
Revenue Management on an On-Demand Service
Platform

Vijay Kamble
Department of Information and Decision Sciences

University of Illinois at Chicago

kamble@uic.edu

I consider the optimal hourly (or per-unit-time in general) pricing problem faced by a worker (or a service

provider) on an on-demand service platform. Service requests arriving while the worker is busy are lost

forever. Thus, the optimal hourly prices need to capture the average hourly opportunity costs incurred

by accepting jobs. Due to potential asymmetries in these costs, price discrimination across jobs based on

duration, characteristics of the arrival process, etc., may be necessary for optimality, even if the customers’

hourly willingness to pay is identically distributed. I first establish that such price discrimination is not

necessary if the customer arrival process is Poisson: in this case, the optimal policy charges an identical

hourly rate for all jobs. This result holds even if the earnings are discounted over time. I then consider

the case where the customers belong to different classes that are differentiated in their willingness to pay. I

present a simple and practical iterative procedure to compute the optimal prices in this case under standard

regularity assumptions on the distributions of customer valuations. I finally show that these insights continue

to hold in the presence of competition between multiple quality-differentiated workers, assuming a natural

customer choice model in which a customer always chooses the best available worker that she can afford.

Key words : On-Demand Services, Freelancer Pricing, Revenue Management

1. Introduction

The recent years have seen an exponential rise of the so called “gig economy”, broadly consisting of

online and in-person work relationships that are facilitated “on-demand” or “just-in-time” by online

platforms (De Stefano 2015). While this paradigm has ushered in new opportunities for flexible

employment in the economy, navigating the uncertainties associated with short-term contractual

work can be daunting. This paper is motivated by the goal of empowering workers and service

providers on these platforms to take effective operational decisions in these complex and uncertain

settings.

In particular, this paper is concerned with the revenue management challenges faced by workers

on platforms where they individually make their own pricing decisions. Examples include platforms

that match semi-skilled or skilled labor to tasks of heterogeneous nature, like Upwork, Taskrabbit,

or Thumbtack, but do not include ride-sharing platforms like Uber and Lyft, where the pricing

is centrally regulated by the platform. These latter pricing decisions have received considerable
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attention from an operational perspective in recent literature (e.g., Banerjee et al. 2015, Bimpikis

et al. 2019, Taylor 2018, Cachon et al. 2017, Castillo et al. 2017). However, despite the presence

of several blogs and online forums that informally and anecdotally discuss various aspects of the

issue of freelancer pricing,1 it has received little formal attention from the scientific community.

To a large extent, similar revenue management challenges are faced by service providers on online

rental marketplaces like Airbnb for lodgings, Turo or Getaround for cars, etc.

In this paper, I consider the central problem faced by a worker on an on-demand service platform,

which is that of optimally pricing her services to maximize earnings. Because of uncertainty and

heterogeneity in the job durations, workers typically use per-unit-time pricing (e.g., hourly), which

allows the the payment to scale linearly with the duration of a job.2 Consequently, the focus is on

such per-unit-time pricing strategies (I discuss the relation to per job pricing in Section 6).

A key feature of the on-demand service economy is that there are no “per worker” queues: if

a particular worker is unavailable, the customer simply chooses some other worker or leaves the

platform. Hence, from the perspective of a worker, accepting a job incurs an opportunity cost

of losing all the jobs that could have been accepted while the worker is busy. The optimal price

per-unit-time for a job thus needs to internalize the per-unit-time opportunity cost, which is the

ratio of the expected earnings lost due to accepting the job and the expected duration of the job.

The first contribution of this paper is to highlight that, depending on system characteristics and

class specific features like distributions of the job durations, particulars of the arrival processes,

etc., there could be an asymmetry in the per-unit-time opportunity costs incurred by different

classes of jobs. And in these cases, price discrimination across these classes may be necessary to

maximize earnings even if there is no difference in the beliefs about the customers’ per-unit-time

willingness to pay. The following example is a bit contrived, but it nevertheless illustrates this

point. More examples of practical interest will be presented in Section 3.

