ to ⇒
G[Vj ]

◦⇒
δ
−

A (Vj)
◦⇒;

5 return ⇒

V1 Vj−1 Vj

v2

v1

v3 p3

p1

p2

q1

q2

q3 = w3

w1

w2
· · ·

· · ·

v⇒j−1 p p⇒
δ
−

A (Vj)
q⇒

G[Vj ]
w

Figure 1: In iteration j of Algorithm 1, relation ⇒j is built by
concatenating previously computed paths

(

⇒j−1
)

, pairwise different

arcs to the next component
(

⇒
δ
−

A
(Vj)

)

, and undirected edge-disjoint

paths in the next component
(

⇒
G[Vj ]

)

.

Afterwards, dynamic programming is used to compute ⇒
on successively larger parts of the mixed graph. As G is
weakly acyclic, contracting all undirected components re-
sults in an acyclic graph. The algorithm iterates over the
components in a topological ordering. Based on Obser-
vation 3, previously found arc/edge-disjoint paths are ex-
tended alternately by arcs between components and edge-
disjoint paths within one component. This approach is a
generalization of the methods presented in [7].

Theorem 4 (Algorithm 1: Correctness and Running Time)
Let k ∈ N be fixed. Given a weakly acyclic mixed graph
G = (V,A ∪· E), Algorithm 1 computes the relation ⇒G

on V k in polynomial time.

Proof. Let V =
⋃

· h
j=1 Vj be the partition of V into the

vertex sets of the h connected components of (V,E) as
computed by the algorithm.

For all j ∈ {0, . . . , h}, let Æj be the arc and edge set

of G
[
⋃j

l=1 Vl

]

. In particular, Æ0 = ∅ holds true. For

each j ∈ {0, . . . , h}, let ⇒j be the relation ⇒ as com-
puted by Algorithm 1 after the j-th iteration of Line 4. In

particular,⇒0 is the relation after Line 3. In the following,
we proof by induction on j that ⇒j is equal to ⇒Æj

.

After the initialization, this is true for j = 0, as Æ0 con-
tains no arcs or edges. Consider an iteration j ∈ [h] and
assume that the claim was true after the previous iteration.

“⊆”: Let v, w ∈ V k such that v⇒jw. There exist p, q ∈ V k

such that v⇒j−1p⇒
δ
−

A (Vj)
q⇒

G[Vj ]
w. Using the induction

hypothesis, we know v⇒Æj−1
p. Since the arc and edge sets

in the three relations are pairwise disjoint, Observation 3
yields v⇒Æj

w.

“⊇”: Let v, w ∈ V k with v ⇒Æj
w, and Pi, i ∈ [k] be

arc/edge-disjoint vi–wi-paths in Æj . Let qi ∈ V be the
first vertex on Pi in Vi and pi be its predecessor if they
exist, otherwise set them to wi and qi, respectively. As G
is weakly acyclic, we have v⇒Æj−1

p, p⇒
δ
−

A
(Vj)

q, as well

as q ⇒
G[Vj ]

w. It follows from the induction hypothesis

that v⇒j w.

The connected components of (G,E) and their topological
ordering in G/{V1, . . . , Vh} can be computed in polyno-
mial time. Finding edge-disjoint paths in the undirected
components can also be done efficiently (e.g., [10]). A bi-

nary relation on V k contains at most |V |2k elements and
composing two of them can be done in time polynomial in
their sizes. Hence, Algorithm 1 runs in time polynomial
in the size of the input if k is fixed.

