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a b s t r a c t

This paper studies extended formulations for radial cones at vertices of polyhedra, which are the
polyhedra defined by the constraints that are active at the vertex. While the perfect-matching
polytope cannot be described by subexponential-size extended formulations (Rothvoß 2014), Ventura
& Eisenbrand (2003) showed that its radial cones can be described by polynomial-size extended
formulations. The authors also asked whether this extends to odd-cut polyhedra, which are related
to matching polyhedra by polarity. We answer this question negatively.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The concept of extended formulations is an important tech-
nique in discrete optimization that allows for replacing the in-
equality description of some linear program by another inequality
description of preferably smaller size using auxiliary variables.
Geometrically, given a polyhedron P ⊆ Rp one searches for a
polyhedron Q ⊆ Rq together with a linear map π : Rq

→ Rp

such that π (Q ) = P . The pair (Q , π ) is called a linear extension of
P whose size is the number of facets of Q .

There are several polyhedra associated to classic combinato-
rial optimization problems having a large number of facets but
admitting linear extensions of small size (polynomial in their
dimension). Prominent examples are the spanning tree poly-
tope [11,20], the subtour elimination polytope [20], and the cut
dominant [5, §4.2]. The seminal work of Fiorini et al. [9] has
shown that such descriptions do not exist for many polytopes
associated to hard problems, including the cut polytope or the
traveling salesman polytope. Surprisingly, the same is true even
for the perfect-matching polytope, a very well-understood poly-
tope over which linear functions can be optimized in polynomial
time [7]. In fact, Rothvoß [14] proved that every linear extension
of the perfect-matching polytope Ppmatch(n) of the complete graph
Kn = (Vn, En) on n nodes has size 2Ω(n).

Thus, in terms of sizes of linear extensions, the perfect match-
ing polytope appears as complicated as certain polytopes associ-
ated to hard problems. Ventura & Eisenbrand [19] showed that
this situation changes if one aims for local descriptions: Given a
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vertex v of Ppmatch(n), they showed that the polyhedron defined
by only those constraints of Ppmatch(n) that are active at v, the
radial cone at v, has a linear extension of size O(n3).

Note that such formulations can be used to efficiently test
whether a given vertex is optimal with respect to a given linear
function. For linear 0/1-optimization problems, efficient routines
for such local checks are usually enough to obtain an efficient
algorithm for the actual optimization problem, see [17,18]. Thus,
the work in [19] yields another proof that the weighted matching
problem can be solved in polynomial time. However, this also
suggests that such descriptions do not exist for polytopes asso-
ciated to hard problems, which separates matching from harder
optimization problems.

Furthermore, Ventura & Eisenbrand generalized their con-
struction to the Vn-join polyhedron of Kn (which contains
Ppmatch(n) as a face), showing that its radial cones also admit linear
extensions of size O

(
n3

)
. In the same paper, the authors asked

whether the same holds for the odd-cut polyhedron, which is the
blocker of the Vn-join polyhedron and hence closely related.

Our results.

1. The main purpose of this work is to answer their question
negatively by showing the following result.

Theorem 1. There exists a constant c > 0 such that for
every even n, the radial cones of the odd-cut polyhedron of
Kn cannot be described by linear extensions of size less than
2cn.

2. To obtain our result, for a polyhedron P of blocking type,
we establish a general relationship between its radial cones
and certain faces of the blocker of P .

https://doi.org/10.1016/j.orl.2019.05.004
0167-6377/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.orl.2019.05.004
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
mailto:m.walter@utwente.nl
mailto:weltge@tum.de
https://doi.org/10.1016/j.orl.2019.05.004


Please cite this article as: M. Walter and S. Weltge, Extended formulations for radial cones, Operations Research Letters (2019), https://doi.org/10.1016/j.orl.2019.05.004.