Example. Consider two types of customers: type A customers bring a job of length 1 hour and

type B customers bring a job of length 2 hours. The willingness to pay per hour for each customer

type is uniformly distributed in [0,1]. Type A customers arrive at times t = 0,2,4,6, . . . and type

B customers arrive at times t = 1,3,5,7, . . .. Now, accepting a job of type A does not incur any

opportunity cost since it will be finished in time to be able to accept the next job. Thus the optimal

hourly price for this job can be independently computed to be 1/2 per hour. On the other hand,

accepting a customer of type B does incur an opportunity cost: the next arriving customer of type

A cannot be accepted. This necessitates a reserve value on the hourly price for job type B resulting

1 A web search for “freelancer pricing strategies” returns hundreds of entries on the topic.

2 Such pricing is standard not only on on-demand labor platforms like Upwork, Taskrabbit, and Thumbtack (hourly),
but also on rental marketplaces like Airbnb (per-night) or Turo/Getaround (hourly).
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from the requirement that the total earning from the job is at least as much as the optimal expected

earning from the type A job that would be lost. Consequently, the optimal hourly price for job type

B is higher than 1/2.

The second contribution of this paper is to establish that if the customers’ arrival process is

Poisson, and if their per-unit-time valuations are drawn from an identical distribution, the optimal

pricing strategy that maximizes the long-run average earning charges a single rate for all jobs. In

other words, in this case, the per-unit-time opportunity costs are identical across jobs irrespective

of their durations. Discounting earnings over time, i.e., giving more importance to the earnings

obtained earlier, does not affect this result. Hence, any price discrimination must result from

differences in the distributions of the customers’ willingness to pay.

I present this particular finding with some hesitancy, since once the question is appropriately

formalized, the result is mathematically trivial. However, it may not be quite as obvious, and could

provide useful guidance to workers and service providers as they undertake their pricing decisions.

For example, the desire to improve capacity utilization in the face of arrival uncertainty may tempt

a worker to prioritize longer jobs by offering them a lower hourly price as compared to jobs that are

expected to be relatively short, even if the customers’ hourly willingness to pay is believed to be

identically distributed across jobs.3 This temptation may be stronger if the worker is time sensitive

and wishes to maximize discounted earnings. The result implies that such intuition is unfounded.

This brings us to the third contribution of the paper. Under the same setting of Poisson arrivals,

I consider the problem of choosing the optimal set of prices for multiple customer classes that are

differentiated in their per-unit-time willingness to pay. I present key structural insights into the

optimal prices in this case, finally culminating in a practically attractive iterative procedure that

converges to these prices under standard regularity assumptions on the distribution of customer

valuations.

The analysis hinges on the observation that the per-unit-time opportunity cost of accepting a job

from any customer class is in fact the optimal earning rate. If this rate is known, then the optimal

pricing problem decomposes across classes into a set of independent optimal pricing decisions with

a reserve price equal to the optimal earning rate. Effectively, these are basic optimal product

pricing decisions. Since the optimal rate is not known, a natural iterative scheme for a worker is

to start with a guess for the optimal earning rate, compute the optimal prices independently for

each customer class, estimate the resulting earning rate, recompute the optimal prices, and so on. I

show that under the regularity assumptions on the distribution of valuations, this procedure indeed

converges to the set of optimal prices and the optimal earning rate.

3 For instance, price discounts for longer stays are commonly observed on rental marketplaces like Airbnb.
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Finally, I discuss the issue of worker competition on these platforms. I show that with undif-

ferentiated workers, an equilibrium vector of prices typically fails to exist. But for workers that

are differentiated by their quality (as signaled by their ratings on these platforms, for instance),

I propose a natural customer behavior model under which a price equilibrium exists, and can be

efficiently computed. Under this model, that I term “Best-I-can-afford” (BICA), each arriving cus-

tomer chooses the highest quality available worker that she can afford. Under this model, I show

that the workers can hierarchically solve monopolistic optimal pricing problems to arrive at the

price equilibrium. This in particular implies that all the structural insights into the optimal pricing

problem under the monopolistic setting carry over to the competitive setting from the perspective

of any single worker.

The paper is organized as follows. I discuss relevant literature in the remainder of this section.

In Section 2, I present the model and the result on the optimality of a single hourly price with

statistically identical customers and Poisson arrivals. In Section 3, I discuss examples of certain

related settings where this prior result doesn’t hold. In Section 4, I consider the case with multiple

customer classes, where I analyze the structure of the optimal prices and finally present the iterative

algorithm for computing these prices. In Section 5, I consider the issue of worker competition.

In Section 6, I end the paper with a discussion of possible extensions of the formulation, its

applicability to practical settings, and possible future directions.

