
On Lifted Cover Inequalities: A New Lifting

Procedure with Unusual Properties

Adam N. Letchford∗ Georgia Souli†

To appear in Operations Research Letters

Abstract

Lifted cover inequalities are well-known cutting planes for 0-1 linear
programs. We show how one of the earliest lifting procedures, due
to Balas, can be significantly improved. The resulting procedure has
some unusual properties. For example, (i) it can yield facet-defining
inequalities even if the given cover is not minimal, (ii) it can yield
facet-defining inequalities that cannot be obtained by standard lifting
procedures, and (iii) the associated superadditive lifting function is
integer-valued almost everywhere.

Keywords: knapsack problems; lifted cover inequalities; polyhedral
combinatorics

1 Introduction

Strong valid linear inequalities, also called cutting planes, are a key ingredi-
ent of modern exact algorithms for integer programs (see, e.g., [5, 4]). In the
case of pure 0-1 linear programs (0-1 LPs), one very well-known and widely
used family of cutting planes is the so-called lifted cover inequalities (LCIs),
discovered independently by Balas [2] and Wolsey [16] (see also the surveys
[1, 14]).

LCIs are obtained from a weaker family of inequalities, the so-called
cover inequalities (CIs), by a process called lifting. Several procedures for
lifting CIs have been proposed in the literature [2, 3, 7, 9, 10, 13, 18]. In
this paper, we focus on one of the earliest lifting procedures, which was
described in Section 3 of Balas [2]. The LCIs generated by Balas’ procedure
are not guaranteed to define facets of the associated knapsack polytope, but
they tend to be strong in practice. Moreover, the procedure is extremely

∗Corresponding author. Department of Management Science, Lancaster University,
Lancaster LA1 4YX, United Kingdom. E-mail: a.n.letchford@lancaster.ac.uk
†STOR-i Centre for Doctoral Training, Lancaster University, Lancaster LA1 4YR,

United Kingdom. E-mail: G.Souli@lancaster.ac.uk

1

fast. Specifically, it runs in only O(n log c) time, where n is the number of
variables and c is the number of items in the cover.

The purpose of this paper is to show that the above-mentioned lifting
procedure of Balas can be significantly improved, so that it yields both
stronger and more general LCIs, while still running in only O(n log c) time.
The improved procedure is sequence-independent, and it has some unusual
properties:

• It can increase coefficients for variables inside the cover as well as
outside.

• It can yield facet-defining LCIs even if the given cover is not minimal.

• It can even yield facet-defining inequalities that cannot be obtained
by standard lifting procedures.

• The associated lifting function is integer-valued almost everywhere.

Moreover, the proof that the improved procedure is valid is itself unusual.
It relies on the use of “dummy variables”, by which we mean variables that
do not exist in reality.

The paper is structured as follows. In Section 2, we review the literature.
In Section 3, we present and analyse the improved lifting procedure. In
Section 4, we show how to further enhance the procedure, via an analysis of
superadditive functions.

Throughout the paper, x1, . . . , xn will be a collection of binary variables
and N will denote {1, . . . , n}. Moreover, given a vector v ∈ Qn

+ and a set
S ⊆ N , we will let v(S) denote

∑
j∈S vj .

2 Literature Review

We now briefly review the relevant literature.

2.1 Lifted cover inequalities

A knapsack constraint is a linear constraint of the form
∑

j∈N ajxj ≤ b,
where a ∈ Zn+ and b is a positive integer. Any linear inequality involving
binary variables can be converted into a knapsack constraint, by comple-
menting variables with negative coefficients [16]. The polyhedron

conv

x ∈ {0, 1}n :
∑
j∈N

ajxj ≤ b


is called a knapsack polytope [2].

A set C ⊆ N such that a(C) > b is called a cover. If C is a cover, then
the inequality x(C) ≤ |C| − 1 is valid for the knapsack polytope [8]. It is

2

called a cover inequality (CI). A cover (and the associated CI) is minimal if
a
(
C \ {k}

)
≤ b for all k ∈ C. Minimal CIs dominate all other CIs.

Unfortunately, minimal CIs do not in general define facets of the knap-
sack polytope. On the other hand, given any minimal cover C, there exists
at least one facet-defining lifted cover inequality (LCI) of the form

x(C) +
∑

j∈N\C

αjxj ≤ |C| − 1, (1)

where αj ∈ Z+ for j ∈ N \C [2, 15, 16]. (There may also exist facet-defining
LCIs in which some αj are fractional.) The process of computing the αj for
j ∈ N \ C is called lifting. Encouraging computational results with LCIs
were given in [7].