2 M. Walter and S. Weltge / Operations Research Letters xxx (xxxx) xxx

In the case of the odd-cut polyhedron, we show that its
radial cones correspond to certain faces of the Vn-join poly-
hedron that can be shown to require large linear extensions
using Rothvoß’ result.
Analogously, it turns out that radial cones of the Vn-join
polyhedron correspond to certain faces of the odd-cut poly-
hedron, which can be easily described by linear extensions
of size O

(
n3

)
.

This allows us to give an alternative proof of the result by
Ventura & Eisenbrand.

3. We complement our results by observing that radial cones
of polytopes associated to most classical hard optimization
problems indeed do not admit polynomial-size extended
formulations in general.

Outline. The paper is structured as follows. In Section 2, we
will introduce the relevant concepts and derive straight-forward
results on extension complexities of radial cones. Using elemen-
tary properties of blocking polyhedra, we will derive a structural
relationship between radial cones and certain faces of the blocker
in Section 3. Using these insights, our main result is proved in
Section 4, where we also provide an alternative proof of the
result by Ventura and Eisenbrand. Finally, an upper bound that
complements our main result is provided in the appendix.

2. Overview

Recall that, for a polyhedron P and a point v ∈ P , we are
interested in describing the radial cone KP (v), which is the poly-
hedron defined by all inequalities that are valid for P and satisfied
with equality by v. We remark that, technically, by our definition,
KP (v) is not necessarily a cone. In fact, standard definitions of the
radial cone (or the cone of feasible directions) differ from ours in
a translation by the vector −v, see, e.g., [15, § 2.2]. However, the
one given here will be more convenient for us.

Given an inequality description of P , the radial cone is sim-
ply defined by dropping some of the inequalities. Note that a
polyhedron arising from P by deleting an arbitrary subset of
inequalities might require much larger linear extensions than P
does. However, radial cones arise in a very structured way, which
allows us to carry over linear extensions for P . This is made clear
by observing that

KP (v) = cone(P − v) + v,

where cone(X) := {µx : µ ≥ 0, x ∈ X} for convex sets X . Let us
formalize the previous claim and other basic observations in the
following proposition. To this end, we make use of the (linear)
extension complexity xc(P) of a polyhedron P , which is defined as
the smallest size of any linear extension of P .

Proposition 2. Let P ⊆ Rn be a polyhedron and v ∈ P.

(i) xc(KP (v)) ≤ xc(P).
(ii) Every face F of P satisfies xc(F ) ≤ xc(P).
(iii) Every face F of P with v ∈ F satisfies xc(KF (v)) ≤ xc(KP (v)).
(iv) For every linear map π : Rp

→ Rd, we have xc(π (P)) ≤

xc(P) and xc(Kπ (P)(π (v))) ≤ xc(KP (v)).

Proof. To see (i), let Q be a minimum-size extension of P with
P = π (Q ) for some linear map π . Let w ∈ Q be a preimage of v,
i.e., π (w) = v. By the linearity of π , we have

KP (v) = cone(P − v) + v = cone(π (Q − w)) + v

= π (cone(Q − w)) + v

= π (cone(Q − w) + w) = π (KQ (w)).

This proves (i) since KQ (w) is described by a subset of the
xc(P)-many inequalities describing Q .

Let F be a face of P and let H be a corresponding supporting
hyperplane, i.e., F = P∩H . Since H is described by an equation, (ii)
follows. Moreover, KF (v) = KP (v) ∩ H , i.e., the radial cone of F
at v is a face of the radial cone of P at v. An application of (ii)
yields (iii).

The first statement of (iv) follows by concatenating the pro-
jection map of a minimum-size extension of P with π . To prove
the second statement, we will show that π (KP (v)) = Kπ (P)(π (v)).
By translating P to P − v (and by keeping π , also translating
π (P) to π (P)− π (v)), this is equivalent to showing π (cone(P)) =

cone(π (P)) forO ∈ P . Clearly, the last statement holds by linearity
of π . □

On the one hand, Proposition 2 (i) shows that radial cones of
polyhedra admitting small extensions, e.g., the ones mentioned
in the introduction, also have a small extension complexities. On
the other hand, the last two statements of the proposition can be
used to derive lower bounds on extension complexities of radial
cones of polytopes related to many NP-hard problems.