In many settings, the problem of finding arc/edge-disjoint
paths can be reduced to finding vertex-disjoint paths. Ob-
serve that arc/edge-disjoint paths in a graph correspond
to the vertex-disjoint paths in its line graph and an ap-
propriate notion of a line graph can be defined for mixed
graphs as well.
For directed graphs, there is a generic reduction from vertex-
disjoint to arc-disjoint instances based on splitting ver-
tices. This reduction, however, cannot be applied to undi-
rected or mixed graphs. Yet, Algorithm 1 can be modified
slightly as follows to compute vertex-disjoint paths. An
algorithm for the undirected vertex-disjoint path problem
is used in Line 2. Only vectors with pairwise different ele-
ments are included in the initial relation in Line 3. Finally
in Line 4, tuples v, w ∈ V k are related only if their sets of
endpoints {vi, wi}, i ∈ [k] are pairwise disjoint.

3. Undirected Disjoint Shortest Paths

In this section, we study Problem 1 on undirected graphs
with non-negative edge lengths. We first transform the
undirected graph G into a mixed graph and then use the
results of the previous section to solve the transformed
instance.
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3.1. From Shortest to Directed Paths

Let an instance of Problem 1 be given by an undirected
graph G = (V,E), non-negative edge lengths ℓ : E → R≥0,
and s, t ∈ V 2. We are going to transform the graph G into
a mixed graph such that the shortest source-sink-paths
in G correspond to directed source-sink-paths in the re-
sulting mixed graph.

Since we are interested in shortest s1–t1- and s2–t2-paths,
we consider the shortest path networks rooted at s1 and s2.
For i ∈ [2], we define the distance function di : V → R≥0

induced by ℓ w.r.t. si by di(v) := minsi–v-pathP

∑

e∈P ℓ(e).
The shortest path network rooted at si is given by the
set

Ei := {{v, w} ∈ E | ℓ({v, w}) = |di(v) − di(w)|}.

See Figure 3a for an example of the sets Ei.
The distances di induce an orientation for all edges in Ei

which have a strictly positive length. We would like to
replace an edge {v, w} ∈ E with di(v) < di(w) by the
arc (v, w) (with the same length). The orientations in-
duced by d1 and d2, however, do not have to agree on
the set E1 ∩ E2. Introducing both arcs would neglect the
fact that only one of them can be included in any set of
arc/edge-disjoint paths. We will overcome this by replac-
ing such edges by a standard gadget of directed arcs as
depicted in Figure 2.

v w  v w

Figure 2: Gadget for resolving conflicts during the orientation of an
edge {v, w} induced by d1 and d2.

Consider the gadget for an edge {v, w} ∈ E. It contains
exactly one v–w-path and one w–v-path corresponding to
the two possible orientations of {v, w}. Since both share an
arc, only one of two arc/edge-disjoint paths in the trans-
formed graph can use the gadget. As further both paths
consist of three arcs, setting the length of all the arcs in the
gadget to 1

3 ℓ({v, w}) preserves the distances in the graph.
That way, the distance functions di can be extended to the
new vertices introduced with gadgets.
For i ∈ [2], Ai denotes the set of arcs that result from
orienting Ei w.r.t. di. More precisely, for {v, w} ∈ Ei

with di(v) < di(w) the arc (v, w) is included into the set Ai

if {v, w} ∈ E1△E2 or the orientation induced by d1 and d2
agree. Otherwise, the arcs of the v–w-path in the gadget
replacing {v, w} are added to Ai.
The induced orientation is only well-defined for edges with
strictly positive lengths. Therefore, the set of edges with
length zero E0 := {e ∈ E | ℓ(e) = 0} are left undirected
and have to be treated in a different manner.

s1

s2

t1

t2v2

v1

v3

v4

0

0
3

3

(a) Example: edges without label have length 1, solid edges are
in E1 ∪ E2

s1

s2

t1

t2
v2

v1

v3

v4

(b) Partially oriented expansion of (a): solid arcs are in A1 ∩ A2,
dashed arcs are in A1 \A2, dotted arcs are in A2 \A1

Figure 3: Exemplary construction of partially oriented expansion

Definition 5 (Partially Oriented Expansion)
Let G = (V,E) be an undirected graph with non-negative
edge lengths ℓ : E → R≥0 and s ∈ V 2.