One can define more general LCIs of the form

x(C \D) +
∑

j∈N\C

αjxj +
∑
j∈D

βjxj ≤ |C \D| − 1 + β(D), (2)

where D ⊂ C [15, 16]. Encouraging computational results with general LCIs
are given in [9, 12, 13]. We will follow Gu et al. [9] in calling the computation
of the αj and βj up-lifting and down-lifting, respectively. We will also call
LCIs of the form (1) simple.

2.2 Balas’ lifting procedure

Balas [2] introduced the following elegant up-lifting procedure, which can
be implemented to run in O

(
n log |C|

)
time. Let C be a minimal cover and,

for r = 1, . . . , |C|, let S(r) be the sum of the r largest aj values over the
members of C. Also let S(0) = 0. Given any j ∈ N \ C, let λj be the
(unique) integer such that S(λj) ≤ aj < S(λj + 1). Then the simple LCI

x(C) +
∑

j∈N\C

λjxj ≤ |C| − 1 (3)

is valid.
Balas & Zemel [3] proved the following stronger result. Given any j ∈

N \ C, let µj be the (unique) integer such that

a(C)− S
(
µk + 1

)
≤ b− ak < a(C)− S

(
µk
)
. (4)

Then, in any facet-defining simple LCI, we have λj ≤ αj ≤ µj ≤ λj + 1 for
all j ∈ N \ C.

We will use the following example at several points through the paper.

Example 1. Let n = 10, a = (15, 13, 9, 8, 8, 8, 5, 5, 5, 5) and b = 16. The set
{7, 8, 9, 10} is a minimal cover. We have S(k) = 5k for k = 0, . . . , 4. Since

3

a1 = 15 ≥ S(3), we have λ1 = 3. Since a2 = 13 ≥ S(2), we have λ2 = 2.
On the other hand, since a3, . . . , a6 < S(2), we have λ3, . . . , λ6 = 1. The
resulting (simple) LCI is therefore

3x1 + 2x2 + x3 + · · ·+ x10 ≤ 3. (5)

One can also check that µ1 = µ2 = 3 and µk = 2 for k ∈ {3, 4, 5, 6}. So, in
any facet-defining LCI obtained from that specific cover, α1 = 3, α2 ∈ [2, 3]
and α3, α4, α5, α6 ∈ [1, 2]. �

2.3 Other lifting procedures

It was shown in [15, 16] that one can obtain at least one facet-defining simple
LCI by performing up-lifting sequentially, i.e., one coefficient at a time. This
can be done by solving a small knapsack problem for each variable in N \C.
Zemel [18] showed how to do it in O(n |C|) time by dynamic programming.

It is also possible to obtain facet-defining simple LCIs with fractional
coefficients, by up-lifting simultaneously instead of sequentially. Unfortu-
nately, this is not easy. In fact, even recognising a facet-defining simple LCI
obtained by simultaneous up-lifting is NP-hard [11].

It is of course possible to perform simultaneous up-lifting approximately
in polynomial time. If an approximate simultaneous up-lifting procedure
does not require any ordering of the variables in N \C, it is called sequence-
independent [3, 10]. The procedure of Balas, described in the previous sub-
section, can be viewed as a simple sequence-independent up-lifting proce-
dure.

Wolsey [17] established a connection between sequence-independent lift-
ing and superadditive functions. Gu et al. [10] used that result to improve
Balas’ up-lifting procedure, without increasing the asymptotic running time.
Their improved procedure can yield simple LCIs with fractional coefficients.
Further results on lifting can be found in [9, 12, 14].

3 The New Procedure and Its Properties

In this section, we show how to improve the procedure of Balas [2], in a
way that is different from the one given in [10]. Throughout this section, we
assume that we have a fixed knapsack constraint aTx ≤ b and a fixed (not
necessarily minimal) cover C, for ease of notation. We let c and amax denote
|C| and maxj∈C{aj}, respectively. Finally, we assume that the items in C
have been sorted in non-increasing order of aj value, and we let `1, . . . , `c
be the sorted values. Note that the sorting can be performed in O(c log c)
time.

4

3.1 A key quantity

The following quantity will play a crucial role in our analysis.

Definition 1 We let ā denote the unique (positive and rational) number
such that ∑

j∈C
min

{
aj , ā

}
= b.