Radial cones of polytopes associated to hard problems. Consider the
cut polytope PCUT(n) ∈ REn of the complete graph Kn = (Vn, En)
defined as the convex hull of characteristic vectors of cuts (in
the edge space) in Kn. Braun et al. proved (see Proposition 3
in [3]) that cone(PCUT(n)) has extension complexity at least 2Ω(n).
Note that cone(PCUT(n)) is the radial cone of PCUT(n) at the vertex
corresponding to the empty cut. Furthermore, it has been shown
that several polytopes associated to other NP-hard problems have
faces that can be projected onto cut polytopes by (affine) linear
maps. Examples are certain stable-set polytopes and traveling-
salesman polytopes [9], certain knapsack polytopes [1,13] and
3d-matching polytopes (see [1]).

Consider any such a polytope P(n) and let F (n) be a face that
projects to PCUT(n). Clearly, F (n) must have a vertex vn whose
projection is the vertex O of PCUT(n). By Proposition 2 (iii) and (iv),
the extension complexity of the radial cone of P(n) at vn is greater
than or equal to the extension complexity of the radial cone
of PCUT(n) at O. Hence, for such polytopes, we obtain super-
polynomial lower bounds on extension complexities of some of
their radial cones. Notice that such polytopes may still have radial
cones with small extension complexities. For instance, the radial
cone of any stable-set polytope at the origin is a nonnegative
orthant.

Polyhedra associated to matchings, T -joins, and T-cuts. Throughout
the paper, let T ⊆ Vn be a node set of even cardinality. A
T -join is a subset J ⊆ En of edges such that a node v ∈ Vn
has odd degree in the subgraph (Vn, J) if and only if v ∈ T .
A T -cut is a subset C ⊆ En of edges such that C = δ(S) :=

{{v, w} ∈ En : v ∈ S, w /∈ S} holds for some S ⊆ Vn for which
|S ∩ T | is odd. The Vn-cuts are also known as odd cuts. The perfect-
matching polytope Ppmatch(n), T -join-polytope PT -join(n) and T -cut
polytope PT -cut(n) are defined as the convex hulls of character-
istic vectors of all perfect matchings, T -joins and T -cuts of Kn,
respectively. The (weighted) minimization problem for T -cuts is
NP-hard for arbitrary objective functions, but can be solved in
polynomial time for nonnegative ones [12]. For this reason we fo-
cus on the dominant of the T -cut polytope, defined as PT -cut(n)↑ :=

PT -cut(n) + REn
+ , which in turn is related to the dominant of the

T -join polytope PT -join(n)↑ := PT -join(n) + REn
+ . We also refer to

PT -cut(n)↑ and PT -join(n)↑ as the T -cut polyhedron and the T -join
polyhedron, respectively. The descriptions of both polyhedra in
terms of linear inequalities are well-known [8] (using x(F ) as a
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short-hand notation for
∑

e∈F xe):

PT -join(n)↑ =

{
x ∈ REn

+ : x(C) ≥ 1 for all T-cuts C
}

(1)

PT -cut(n)↑ =

{
x ∈ REn

+ : x(J) ≥ 1 for all T-joins J
}

It is worth noting that the vertices of PT -join(n)↑ are the inclusion-
wise minimal T -joins, i.e., those that do not contain cycles
[10, §12.2] and hence are edge-disjoint unions of 1

2 |T | paths
whose endnodes are distinct and in T . Setting n′

:= |T |, the
perfect-matching polytope Ppmatch(n′) is a face of PT -join(n)↑, in-
duced by x(δ(v)) ≥ 1 for all v ∈ T and x(δ(v)) ≥ 0 for all
v ∈ Vn \ T , where δ(v) := δ({v}). Thus, from Rothvoß’ proof for
the exponential lower bound on the extension complexity of the
perfect-matching polytope it follows that

xc(PT -join(n)↑) ≥ 2Ω(|T |). (2)

It turns out that this bound is essentially tight. In fact, in Ap-
pendix A we give a linear extension for PT -join(n)↑ showing

xc(PT -join(n)↑) ≤ O
(
n2

· 2|T |
)
. (3)

Thus, for case T = Vn with n even we obtain that the extension
complexity of the Vn-join polyhedron grows exponentially in n.
In the next section we will see that this result carries over to the
Vn-cut polyhedron, also known as the odd-cut polyhedron.