The partially oriented expansion of G w.r.t. ℓ and s is
the graph

−⇀
G := (W,E0 ∪ A1 ∪ A2) where W is the set of

vertices V augmented with additional vertices introduced
with gadgets, and E0, A1, and A2 are as defined above.

The partially oriented expansion of the example from Fig-
ure 3a is depicted in Figure 3b. As we are going to discuss
the existence of shortest edge-disjoint paths in G and the
existence of arc/edge-disjoint paths restricted to different

arc and edge sets in
−⇀
G, the following notation will be use-

ful.

Definition 6 (Two Disjoint Paths Relations)

i) Let G = (V,E) be an undirected graph with non-negative
edge lengths ℓ : E → R≥0.

For v, w ∈ V 2, we write v
ℓ
⇒E w if there exist edge-disjoint

shortest vi–wi-paths w.r.t. ℓ for i ∈ [2] in E.

ii) Let G = (V,A∪· E) be a mixed graph and let Æ1,Æ2 be
two subsets of arcs and edges of A ∪· E.
For v, w ∈ V 2, we write v⇄Æ1

Æ2
w if there exist a v1–w1-path

in Æ1 and a w2–v2-path in Æ2 which are arc/edge-disjoint.

As described above, the distance functions of the original
graph G extend to the vertices of

−⇀
G. For i ∈ [2] and v ∈ W ,

di(v) is the length of a shortest si–v-path in
−⇀
G.
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Lemma 7 (Paths in the Partially Oriented Expansion)
Let G = (V,E) be an undirected graph with non-negative
edge lengths ℓ : E → R≥0 and s ∈ V 2. Furthermore, let
−⇀
G = (W,E0 ∪A1 ∪A2) be the partially oriented expansion
of G w.r.t. ℓ and s.

Then for every t ∈ V 2, we have s
ℓ
⇒E t in G if and only

if
(

s1
t2

)

⇄
E0∪A1

E0∪A2

(

t1
s2

)

in
−⇀
G.

Proof. “⇒”: Assume there exist two edge-disjoint short-
est si–ti-paths Pi in Ei for i ∈ [2]. Replace each edge
with non-zero length in Pi by the respective oriented arc
or path in the respective gadget to obtain

−⇀
P i in E0 ∪ Ai.

−⇀
P 1 and

−⇀
P 2 are arc/edge-disjoint as different edges are re-

placed by disjoint (sets of) arcs.

“⇐”: Assume there are arc/edge-disjoint si–ti-paths
−⇀
P i

in E0∪Ai for i ∈ [2]. Replace the subpath of Pi within one
gadget with the corresponding edge in Ei. The remaining
arcs are translated directly to the respective edges in Ei.
Due to the mentioned equality of distances in G and

−⇀
G

and the fact that di is non-decreasing along arcs in
−⇀
G,

Pi is a shortest path in G. Any path that uses a gadget
in

−⇀
G, uses its inner arc. Therefore, P1 and P2 inherit being

edge-disjoint from
−⇀
P 1 and

−⇀
P 2.

3.2. Disjoint Paths in the Partially Oriented Expansion

Lemma 7 shows that
−⇀
G captures the shortest paths in G by

using orientation. We will use the distances, however, to
prove the main structural result. It concern the subgraph
of

−⇀
G potentially used by both paths and its weakly con-

nected components, which are its connected components
when ignoring the arcs’ directions.

Lemma 8 (Structure of Partially Oriented Expansion)
Let G = (V,E) be an undirected graph with non-negative
edge lengths ℓ : E → R≥0 and s ∈ V 2. Furthermore, let
−⇀
G = (W,E0 ∪A1 ∪A2) be the partially oriented expansion

of G w.r.t. ℓ and s. Let W =
⋃

· hj=1 Wj be the partition
of W into the vertex sets of the h weakly connected com-
ponents of the subgraph (W,E0 ∪ (A1 ∩ A2)).