1.1. Related work

Platform pricing in two-sided markets has received considerable attention in literature. Rochet and

Tirole (2003) pioneered the study of monopolistic pricing in such platforms; see also Rochet and

Tirole (2006). This analysis was later generalized and extended to multi-sided platforms in Weyl

(2010). Caillaud and Jullien (2003) and Armstrong (2006) additionally consider competition across

platforms. These works abstract away the operational details of interactions on these platforms

and exogenously specify how utilities of entities depend on the number of entities on the other

side due to network effects. The focus is on traditional microeconomic questions like the impact

of governance structures on the efficiency of market outcomes, whether and how prices internalize

network effects, the impact of the agents’ ability to multi-home, the impact of subscription based vs.

transaction based pricing, etc. Bakos and Katsamakas (2008) considers the impact of investments

into modulating the strength of network effects along with pricing decisions. Later works analyze

the design of pricing and fee structures in two-sided market platforms while explicitly modeling

their impact on the buyer/seller incentives and the resulting competitive equilibrium prices for

trading that emerge on the platform. Works in this spirit include Economides and Katsamakas

(2006), Lin et al. (2011), and more recently, Birge et al. (2018). These works assume a large
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market model with a continuum of entities transacting, due to which, a) price-taking behavior

and competitive equilibrium emerge as natural determinants of trading prices, and b) distinction

between products and services disappears.

In contrast to the platform perspective espoused in these works, the present paper focuses instead

on the optimal pricing problem from the perspective of workers operating on labor platforms,

while assuming the fees charged by the platforms as fixed. Moreover, in modeling competition,

I assume a fixed and finite set of workers displaying fully strategic behavior in setting prices as

opposed to assuming that workers are price-taking and their supply can be modulated by market

prices. Because of this, the randomness inherent to the service aspect of the transactions cannot

be neglected in the model, and in fact, it plays a crucial role in the analysis.

As mentioned in the introduction, the decentralized nature of these pricing decisions for trades

on the platform is different from the centralized pricing seen in ride-sharing platforms and analyzed

in several recent works; c.f. Banerjee et al. (2015), Bimpikis et al. (2019), Cachon et al. (2017),

Castillo et al. (2017). Another important distinction in these works is the spatial nature of demand

and supply, which is not modeled in the present work.

The present work is closely related to the literature on pricing in service systems; see Hassin

and Haviv (2003) for a survey. Three works most relevant to the present setting are Ziya et al.

(2006), Ziya et al. (2008) and Caro and Simchi-Levi (2012). Ziya et al. (2006) considers the optimal

pricing problem faced by a service facility with a single server and a queue with a finite capacity

(which could be 0, as in our setting), when the customer valuations are drawn from a common

distribution. Both Ziya et al. (2008) and Caro and Simchi-Levi (2012) analyze the case of multiple

heterogeneously distributed customer classes in a similar setting. Although these settings are more

general, the more focused analysis of the setting without queueing in the present work, motivated

by on-demand platforms, results in several novel results and insights that do not hold in the general

setting. In particular, the non-discrimination result with identically distributed valuations across

customer classes holds only in this setting (as shown in the example in Section 3.1). Similarly, the

efficient procedure for computing optimal prices with heterogeneous customers doesn’t necessarily

converge in the presence of queues as I show in Remark 1 at the end of Section 4. Additionally,

these works do not consider the issue of price competition amongst servers, neither do they consider

maximization of discounted earnings as an objective.

2. Homogeneous customers

Consider a single worker on an on-demand service platform. Customers are of K types. Let the set

of types be denoted as K , {1, . . . ,K}. Service requests to the worker from customers of type k

arrive according to a Poisson process with the rate of λk per hour. The durations of the jobs they
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bring are distributed according to Gk with mean 1/µk hours. Let ρk , λk/µk denote the load of the

customer channel k and let ρ,
∑

k ρk denote the total load. Each customer has a maximum price

v that she is willing to pay per hour, which is drawn independently from a common distribution F .

Let F = 1−F denote the tail distribution function. The worker chooses an hourly rate pk for job

type k. An arriving customer’s job is accepted by the worker only if she is idle and if the customer

is willing to pay the hourly rate. While the worker is busy working on the job, all the arriving

customers are lost forever (they are assumed to have chosen some other worker on the platform

or to have left the platform altogether). While the worker is busy, she accrues a cost of c per unit

time. The goal of the worker is to choose the prices pk that maximize her long-run rate of earning.