3. Blocking pairs of polyhedra

The T -cut polyhedron and the T -join polyhedron belong to
the class of blocking polyhedra. A polyhedron P ⊆ Rd

+
is blocking

if x′
≥ x implies x′

∈ P for all x ∈ P . Such a polyhedron
can be described as P =

{
x ∈ Rd

+
:
⟨
y(i), x

⟩
≥ 1 for i = 1, . . . ,m

}
for certain nonnegative vectors y(1), . . . , y(m)

∈ Rd
+

or as P =

conv
{
x(1), . . . , x(k)

}
+Rd

+
for certain nonnegative vectors x(1), . . . ,

x(k) ∈ Rd
+
. The blocker of P , defined via

B(P) :=
{
y ∈ Rd

+
: ⟨x, y⟩ ≥ 1 ∀x ∈ P

}
,

is again a blocking polyhedron and satisfies B(B(P)) = P . We refer
to Section 9.2 in Schrijver’s book [16] for the proofs and more
properties of blocking polyhedra.

In what follows, we will establish some connections between
extension complexities of (certain faces of) blocking polyhedra
and (certain faces of) their blockers. We will make use of the fol-
lowing key observation of Martin [11] that relates the extension
complexities of certain polyhedra, in particular if they are in a
blocking relation.

Proposition 3 ([11], see also [6, Prop. 1]). Given a non-empty
polyhedron Q and γ ∈ R, let

P = {x : ⟨y, x⟩ ≥ γ ∀y ∈ Q } .

Then xc (P) ≤ xc (Q ) + 1.

A first consequence of Proposition 3 is that the extension
complexities of a blocking polyhedron P and its blocker B(P) differ
by at most d (due to the nonnegativity constraints). Thus, the
extension complexities of PT -cut(n)↑ and PT -join(n)↑ differ by at
most

(n
2

)
. In particular, in view of (2) and (3), we obtain

2Ω(|T |)
≤ xc(PT -cut(n)↑) ≤ O

(
n2

· 2|T |
)
. (4)

Using the same arguments, the above lower bound has been
already established in [4, § 5.7].

The main purpose of this section, however, is to show that a
radial cone of a blocking polyhedron can be analyzed by consider-
ing a certain face of the blocker. To this end, let us now consider a

general pair (P, B(P)) of blocking polyhedra in Rd
+
. For every point

v ∈ P we define the set

FB(P)(v) := {y ∈ B(P) : ⟨v, y⟩ = 1}

=
{
y ∈ Rd

+
: ⟨v, y⟩ = 1, ⟨x, y⟩ ≥ 1 ∀x ∈ P

}
, (5)

which is a face of B(P). The following lemma establishes structural
connections between KP (v) and FB(P)(v).

Lemma 4. Let P ⊆ Rd
+

be a blocking polyhedron and let v ∈ P.

(i) FB(P)(v) =
{
y ∈ Rd

: ⟨v, y⟩ = 1, ⟨x, y⟩ ≥ 1 ∀x ∈ KP (v)
}
.

(ii) KP (v) =
{
x ∈ Rd

: ⟨y, x⟩ ≥ 1 ∀y ∈ FB(P)(v)
}
.