Then

i)
−⇀
G[Wj ] is weakly acyclic for all j ∈ [h],

ii) sorting the components Wj , j ∈ [h] in non-decreasing
order w.r.t. the function d1 − d2 is a topological ordering
of (W,A1)/{W1, . . . ,Wh} and a reverse topological order-
ing of (W,A2)/{W1, . . . ,Wh}, and

iii)
−⇀
G[Wj ] contains arcs only from A1∩A2 and edges only

from E0 for all j ∈ [h].

Proof. i) By definition of A1, we know that d1 increases
strictly along arcs in A1 ∩ A2. Further, d1 is constant on
edges in E0. Assume there is j ∈ [h] and a (directed)

cycle C in
−⇀
G[Wj ] such that there exists a ∈ C ∩ A1 ∩ A2.

Along of a the distance d1 strictly increases. However, d1
cannot decrease along C, which yields a contradiction.

ii) Consider the function on the vertex set of
−⇀
G. Based on

the common underlying lengths in G and the definitions
of A1 and A2, it is strictly increasing along arcs in A1 \A2

and strictly decreasing along arcs in A2 \A1. Opposed to
that, it is constant on edges in E0 as well as along of arcs
in A1 ∩ A2.

iii) The function d1−d2 is constant along all arcs A1 ∩A2

and edges in E0. Hence, it is constant on each weakly con-
nected component w.r.t. those arcs and edges. At the same
time, the function is not constant along arcs in A1△A2.

This structural result allows to use dynamic programming
for solving Problem 2 on the partially oriented expan-
sion. Similar to Section 2, the problem is split into two
parts. First, the two arc/edge-disjoint paths problem on
the weakly connected components W1, . . . ,Wh of the sub-
graph (W,E0 ∪ (A1 ∩ A2)) is solved by Algorithm 1. Af-
terwards, a dynamic program is used to incorporate the
results into arc-disjoint paths in

−⇀
G/{W1, . . . ,Wh} to get

arc/edge-disjoint paths in
−⇀
G.

We know that the two arc/edge-disjoint paths that we are

looking for, if they exist, pass through
−⇀
G/{W1, . . . ,Wh}

in opposite directions. In order to accomplish simulta-
neous construction of both, one of the paths is created
backwards. Apart from that, Algorithm 2 resembles Algo-
rithm 1.

Algorithm 2: Dynamic Program for 2-DSPP with non-

negative edge lengths

Input: undirected graph G = (V,E), non-negative edge

lengths ℓ : E → R≥0, s ∈ V 2

Output: set of pairs in V 2 that succeed s w.r.t.
ℓ
⇒E

1 Construct
−⇀
G = (W,E0 ∪ A1 ∪ A2) for G w.r.t. ℓ and s;

2 Find weakly connected components W1, . . . ,Wh of the

subgraph (W,E0 ∪ (A1 ∩ A2)) sorted non-decreasingly

w.r.t. d1 − d2;

3 for j = 1, . . . , h do

Compute ⇄
−⇀
G[Wj ]
−⇀
G[Wj ]

using Algorithm 1;

4 Initialize ⇄ to the relation
{

(v, v) | v ∈ W 2
}

;

5 for j = 1, . . . , h do

Update ⇄ to ⇄
−⇀
G[Wj ]
−⇀
G[Wj ]

◦⇄
δ
−

A1
(Wj)

δ
+

A2
(Wj)

◦⇄;

6 return
{

t ∈ V 2 |
(

s1
t2

)

⇄
(

t1
s2

)

}
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Theorem 9 (Algorithm 2: Correctness and Running Time)
Given an undirected graph G = (V,E) with non-negative
edge lengths ℓ : E → R≥0 and s ∈ V 2, Algorithm 2 com-

putes all successors of s w.r.t.
ℓ
⇒E in polynomial time.