We first derive an expression for the long-run average earning of the worker as a function of

the price vector p. Observe that since the arrival process is Poisson, the total earning until time

t, denoted as R(t), is a renewal reward process where each renewal cycle consists of the worker

becoming idle after finishing a job, then accepting the first paying job that arrives (such jobs arrive

at the rate F (pk)λk for each type k), and then finishing the job. Let W1 be the total earning in the

first cycle and let S1 be the length of that cycle. Then from the renewal reward theorem (Gallager

2013), the long-run average earning of the worker as a function of p is given by:

R(p) = lim
t→∞

R(t)

t
=

E(W1)

E(S1)
w.p.1. (1)

Now since the arrival process is Poisson, the expected time till the first paying job arrives in a

renewal cycle is 1/(
∑

k′∈K λk′F (pk′)). Also, the first paying job that arrives in a renewal cycle is of

type k with probability λkF (pk)/(
∑

k′∈K λk′F (pk′)). Thus we have

E(W1) =

∑
k∈K

λk
µk
F (pk)(pk− c)∑

k′∈K λk′F (pk′)

and

E(S1) =
1∑

k′∈K λk′F (pk′)
+

∑
k∈K

λk
µk
F (pk)∑

k′∈K λk′F (pk′)
.

We finally get

R(p) =

∑
k∈K ρk(pk− c)F (pk)

1 +
∑

k∈K ρkF (pk)
. (2)

The following result is the first main finding of the paper.

Theorem 1. There exists an optimal strategy for the worker that chooses the same hourly price

across all customer types.
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Proof. Recall that ρ=
∑

k∈K ρk and denote αk = ρk/ρ. Then for any price vector p, we have,

R(p) =
ρ
∑

k∈Kαk(pk− c)F (pk)∑
k∈Kαk(1 + ρF (pk))

(a)

≤ ρmax
k

(pk− c)F (pk)

1 + ρF (pk)
≤max

p

ρ(p− c)F (p)

1 + ρF (p)
.

But the latter is the problem of choosing the single optimal hourly price for all jobs, thus proving

the result. Inequality (a) relies on the following argument. Let ∆ = {ᾱ ∈ RK ;
∑

k∈Kαk = 1; αk ≥
0 ∀k ∈ K}. Suppose that a = (a1, a2, · · · , ak) is a non-negative vector and b = (b1, b2, · · · , bk) is a

positive vector. Define

ω∗ = max
ᾱ∈∆

∑
k∈Kαkak∑
k∈Kαkbk

,

and let ᾱ∗ be the maximizer. Then for any ᾱ∈∆, we have

ω∗ ≥
∑

k∈Kαkak∑
k∈Kαkbk

.

This implies that for any ᾱ∈∆, ∑
k∈K

αk(ak−w∗bk)≤ 0.

This inequality is an equality only when ᾱ = ᾱ∗. This implies that ᾱ∗ is the maximizer of∑
k∈Kαk(ak −w∗bk). But this implies that α∗k > 0 if and only if ak −w∗bk = 0, i.e., if w∗ = ak/bk.

This implies that w∗ = ak/bk for some k ∈K, which implies that w∗ = maxk∈K ak/bk. �

2.1. Discounted earnings

In this section, I show that discounting the earnings over time does not affect the previous result.

As before, let pk be the hourly price for job type k. Let X(t)∈ {0}∪K be the state of the worker

at time t, beginning from the state X(0) = 0. Here, the state 0 signifies that the worker is idle, and

state k ∈K signifies that the worker is busy with a job of type k. Then (X(t))t∈R≥0
is a continuous

time stochastic process that is càdlàg, i.e., its sample paths are right continuous with left limits.