Proof. We first prove ‘‘⊆’’ of part (i). To this end, let y ∈ FB(P)(v).
We have to show that ⟨x, y⟩ ≥ 1 holds for all x ∈ KP (v). Recall
that for every x ∈ KP (v) there exist x′

∈ P and µ ≥ 0 such that
x = v + µ(x′

− v). Since we have ⟨v, y⟩ = 1 and
⟨
x′, y

⟩
≥ 1, this

implies

⟨x, y⟩ = ⟨v, y⟩ + µ(
⟨
x′, y

⟩
− ⟨v, y⟩)

= 1 + µ(
⟨
x′, y

⟩
− 1) ≥ 1,

as claimed.
To prove ‘‘⊇’’ of part (i), we have to show for every j ∈ [d] :=

{1, . . . , d} that the nonnegativity constraint yj ≥ 0 is redundant
in the right-hand side of (5). From v + ej ∈ P we obtain the
valid inequality

⟨
v + ej, y

⟩
≥ 1. Subtracting ⟨v, y⟩ = 1 implies

the desired inequality yj ≥ 0.
Before we turn to the proof of part (ii), let us fix some no-

tation. Recall that there exist y(1), . . . , y(m)
∈ Rd

+
such that

P =
{
x ∈ Rd

+
:
⟨
y(i), x

⟩
≥ 1 for i = 1, . . . ,m

}
. Denote by I :={

i ∈ [m] :
⟨
v, y(i)

⟩
= 1

}
and J :=

{
j ∈ [d] : vj = 0

}
the index sets

of the inequalities of P that are tight at v. In other words, KP (v) ={
x ∈ Rd

:
⟨
y(i), x

⟩
≥ 1 ∀i ∈ I, xj ≥ 0 ∀j ∈ J

}
.

To prove ‘‘⊆’’ of part (ii), we consider vectors x̂ ∈ KP (v) and
ŷ ∈ FB(P)(v) and claim that

⟨
x̂, ŷ

⟩
≥ 1. In particular, ŷ ∈ B(P), and

hence there exists a vector ȳ ≤ ŷ with ȳ ∈ conv{y(i) | i ∈ [m]}.
From ŷ ∈ FB(P)(v) and nonnegativity of v we obtain 1 =⟨

v, ŷ
⟩
≥ ⟨v, ȳ⟩. Since

⟨
v, y(i)

⟩
≥ 1 holds for all i ∈ [m], this implies

⟨v, ȳ⟩ ≥ 1, and hence ŷj = ȳj for all j ∈ [d] \ J . Furthermore,
only y(i) for i ∈ I can participate in the convex combination (of
ȳ) with a strictly positive multiplier. Considering the inequalities
that are valid for KP (v), we observe that x̂j ≥ 0 for all j ∈ J and
that

⟨
x̂, y(i)

⟩
≥ 1 for all i ∈ I .

This in turn implies
⟨
x̂, ȳ

⟩
≥ 1. Hence, using ŷj = ȳj for all

j ∈ [d] \ J and x̂j ≥ 0 for all j ∈ J , we obtain
⟨
x̂, ŷ

⟩
≥

⟨
x̂, ȳ

⟩
which

establishes
⟨
x̂, ŷ

⟩
≥ 1.

It remains to prove ‘‘⊇’’ of part (ii). To this end, consider a
vector x̂ from the set on the right-hand side of the equation.
For all i ∈ I , y(i) ∈ FB(P)(v) implies

⟨
y(i), x̂

⟩
≥ 1. Consider an

arbitrary ȳ ∈ FB(P)(v) and some j ∈ J . For all µ ≥ 0, we have
(ȳ + µej) ∈ FB(P)(v). To see this, consider (5) and observe that⟨
v, ej

⟩
= 0 and that

⟨
x, ej

⟩
≥ 0 for all x ∈ P . In particular

1 ≤
⟨
x̂, ȳ + µej

⟩
=

⟨
x̂, ȳ

⟩
+µx̂j, which implies x̂j ≥ 0 and concludes

the proof. □

We conclude this section with the following result, which is
an immediate consequence of Proposition 3 and parts (i) and (ii)
of Lemma 4.

Theorem 5. Let P ⊆ Rd
+

be a blocking polyhedron and let v ∈ P.
Then xc(KP (v)) and xc(FB(P)(v)) differ by at most 1.
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4. Radial cones of T -join and T -cut polyhedra

In this section we will apply our structural results from the
previous section to the radial cones of T -join and T -cut polyhedra.
These results relate the extension complexities of radial cones
to the extension complexities of certain faces of the blocker. We
start by reproving the result of Ventura and Eisenbrand [19] for
which we use the well-known theorem of Balas on unions of
polyhedra.