Proof. Let W =
⋃

· h

j=1 Wj be the partition of W into the
vertex sets of the h weakly connected components of the
subgraph (W,E0 ∪ (A1 ∩ A2)) as computed by the algo-
rithm. Lemma 8 ii) shows that the Wj ’s are sorted in
a topological ordering of (W,A1)/{W1, . . . ,Wh} and in a
reverse topological ordering of (W,A2)/{W1, . . . ,Wh}.

For i ∈ [2] and j ∈ {0, . . . , h}, set Æj
i to be the arcs of Ai

and edges of E0 in the induced subgraph
−⇀
G
[
⋃j

l=1 Wl

]

. In

particular, we have Æ0
i = ∅. For j ∈ [h], let ⇄j denote

the relation ⇄ computed by Algorithm 2 after the j-th
iteration. In particular, ⇄0 is as defined in Line 4. We
will prove by induction on j = 0, . . . , h that ⇄j is equal

to ⇄
Æ

j
1

Æ
j
2

. The correctness of the algorithm then follows

from Lemma 7.
The claim holds for j = 0, since Æ0

1 = Æ0
2 = ∅ by defini-

tion. Consider iteration j ∈ [h] and assume that the claim
holds for the preceding iteration.

“⊆”: Let v, w ∈ W 2 such that v⇄j w. Considering Line 5
and using induction hypothesis, there exist p, q ∈ W 2 with

v⇄
Æ

j−1

1

Æ
j−1

2

p⇄
δ
−

A1
(Wj)

δ
+

A2
(Wj)

q⇄
−⇀
G[Wj ]
−⇀
G[Wj ]

w.

Lemma 8 iii) guarantees that the arc and edge sets of the

three relations are pairwise disjoint. As a result, v⇄
Æ

j
1

Æ
j
2

w

follows from Observation 3.

“⊇”: Let v, w ∈ W 2 such that v ⇄
Æ

j
1

Æ
j
2

w. Thus, there

have to be a simple v1–w1-path P1 in Æj
1 and a sim-

ple w2–v2-path P2 in Æj
2 that are arc/edge-disjoint. De-

fine q1 ∈ W to be the first vertex on P1 in Wj , if it exists,
or w1. Let p1 be the predecessor of q1 on P1 or q1 if it is the
first vertex of P1. Similarly, let q2 ∈ W be the last vertex
on P2 in Wj or w2 if it does not exist, and let p2 be the
successor of q2 or q2 if q2 does not have a successor. The
topological ordering of the Wj ’s implies that the subpaths
of P1 and P2 prove

v⇄
Æ

j−1

1

Æ
j−1

2

p⇄
δ−
A1

(Wj)

δ+
A2

(Wj)
q⇄

−⇀
G[Wj ]
−⇀
G[Wj ]

w.

Finally, v⇄j w follows by induction hypothesis.

As for the running time, finding the weakly connected com-
ponents and sorting them in a topological ordering can be

done in polynomial time. Computing the relations⇄
−⇀
G[Wj ]
−⇀
G[Wj ]

also can be done efficiently by virtue of Algorithm 1. Fi-
nally, relations on V 2 have at most |V |4 elements and can
be composed efficiently. Therefore, the total running time
of the algorithm is polynomial in the input size.

W1 Wj−1 Wj

v1

v2

p2

p1

q1

q2 = w2

w1

· · ·
· · ·

v⇄j−1 p p⇄
δ
−

A1
(Wj)

δ
+

A2
(Wj)

q⇄
−⇀
G[Wj ]
−⇀
G[Wj ]

w

Figure 4: Iteration j of Algorithm 2: relation ⇄j is built by concate-
nating already computed paths, pairwise different arcs to the next
component, and arc/edge-disjoint paths in the next mixed compo-
nent

Similar to Section 2, Algorithm 2 can be adapted to check
for the existence of two vertex-disjoint shortest paths. In
that case, the gadget from Figure 2 is not needed anymore,
but can be replaced by two opposite arcs.
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