Let R(x) be the earning rate in state x, where R(0) = 0 and R(k) = pk− c for k ∈K. Let γ > 0 be

the discount factor. Then the total expected discounted reward is given by:

Rγ(p) = E[

∫ ∞
0

R(X(t))e−γtdt |X(0) = 0]. (3)

Let T be an exponential random variable with mean 1/γ, independent of (X(t))t∈R≥0
. Consider a

modified stochastic process (X̂(t))t∈R≥0
, defined as X̂(t) =X(t)1{t<T}+ a1{t≥T} by introducing a

new absorbing state a,K+1 such that R(a) = 0. Clearly, if (X(t))t∈R≥0
is càdlàg, then (X̂(t))t∈R≥0

is càdlàg as well. Then it is straightforward to see that Rγ(p) is the expected total earning in this

modified process, i.e.,

Rγ(p) = E[

∫ ∞
0

R(X̂(t))dt | X̂(0) = 0]. (4)
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Define β(0) =Rγ(p), and for k ∈K, define,

β(k) = E[

∫ ∞
u

R(X̂(t))dt | X̂(u) = k, X̂(u−) = 0], (5)

where X̂(u−) = limt↑u X̂(t). Thus, β(k) is the expected total earning until absorption starting from

the state where a job of type k has just been accepted by the worker. For each k ∈K, let Xk ∼Gk,

and let Y ∼ exp(1/γ), such that Y is independent of Xk. We then get the following set of first step

equations for computing β(0). First, we have,

β(0) =

∑
k∈K λkF (pk)β(k)∑
k∈K λkF (pk) + γ

, (6)

where λkF (pk)/(
∑

k∈K λkF (pk)+γ) is the probability that the process enters state k before absorp-

tion. Also, for each k ∈K, we have,

β(k) = (pk− c)E[min(Xk, Y )] +P (Xk <Y )β(0). (7)

The first term in the expression on the right is the expected earning after accepting a job until

either the job is finished or the process enters the absorbing state. The expected time till either of

those two events occur is E[min(Xk, Y )]. The second term results from the fact that the process

enters state 0, i.e., the job gets finished before absorption, with probability P (Xk < Y ). Solving,

we get,

β(0)(
∑
k∈K

λkF (pk) + γ) =
∑
k∈K

λkF (pk)(pk− c)E[min(Xk, Y )] +β(0)
∑
k∈K

λkF (pk)P (Xk <Y ),

or,

β(0)(
∑
k∈K

λkF (pk)P (Y ≤Xk) + γ) =
∑
k∈K

λkF (pk)(pk− c)E[min(Xk, Y )].

Thus, denoting ρ̂k = λkE[min(Xk, Y )], we finally have,

β(0) =Rγ(p) =

∑
k ρ̂k(pk− c)F (pk)

γ+
∑

k∈K ρ̂kF (pk)
P (Y≤Xk)

E[min(Xk,Y )]

. (8)

We now need the following fact.

Lemma 1. Let X and Y be independent non-negative random variables such that Y is exponen-

tially distributed with mean 1/γ. Then,

P (Y ≤X)

E[min(X,Y )]
= γ.
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Proof. We have,

E[min(X,Y ) |X] =X exp(−γX) + (1− exp(−γX))E(Y | Y ≤X). (9)

Conditioned on the event {Y ≤X}, Y has a truncated exponential distribution, and its mean can

be computed to be (see Chap. 4, Lemma 4.3 in Olive (2008)),

E(Y | Y ≤X) =
1

γ

(
1− (Xγ+ 1)exp(−Xγ)

1− exp(−Xγ)

)
. (10)

Thus,

E[min(X,Y ) |X] =
1

γ
(1− exp(−γX)). (11)

This, coupled with the fact that P (Y ≤X |X) = 1− exp(−γX) implies the result. �

Thus, we finally have,

Rγ(p) =

∑
k ρ̂k(pk− c)F (pk)

γ(1 +
∑

k∈K ρ̂kF (pk))
. (12)

Using the same argument as that in the proof of Theorem 1, it is straightforward to establish

that there exists an optimal policy that sets the same hourly price for each customer class. This is

the policy that maximizes the long-run average earning given that the total load is ρ̂=
∑

k∈K ρ̂k,

where ρ̂k = λkE[min(Xk, Y )]. For instance, if the job durations are exponentially distributed, then

ρ̂k = λk/(µk + γ).

3. Related settings

In this section, I take a short detour and present examples to show that Poisson arrivals are not

sufficient for the previous result in an arbitrary system.

3.1. Worker specific queues

Consider the case where the customers could be patient, i.e., they are willing to wait for the worker

to become free before choosing someone else. This could naturally model traditional freelancing

settings where the worker has developed a sustained relationship with a class of customers who

prefer her services over other workers. I numerically demonstrate than in these cases, the previous

result may not hold, i.e., even under Poisson arrivals, price discrimination may be necessary for

optimality despite identically distributed customer preferences.