Proposition 6 ([2]). Let P1, . . . , Pk ⊆ Rd be non-empty polyhedra,
and let P be the closure of conv(P1 ∪ · · · ∪ Pk).

Then xc(P) ≤
∑k

i=1(xc(Pi) + 1).

Theorem 7 (Ventura & Eisenbrand, 2003 [19]). For every set T ⊆ Vn
with |T | even and every vertex v of PT-join(n)↑ corresponding to a
T-join J ⊆ En in Kn, the extension complexity of the radial cone of
PT-join(n)↑ at v is most O

(
|J| · n2

)
.

The crucial observation for (re)proving the result is that the
facets of the T -cut polyhedra have small extension complexities.

Proof. By Theorem 5 it suffices to prove that the extension
complexity of

F :=
{
x ∈ PT -cut(n)↑ : ⟨v, x⟩ = 1

}
is at most O

(
|J| · n2

)
. A vector y ∈ REn is in the recession cone C

of F if and only if it is nonnegative and ⟨v, y⟩ = 0 holds. Thus, C
is generated by all unit vectors corresponding to edges in En \ J .
For every edge e ∈ J we consider the set

Fe :=
{
x ∈ F : xe′ = 0 ∀e′

∈ J \ {e}
}
,

which is a face of F . Note that since ⟨v, x⟩ = 1 is valid for F , so
is xe = 1. It is easy to see that Fe also has C as its recession cone.
Every vertex w of F satisfies we = 1 for some edge e ∈ J , and thus
w ∈ Fe, which (since F and all faces Fe have the same recession
cone) proves

F = conv(
⋃
e∈J

Fe).

Hence, by Proposition 6, xc(F ) ≤ |J| · (xc(Fe) + 1) holds, and it
remains to prove xc(Fe) ≤ O

(
n2

)
for all e ∈ J . We claim that Fe is

equal to

Ge :=
{
x ∈ PT ′-cut(n)↑ : xe = 1, xe′ = 0 ∀e′

∈ J \ {e}
}
,

where T ′
:= e is the set containing the two endnodes of e.

Note that Ge is a face of PT ′-cut(n)↑ and hence both polyhedra are
integral. Moreover, Ge also has C as its recession cone. To see
that also their vertex sets agree, consider a cut δ(S) for some
S ⊆ V . If δ(S) is a T -cut that contains e, then δ(S) is also a
T ′-cut. Suppose δ(S) is a T ′-cut with δ(S) ∩ J = {e}. Since J is the
edge-disjoint union of paths whose endnodes are distinct and in
T , all such paths, except for the one that contains edge e, have
both endnodes either in S or in Vn \ S. This shows that |S ∩ T | is
odd and hence that δ(S) is a T -cut. This concludes the proof of
the claim that Fe = Ge holds.

Since T ′ contains exactly two nodes, Proposition 2 (ii) and the
upper bound from (4) already yield xc(Ge) ≤ xc(PT ′-cut(n)) ≤

O
(
n2

)
, which concludes the proof. □

Since T -joins can have at most O
(
n2

)
edges, Lemma 11 estab-

lishes an O
(
n4

)
bound for the extension complexities of the radial

cones of PT -join(n)↑ at its vertices. For perfect matchings we obtain
a better bound since they have only O (n) edges.

Corollary 8 (Proposition 2.1 in Ventura & Eisenbrand, 2003 [19]).
For every n and every vertex v of Ppmatch(n), the extension complexity
of the radial cone of Ppmatch(n) at v is most O

(
n3

)
.

Proof. The result follows from Theorem 7 and Proposition 2 (iii),
using the fact that Ppmatch(n) is a face of PT -join(n)↑ (see Section 2).