For example, if C = {1, 3, 4}, a1 = 10, a3 = 7, a4 = 5 and b = 18, then
ā = 6.5, since 6.5 + 6.5 + 5 = 18.

Remark 1 We have b
c ≤ ā < amax.

Remark 2 If the items in C have already been sorted, one can compute ā
in O(c) time. See Algorithm 1.

Algorithm 1: Efficient computation of ā

input : cover C, knapsack capacity b, sorted values `1, . . . , `c
Set ā := `1 and σ := a(C)− b ;
for k = 1, . . . , c− 1 do

Let δ = ā− `k+1;
if kδ < σ then

Set ā := `k+1 and σ := σ − kδ;
else

Set ā := ā− σ/k and σ := 0;
break;

end

end
if σ > 0 then

Set ā := b/c;
end
output: Value of ā.

In the remainder of this section, we let C− =
{
j ∈ C : aj ≤ ā

}
and

C+ = C \ C−. Note that C− can be empty, but C+ cannot be
(
since

ā < amax

)
.

3.2 The improved procedure

The improved version of Balas’ procedure is described in the following the-
orem.

Theorem 1 For all j ∈ C, let a−j = min
{
aj , ā

}
. For r = 1, . . . , c, let

S−(r) be the sum of the r largest a−j values. (Note that S−(c) = b.) Also

5

let S−(0) = 0. Finally, given any k ∈ N \ C−, let γj be the largest integer
such that S−(γj) < ak ≤ S−(γj + 1). Then the inequality

x
(
C−
)

+
∑

j∈N\C−
γjxj ≤ c− 1 (6)

is valid for the knapsack polytope, and it is at least as strong as (3).

Proof. First, we expand the definition of “knapsack polytope”, by per-
mitting b and/or some of the aj to take fractional values. One can check
that Balas up-lifting procedure is valid even in this more general setting.
Without loss of generality, we assume that C \ C− = {1, . . . , c′} for some
1 ≤ c′ ≤ c. We then define the following “augmented” knapsack polytope:

K+ = conv

x ∈ {0, 1}n+c′ :
n∑
j=1

ajxj + (ā+ ε)
n+c′∑
j=n+1

xj ≤ b

 ,

where ε is some small positive rational number. By construction, the set

C̃ = C− ∪ {n+ 1, . . . , n+ c′}

is a cover for K+, and it has the same cardinality as C. If ε is sufficiently
small, then applying Balas’ up-lifting procedure to the CI associated with
C̃ yields the following LCI for K+:

x(C̃) +
∑

j∈N\C−
γjxj ≤ c− 1.

Now, the original knapsack polytope is the face of K+ obtained by setting
xj to zero for j = n+ 1, . . . , n+ c′. Thus, the inequality (6) is valid for the
original polytope. Finally, note that, by construction, S−(r) < S(r) for all
r. Thus, γj ≥ λj for all j ∈ N \ C. Moreover, γj ≥ 1 for all j ∈ C \ C−.
Thus, (6) is at least as strong as (3). �

As mentioned in the introduction, a peculiarity of the above proof is that
it relies on a consideration of “dummy variables” (namely, xn+1, . . . , xn+c′),
which do not actually exist in the original problem.

We now illustrate Theorem 1 on the same example that we considered
in Subsection 2.2.

Example 1 (cont.) We have ā = 4 and C = C+. This means that
S−(k) = 4k for k = 0, . . . , 4. Since a1 = 15 > S−(3), we have γ1 = 3.
Since a2 = 13 > S−(3), we have γ2 = 3. Since a3 = 9 > S−(2), we have
γ3 = 2. Finally, since aj = 8 < S−(2) for j ∈ {4, 5, 6}, we have γj = 1 for
j ∈ {4, 5, 6}. Thus, the resulting (simple) LCI is

3(x1 + x2) + 2x3 + x4 + · · ·+ x10 ≤ 3.

6

This dominates the LCI (5). �

Now, observe that, if λ1, . . . , λc have already been computed, then one
can compute S−(0), . . . , S−(c) in O(c) time. Moreover, for each j ∈ N \C−,
one can compute γj in O(log c) time, by binary search. Thus, our improved
lifting procedure can be performed in O(n log c) time.

3.3 Unusual properties of the new procedure

As stated in the introduction, our new lifting procedure has some unusual
properties. The first is that, if we start with covers that are not minimal,
we can obtain LCIs that are not simple. This is illustrated in the following
example.