Suppose that there are two classes of customers, A and B. The hourly willingness to pay of

each customer is uniformly distributed in [0,1]. Customers from class A arrive at the rate of λA

customers per hour and those from B arrive at the rate of λB customers per hour. The job durations

of both classes are exponentially distributed: class A with mean 1/µA hours and class B with mean
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1/µB hours. Suppose that arriving customers are willing to wait indefinitely if the worker is busy

and if they are next in line. If an arriving customer sees another customer waiting, then she leaves

the system. In other words, the queue has capacity 1 and customers do not leave without being

served once they are in queue.4

For a pair of prices pA and pB for the two classes, since the arrival process is Poisson, the reward

process till any time t is a renewal reward process. Each renewal cycle begins with the worker being

idle, and ends when the worker finishes a job and there is no customer in queue. The long-run

average rate of earning in this case can be computed to be,

R(pA, pB) =
ρApA(1− pA) + ρBpB(1− pB)

λAµA(1−pA)+λBµB(1−pB)+µAµB
(λA(1−pA)+λB(1−pB)+µA)(λA(1−pA)+λB(1−pB)+µB)

+ ρA(1− pA) + ρB(1− pB)
. (13)

The details of this computation can be found in the Appendix. Suppose that we fix λA = µA = 1

and set λB = µB = r, so that ρA = ρB = 1. In Figure 1, I plot the optimal prices as r varies from

0 to 1 and then from 1 to 100.5 This allows us to see the effect on the optimal prices of changing

the job length of class B while keeping the overall load the same as that of class A. Observe that

when the expected job length of class B is larger than that of class A (r < 1), the optimal price p∗B

is larger than p∗A. The inequality is reversed when r > 1, i.e., when class B jobs are shorter than

class A jobs. This suggests that in these cases, the expected opportunity cost doesn’t necessarily

grow linearly in the length of the job. Intuitively, when the worker starts working on a job, the

rejections of incoming jobs only begin when a new job arrives in the queue. Thus smaller jobs

impose relatively smaller externalities per unit time since there is a greater chance that they finish

before a new job arrives in the queue.

0 0.2 0.4 0.6 0.8 1 20 40 60 80 100
r

0.58

0.59

0.60

0.61

0.62

0.63

0.64

0.65

0.66

p *
1

p *
2

Figure 1 Optimal prices as a function of r.

4 If the queue has infinite capacity and customers wait indefinitely, then there are no externalities imposed by accepting
any job and no price discrimination is necessary if the customers’ per-unit-time willingness to pay is identically
distributed.

5 The optimal prices were computed using the scipy.optimize package in Python.



Vijay Kamble: Revenue Management on an On-Demand Service Platform
11

3.2. A hybrid setting

On a related note to the setting described in the previous section, in platforms where there is

a mixture of on-demand and patient customer classes, price discrimination across these classes

is typically necessary even if the distribution of the customers’ hourly willingness to pay and

arrival/job-duration characteristics are identical. To see this, suppose that there are two classes of

customers: On-demand (A) and Patient (B). On-demand customers have to be served immediately,

and Patient customers are willing to wait as long as the average waiting time is finite (i.e., the

queue doesn’t explode). Moreover, preemption of a Patient job is allowed. Suppose that all job

durations are exponentially distributed. The arrival rate and service rate of the On-demand class

are λA = µA = 1. The arrival rate and service rate of the Patient class are λB = 1/
√

2−ε and µB = 1

for some small ε > 0 (the choice may seem mysterious but will soon become clear). Suppose that

the hourly valuations of the customers are distributed uniformly in [0,1].

Now clearly, as long as the effective residual service rate available for the Patient class due to time

spent in serving the On-demand class is larger than λB, the Patient class imposes no externality

on the system, since accepting a Patient customer incurs no loss in revenue to the worker. The

optimal hourly price for the Patient class can then be computed to be 0.5. The question is whether

the effective service rate for the Patient class is sufficient. Now, turning to the On-demand class,

it is clear that accepting a job imposes an externality on the system. If this was the only class on

the platform, then the optimal price is the one that maximizes,

xF (x)

1 +F (x)
=
x(1−x)

2−x
.