Note that the bound is cubic since v corresponds to a perfect
matching, which consists of n/2 edges. □

We now generalize Lemma 11 to radial cones of PT -join(n)↑ at
non-vertices.

Corollary 9. For every n and every v ∈ PT-join(n)↑, the extension
complexity of the radial cone of PT-join(n)↑ at v is most O

(
n4

)
.

Proof. Let P := PT -join(n)↑ and let w be a vertex of P in
the smallest face that contains v. Theorem 7 implies that the
extension complexity of KP (w) is at most O

(
n4

)
. By definition of

the radial cone, KP (w) ⊆ KP (v), and thus, by Lemma 4, FB(P)(v) ⊆

FB(P)(w). Using the fact that FB(P)(v) and FB(P)(w) are faces of B(P),
this implies that FB(P)(v) is a face of FB(P)(w). Theorem 5 and
Proposition 2 (ii) yield

xc(KP (v)) ≤ xc(FB(P)(v)) + 1 ≤ xc(FB(P)(w)) + 1

≤ xc(KP (w)) + 2 ≤ O
(
n4) ,

which concludes the proof. □

We continue with the main result of this paper. To prove it,
we again relate the extension complexity of the radial cones to
the extension complexities of certain faces of the blocker, i.e., the
T -join polyhedron. In contrast to the situation for Theorem 7,
these faces are again very related to T -join polyhedra, and thus
have high extension complexities.

Theorem 10. For T ⊆ Vn with |T | even and any vertex v of
PT-cut(n)↑, the extension complexity of the radial cone of PT-cut(n)↑
at v is at least 2Ω(|T |).

Proof. By Theorem 5 it suffices to prove that the extension
complexity of

P :=
{
x ∈ PT -join(n)↑ : ⟨v, x⟩ = 1

}
is at least 2Ω(|T |). To this end, we will construct a face Q of P that
is a Cartesian product of a T1-join polyhedron, a single point, and
a T2-join polyhedron for some T1, T2 ⊆ T with |T1|+|T2|+2 = |T |.
Note that, by Proposition 2 and Inequality (2), this will imply

xc(P) ≥ xc(Q )
≥ max

{
xc(PT1-join(n1)), xc(PT2-join(n2))

}
≥ 2Ω(|T |).

For subsets V1, V2 ⊆ V , we will use the notation V1 : V2 :=

{{v1, v2} : v1 ∈ V1, v2 ∈ V2} as well as E(V1) := {{v, w}}

[v, w ∈ V1, v ̸= w]. Recall that v ∈ REn is a vertex of PT -cut(n)↑
and hence we can partition V into sets U1,U2 with |T ∩ U1| odd
and |T ∩ U2| odd, such that v is the characteristic vector of U1 :

U2. With this notation the set P can be rewritten as

P =
{
x ∈ PT -join(n)↑ : x(U1 : U2) = 1

}
.

Fix t1 ∈ T ∩ U1 and t2 ∈ T ∩ U2, and define

Vi := Ui \ {ti},
Ti := (T ∩ Ui) \ {ti} i = 1, 2.

Let

F := (V1 : V2) ∪ (V1 : {t1, t2}) ∪ (V2 : {t1, t2})
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denote the set of edges that lie between (any two of) the three
sets V1, V2, and {t1, t2}, and consider the set

Q := {x ∈ P : xe = 0 for all e ∈ F} ,

which is a face of P . The support of each point x ∈ Q is contained
in E(V1) ∪ E(V2) ∪ {{t1, t2}}. Furthermore, for each x ∈ Q we have

x{t1,t2} = x(V1 : V2)  
=0

+ x({t1} : V2)  
=0

+ x(V1 : {t2})  
=0

+ x{t1,t2} = x(U1 : U2) = 1,

and hence Q =
{
x ∈ PT -join(n)↑ : xe = 0 for all e ∈ F , x{t1,t2} = 1

}
.

In particular, we see that the extreme rays of Q are the extreme
rays of P whose support is contained in E(V1)∪E(V2); namely, the
extreme rays of Q are the characteristic vectors of sets containing
a single edge in E(V1) ∪ E(V2).