Example 2. Let n = 5, a = (5, 5, 2, 2, 2) and b = 10. The cover C =
{1, 2, 3, 4, 5} is not minimal, but we can still apply our procedure. We have
ā = b/c = 2, so that S−(r) = 2r for r = 0, . . . , 5. Now, since C+ = {1, 2},
we may be able to increase the coefficients of x1 and x2. Indeed, since
a1 = a2 = 5 > S−(2), we have γ1 = γ2 = 2. The resulting valid inequality
is 2x1 + 2x2 + x3 + x4 + x5 ≤ 4. This is not a simple LCI, since only three
variables have a left-hand side coefficient equal to 1. It is however an LCI,
as one can see by setting C = {2, 3, 4, 5}, D = {2}, α1 = 2 and β2 = 2 in
(2). It also defines a facet of the associated knapsack polytope. �

In general, our procedure yields a simple LCI if and only if at least |C|
variables receive a left-hand side coefficient of 1. One can check that this is
equivalent to requiring∣∣∣{j ∈ N \ C− : ā < aj ≤ S−(2)

}∣∣∣ ≥ |C \ C−|.
In particular, we have the following result.

Lemma 1 If the original cover C is minimal, then our procedure yields a
simple LCI.

Proof. Let σ = a(C)− b. Since C is minimal, we have σ ≤ `c ≤ `2. Thus,

amax = `1 ≤ `1 + (`2 − σ) = (`1 + `2)− σ ≤ `−1 + `−2 = S−(2).

This implies that γk = 1 for all k ∈ C \ C−. �

An even more unusual property of the new procedure is that, if we start
with covers that are not minimal, we can obtain inequalities that are not
LCIs at all (in the traditional sense).

Example 3. Let n = 5, a = (10, 7, 7, 4, 4) and b = 16. The cover C =

7

z

f(z)

0 4 8 12 16
0

1

2

3

s s
s

s
s

c
c

c

Figure 1: The lifting function f(z) for Example 1.

{1, . . . , 5} is not minimal, but we apply our procedure. We have ā = b/c =
31
5 , so that S−(0), . . . , S−(5) are 0, 31

5 , 62
5 , 93

5 , 124
5 and 16. Now, since

C+ = C, we may be able to increase the coefficients for some of the variables
in the cover. One can check that we get γ1 = 3, γ2 = γ3 = 2 and γ4 = γ5 = 1.
The resulting valid inequality is

3x1 + 2x2 + 2x3 + x4 + x5 ≤ 4.

One can check (by brute-force enumeration of all possible lifting orders) that
this inequality cannot be obtained from a CI by standard lifting methods,
sequential or otherwise. One can also check (either by hand or with the
help of a software package such as PORTA [6]) that it defines a facet of the
associated knapsack polytope. �

4 Additional Improvement Via Superadditivity

A further improvement in the lifting procedure can be achieved from a con-
sideration of superadditive lifting functions. The lifting function associated
with Theorem 1 is:

f(z) =

{
0 if z = 0,

h if S−(h) < z ≤ S−(h+ 1) for some h = 0, . . . , c− 1;

where the domain of z is understood to be [0, b].
(
Figure 1 shows the function

f(z) for Example 1.)
Our goal is to construct an even stronger lifting function. We will need

the following three results.

Lemma 2 The function f is superadditive on its domain.

Proof. Let z, z′ ∈ [0, b] be such that z + z′ ≤ b. Suppose that f(z) = γ
and f(z′) = γ′. Then, by definition, we have z > S−(γ) and z′ > S−(γ′).

8

Let `−1 , . . . , `
−
c be the a−j values sorted in non-increasing order. We have

z >
∑γ

j=1 `
−
j and z′ >

∑γ′

j=1 `
−
j . We then have:

z + z′ >

γ∑
j=1

`−j +

γ′∑
j=1

`−j ≥
γ+γ′∑
j=1

`−j ,

where the second inequality follows from the fact that the `−j are sorted in
non-increasing order. Thus, f(z + z′) ≥ γ + γ′ = f(z) + f(z′). �

Lemma 3 The upper bound of Balas and Zemel [3] remains valid even when
the cover C is not minimal. That is, for any k ∈ N \C, the lifting coefficient
of xk cannot exceed µk, where µk is the unique integer such that (4) holds.