The optimal price can be computed to be p∗A = 2−
√

2. At this price, the long-run fraction of time

that the worker is not working on an On-demand job can be computed to be 1/(2− p∗A) = 1/
√

2

(this is simply the ratio of the expected time until arrival of an On-demand job in a renewal cycle

and the expected total length of a renewal cycle). Hence, the effective service rate available for the

Patient customers is 1/
√

2× 1 which is more than λB. Thus we conclude that the optimal hourly

price for the On-demand customers is 2−
√

2 and that for the Patient customers is 0.5.

This example suggests that in a general setup where there exist different classes of customers

that are differentiated in their delay tolerance, which can be modeled by their job deadlines, price

discrimination may be necessary for optimality despite identically distributed preferences.

3.3. Non-exponential discounting

One can show that price discrimination across customer classes because of differing arrival/duration

characteristics may be necessary despite Poisson arrivals if the time discounting is non-exponential.

We saw earlier that exponential discounting is equivalent to an exponentially distributed time hori-

zon. Suppose instead that the time horizon is exponentially distributed with rate 1 with probability
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1/2 and with rate 2 with probability 1/2. Suppose there are 2 classes of customers, A and B. The

arrival rates are λA = λB = 1. The job durations are exponentially distributed with rates µA = 1

and µB = 2. Suppose that the hourly prices are pA and pB for the two classes. In the event that

the time horizon is exponentially distributed with rate γ, the expected earning can be computed

to be,

ρ̂ApA(1− pA) + ρ̂BpB(1− pB)

1 + ρ̂A(1− pA) + ρ̂B(1− pB)
, (14)

where ρ̂A = λA/(µA + γ) and ρ̂B = λB/(µB + γ). Thus the expected earnings can be computed to

be,

R(pA, pB) =
1

2
× (1/2)pA(1− pA) + (1/3)pB(1− pB)

1 + (1/2)(1− pA) + (1/3)(1− pB)

+
1

2
× (1/3)pA(1− pA) + (1/4)pB(1− pB)

1 + (1/3)(1− pA) + (1/4)(1− pB)
(15)

The optimal prices can be computed to be p∗A ≈ 0.56761 and p∗B ≈ 0.567089.6 Thus in this case,

price discrimination becomes necessary for optimality.

4. Price differentiation with heterogeneous customers

Coming back to the on-demand setting where there are no per-worker queues, it is now clear that

under Poisson arrivals, any price differentiation must stem from the fact that the beliefs about

the customers’ willingness to pay are different across different classes. In this section, I present

structural insights into the optimal prices in this case and finally present a procedure to compute

these prices under certain standard assumptions. Let Fk be the distribution of hourly valuations

of customers in class k ∈ K, with support on [0, v̄k]. I assume that each Fk is differentiable on its

support (with right and left derivatives defined at 0 and v̄k, respectively). Let F̄k = 1−Fk and fk

denote the corresponding tail distribution functions and densities, respectively. It is straightforward

to establish as we did earlier (i.e., the derivation of (2)), that for a price vector p, the long-run

average earning is given by:

R(p) =

∑
k ρk(pk− c)F k(pk)

1 +
∑

k∈K ρkF k(pk)
. (16)

The problem of maximizing the long-run rate of earning is thus defined as:

max
p:pk∈[0,v̄k]∀k

R(p). (17)

6 Optimal prices computed using the scipy.optimize package in Python
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Let the optimal rate of earning be denoted by R∗. Then for any feasible set of prices p, we have

that

R∗ ≥
∑

k ρk(pk− c)F k(pk)

1 +
∑

k∈K ρkF k(pk)

⇒R∗(1 +
∑
k∈K

ρkF k(pk))≥
∑
k

ρk(pk− c)F k(pk)

⇒R∗ ≥
∑
k

ρk(pk− c−R∗)F k(pk). (18)

This expression is an equality if and only if p is the vector of optimal prices p∗ (which need

not be unique). This also implies that the optimal prices are the maximizers of the function∑
k ρk(pk − c−R∗)F k(pk). Since this function is separable across the classes, this in turn implies

that any optimal price for class k, p∗k, maximizes F k(pk)(pk − c−R∗). This fact has an intuitive

interpretation. The optimal earning rate R∗ is indeed the opportunity cost per hour of being busy.

Thus, given R∗, one simply solves the optimal pricing problem for each class assuming that the

total hourly cost for serving that class is c+R∗. This is a standard optimal pricing problem in

mechanism design; c.f. Myerson (1981).