Furthermore, a point w is a vertex of Q if and only if w
is the characteristic vector of a T -join H ⊆ E satisfying H ⊆

E(V1) ∪ E(V2) ∪ {{t1, t2}} with {t1, t2} ∈ H . Equivalently, w is
the characteristic vector of a set H = {t1, t2} ∪ H1 ∪ H2 where
Hi ⊆ E(Vi) and Hi is a Ti-join for i = 1, 2.

Thus, Q is the Cartesian product of a T1-join polyhedron (with
respect to the complete graph formed by the nodes of V1), a
T2-join polyhedron (with respect to the complete graph formed
by the nodes of V2), and a set consisting of a single vector in
RF∪{t1,t2}, which proves the claim. □

Notice that from Theorem 10 we obtain Theorem 1. by choos-
ing T := Vn.
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Appendix A. Upper bound for small cardinalities

In this section we establish an upper bound of O
(
n2

· 2|T |
)
on

the extension complexities of T -join- and T -cut polyhedra.

Lemma 11. For every n and every set T ⊆ V , the extension
complexity of PT-join(n)↑ is bounded by O

(
n2

· 2|T |
)
.

For every node v of a directed graphs we denote by δout (v)
and δin (v) the sets of arcs leaving (resp. entering) v.

Proof. Trivially, we only have to consider the case of |T | even,
since PT -join(n) = ∅ otherwise. Let A := {(u, v), (v, u) : {u, v} ∈ En}
denote the set of bidirected edges of Kn. We define, for S ⊆ T with
|S| = |T |/2 the polyhedron

PS := {x ∈ REn : ∃f ∈ RA
+

:

f (δout (v)) − f (δin (v)) =

⎧⎨⎩
1 if v ∈ S
−1 if v ∈ T \ S
0 if v ∈ V \ T

for all v ∈ V and
x{u,v} ≥ f(u,v) + f(v,u) for all {u, v} ∈ En}. (A.1)

It is easy to see that the extension of PS is an integer polyhedron
since the first set of constraints defines a totally unimodular
system with integral right-hand side, and since every x-variable
appears in only one of the further inequalities. Clearly, PS is an
integer polyhedron as well, since the projection on the x-variables
maintains integrality.

We claim that PS ⊆ PT -join(n)↑ holds. To this end, let x ∈ PS and
let f ∈ RA

+
be such that the constraints in (A.1) are satisfied. For

each node v ∈ T , we obtain x(δ(v)) ≥
∑

{u,v}∈δ(v)(f(u,v)+ f(v,u)) ≥ 1.
By integrality of PS , this suffices to prove the claim.

Let now J be a T -join. It is an edge-disjoint union of circuits
C1, . . . , Ck and paths P1, . . . , Pℓ for ℓ =

1
2 |T | connecting disjoint

pairs of nodes in T . For i ∈ [k], let C⃗i ⊆ A be a directed version
of Ci, that is, a directed cycle whose underlying undirected cycle
is Ci. For j ∈ [ℓ], let P⃗j ⊆ A be a directed version of Pj, that is, a
directed path whose underlying undirected path is Pj. Let S ⊆ T
be the set of starting nodes of the paths P⃗j. Define x := χ (J) and
for all a ∈ A, fa := 1 if a ∈ C⃗i for some i ∈ [k] or a ∈ P⃗j for some
j ∈ [ℓ], and fa := 0 otherwise. By construction, (x, f ) satisfies the
constraints in (A.1), which shows x ∈ PS .

This proves that the vertex set of PT -join(n)↑ is covered by
the union of the polyhedra PS for all S ⊆ T with |S| =

1
2 |T |.

Proposition 6 yields desired result since there are less than 2|T |

such sets S and xc(PS) ≤ 3|En| holds. □

Corollary 12. For every n and every set T ⊆ V , the extension
complexity of PT-cut(n)↑ is bounded by O

(
n2

· 2|T |
)
.

Proof. Apply Proposition 3 to Lemma 11. □
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