Proof. The lifting coefficient achieves its maximum possible value when
xk is lifted first. Note that, if we set xk to 1, the remaining capacity in the
knapsack is b − ak. Then, the maximum value that x(C) can take is equal
to the largest integer s such that

∑c
j=c−s+1 `j ≤ b− ak. But

∑c
j=c−s+1 `j =

a(C) − S(c − s). Since the right-hand side of the CI is c − 1, the lifting
coefficient cannot exceed (c− 1)− s, which is nothing but µk. �

Lemma 4 The function f reaches the Balas–Zemel bound when z ≥ b −
a(C−).

Proof. Note that γj is the unique integer such that S−
(
γj
)
< aj ≤

S−
(
γj + 1

)
, and µj is the unique integer such that S

(
µj
)

+ b− a(C) < aj ≤
S
(
µj
)

+ b − a(C). But S−(C) = b = S(C) + b − a(C), which implies that
S−(k) = S(k) + b− a(C) for k ≥ |C+|. So γj = µj for z ≥ b− a(C−). �

Lemma 4 leaves open the possibility that the value of f(z) could be
increased for some values of z smaller than b − a

(
C−
)
. This is indeed the

case.

Theorem 2 The following function is a superadditive valid lifting function:

g(z) =

{
f(z) + 1

2 if z = h ā for some integer h ∈ [1, |C+| − 1]

f(z) otherwise.

(See Figure 2 for an illustration.)

Proof. From the results in Wolsey [17], we need to prove that (a) g is
superadditive and (b) g(z) never exceeds the Balas–Zemel bound.

First, we prove superadditivity. Since f is superadditive, we need to
prove only that g(z) + g(z′) ≤ g(z+ z′) when g(z) > f(z), i.e., when z = h ā
for some integer h ∈ [1, |C+|−1]. We have z =

∑h
j=1 `

−
j , where `−j is defined

as in the proof of Lemma 2. We also have g(z) = h − 1
2 . We consider two

cases.

9

z

f(z)

0 4 8 12 16
0

1

2

3

s s
s

s s

c
c c

c c
c

Figure 2: The improved lifting function g(z) for Example 1.

1. g(z′) = f(z′) = γ′. In this case, we have z′ >
∑γ′

j=1 `
−
j . This implies

z + z′ >

h∑
j=1

`−j +

γ′∑
j=1

`−j ≥
h+γ′∑
j=1

`−j ,

which in turn implies g(z + z′) ≥ h+ γ′ > h− 1
2 + γ′ = g(z) + g(z′).

2. g(z′) = f(z′)+ 1
2 . In this case, z = h′ ā for some integer h′ ∈ [1, |C+|−

1]. This implies

z + z′ =
h∑
j=1

`−j +
h′∑
j=1

`−j ≥
h+h′∑
j=1

`−j ,

which in turn implies g(z + z′) ≥ h + h′ − 1 = (h − 1
2) + (h′ − 1

2) =
g(z) + g(z′).

Now we show that g(z) never exceeds the Balas–Zemel bound. Since f
is a valid lifting function, it follows that f(z) never exceeds the bound. The
only time that g(z) > f(z) is when z = hā for some integer h ∈ [1, |C+|−1].
In this case, we have

b− z = b− hā =
c∑

j=h+1

`−j <
c∑

j=h+1

`j = a(C)− S(h).

Together with (4), this means that the Balas-Zemel upper bound is at least
h. This exceeds g(hā) = h− 1

2 . �

It turns out that using g(z) in place of f(z) can lead to stronger LCIs,
even when the aj are integers and the cover is minimal.

Example 1 (cont.) We have ā = 4 and |C+| = 4. Setting h = 2 in
Theorem 2, we obtain g(2ā) = g(8) = 3/2. This yields the stronger LCI

3(x1 + x2) + 2x3 +
3

2
(x4 + x5 + x7) + x7 + · · ·+ x10 ≤ 3.

10

This LCI can be shown to be facet-defining. �

We also have the following result:

Proposition 1 The function g(z) is non-dominated (that is, there does not
exist a superadditive valid lifting function that is stronger than g(z)).

Proof. Lemma 4 shows that g(z) cannot be increased when z ≥ b −
a
(
C−
)

= |C+| ā. One can check that, for any pair (z, z′) such that z + z′ =
|C+| ā, we have g(z) + g(z′) = g

(
|C+| ā

)
= |C+| − 1. Thus, g(z) cannot be

increased when z < |C+| ā either. �

Note that g(z) is half-integral, and integer-valued almost everywhere.
We found it surprising that a non-dominated lifting function with these
properties exists. (Indeed, the lifting function presented in [10] is integer-
valued only on certain intervals.)

We know of some other superadditive valid lifting functions that domi-
nate f(z). The one that we find most interesting is presented in the following
proposition.

Proposition 2 If aj 6= ā for all j ∈ C, the following function is a non-
dominated superadditive valid lifting function :

g′(z) =


f(z) + 1 if z = h ā for some integer h ∈

(
|C+|/2, |C+| − 1

]
f(z) + 1

2 if |C+| is even and z = |C+|ā/2
f(z) otherwise.

Proof. The proof is similar to that of Theorem 2 and Proposition 1. The
key difference occurs when g′(z) = f(z) + 1 and g′(z′) > f(z′). In this
case, let z = hā and z′ = h′ā. Since h exceeds |C+|/2 and h′ is at least
|C+|/2, we must have z + z′ > |C+| ā. Moreover, if aj 6= ā for all j ∈ C, we
have S−(k) < kā for all k > |C+|. This implies that g′(z + z′) ≥ h + h′ =
g′(z) + g′(z′). �

This lifting function is integer-valued at all points when |C+| is even.

Acknowledgements

The second author gratefully acknowledges financial support from the EP-
SRC through the STOR-i Centre for Doctoral Training under grant EP/L015692/1.

References

[1] A. Atamtürk (2005) Cover and pack inequalities for (mixed) integer
programming. Ann. Oper. Res., 139, 21–38.

11

[2] E. Balas (1975) Facets of the knapsack polytope. Math. Program., 8,
146–164.

[3] E. Balas & E. Zemel (1978) Facets of the knapsack polytope from min-
imal covers. SIAM J. Appl. Math., 34, 119–148.

[4] M. Conforti, G. Cornuéjols & G. Zambelli (2015) Integer Programming.
Graduate Texts in Mathematics, vol. 271. Springer.

[5] D.-S. Chen, R.G. Batson & Y. Dang (2011) Applied Integer Program-
ming. Hoboken, NJ: Wiley.

[6] T. Christof & A. Loebl, PORTA (polyhedron representation trans-
formation algorithm). Software package, available for download at
http://www.iwr.uni-heidelberg.de/groups/comopt/software

[7] H. Crowder, E. Johnson & M. Padberg (1983) Solving large-scale 0-1
linear programming programs. Oper. Res., 31, 803–834.

[8] F. Glover (1973) Unit-coefficient inequalities for zero-one programming.
Management Science Report 73-7, University of Colorado, July 1973.

[9] Z. Gu, G.L. Nemhauser & M.W.P. Savelsbergh (1998) Lifted cover in-
equalities for 0-1 integer programs: computation. INFORMS J. Com-
put., 10, 427–437.

[10] Z. Gu, G.L. Nemhauser & M.W.P. Savelsbergh (2000) Sequence-
independent lifting in mixed integer programming. J. Comb. Optim.,
4, 109–129.

[11] D. Hartvigsen & E. Zemel (1992) The complexity of lifted inequalities
for the knapsack problem. Discr. Appl. Math., 39, 113–123.

[12] K.L. Hoffman & M.W. Padberg (1991) Improving LP-representations
of zero-one linear programs for branch-and-cut. ORSA J. Comput., 3,
121–134.

[13] K. Kaparis & A.N. Letchford (2010) Separation algorithms for 0-1 knap-
sack polytopes. Math. Program., 124, 69–91.

[14] K. Kaparis & A.N. Letchford (2011) Cover inequalities. In J.J. Cochran
et al. (eds.) Encyclopedia of Operations Research and Management Sci-
ence. New York: Wiley.

[15] M.W. Padberg (1975) A note on zero-one programming. Oper. Res.,
23, 833–837.

[16] L.A. Wolsey (1975) Faces for a linear inequality in 0–1 variables. Math.
Program., 8, 165–178.

12

[17] L. Wolsey (1977) Valid inequalities and superadditivity for 0-1 integer
programs. Math. Oper. Res., 2, 66–77.

[18] E. Zemel (1989) Easily computable facets of the knapsack polytope.
Math. Oper. Res., 14, 760–765.

13

	Introduction
	Literature Review
	Lifted cover inequalities
	Balas' lifting procedure
	Other lifting procedures

	The New Procedure and Its Properties
	A key quantity
	The improved procedure
	Unusual properties of the new procedure

	Additional Improvement Via Superadditivity