For a fixed hourly opportunity cost R≥ 0, for each k ∈K, consider the optimization problem,

max
p∈[0,v̄k]

F k(p)(p− c−R). (19)

The first derivative of the objective function is given by,

F k(p)− (p− c−R)fk(p) =−fk(p)
(
p− c−R− F k(p)

fk(p)

)
. (20)

Now suppose that the function p−F k(p)/fk(p) is strictly increasing in p∈ [0, v̄k] for each k ∈K; if

this holds we say that each distribution F is strictly regular (if p−F k(p)/fk(p) is non-decreasing

then such a distribution is called regular in mechanism design literature; c.f. Myerson (1981)). For

instance, this would hold if Fk has a non-decreasing hazard rate for each k ∈K, i.e., fk(p)/F k(p) is

non-decreasing (this has been referred to as the Monotone Hazard Rate or Increasing Failure Rate

assumption in the mechanism design literature).

If the distributions are strictly regular, the entire function in the parenthesis in equation (20)

is increasing. Thus, from the first order optimality condition, we can conclude that the optimal

value of p that solves (19) is unique: it is v̄k if v̄k ≤ c+R, otherwise it is the unique value of p

that satisfies p = c+R+ F k(p)/fk(p). With some abuse of notation, let us denote this optimal

value as pk(R). It is straightforward to verify that the function pk(R) defined on R+ is continuous,

and moreover differentiable at all points except v̄k − c. Also, both left and right derivatives exist

at v̄k − c. Further, p′k(R) ≥ 0 for all R < v̄k − c (the optimal price is non-decreasing in R) and
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p′k(R) = 0 for all R> v̄k − c. At v̄k − c, we have the left derivative p′k−(v̄k − c)≥ 0 and the right

derivative p′k+(v̄k− c) = 0.

Thus, under the strict regularity assumption, we know that the optimal prices p∗ are unique and

they are (pk(R∗))k∈K. The optimal earning rate R∗ is of course, unknown. But we know that R∗

satisfies the fixed point relation:

R∗ =

∑
k∈K(pk(R∗)− c)ρkF k(pk(R∗))

1 +
∑

k∈K ρkF k(pk(R∗))
. (21)

The following result shows that given the regularity assumption, 1) this fixed point is unique, and

2) it is the maximizer of the response function. These two facts are key to obtaining a natural

procedure for iteratively computing R∗.

Lemma 2. Suppose that the distributions Fk are strictly regular for each k ∈ K. Then, there is

a unique R∗ that satisfies the fixed point relation (21). Moreover, R∗ maximizes the function,

M(R) =

∑
k∈K(pk(R)− c)ρkF k(pk(R))

1 +
∑

k∈K ρkF k(pk(R))
. (22)

Proof. First, note that a fixed point always exists since the optimal earnings and the optimal

set of prices define such a fixed point. We first establish that it is unique. It is straightforward to

verify that the function M(R) defined on R+ is continuous, and differentiable at all points except

{v̄k − c; k ∈K}. Also at these points, both left and right derivatives exist (these properties follow

from the corresponding properties of pk(R)). Then at any point R the right-derivative of M(R)

can be expressed as,

M ′
+(R) =

∑
k∈K

∂M

∂pk
p′k+(R) (23)

=
∑
k∈K

−ρkfk(pk(R))

1 +
∑

k′∈K ρk′F k′(pk′(R))

(
pk(R)− c−M(R)− F k(pk(R))

fk(pk(R))

)
p′k+(R). (24)

Here p′k+(R) is the right-derivative of pk at R. Let R∗ be a fixed point of M , i.e., M(R∗) =R∗.

Then we have,

M ′
+(R∗) =

∑
k∈K

−ρkfk(pk(R∗))
1 +

∑
k′∈K ρk′F k′(pk′(R∗))

(
pk(R∗)− c−R∗−

F k(pk(R∗))
fk(pk(R∗))

)
p′k+(R∗). (25)

From the optimality conditions for pk(R∗), we have that pk(R∗) − c − R∗ −

F k(pk(R∗))/fk(pk(R∗)) ≤ 0. Moreover, if pk(R∗) − c − R∗ − F k(pk(R∗))/fk(pk(R∗)) < 0 then

p′k+(R∗) = 0. Thus M ′
+(R∗) = 0 for any R∗ such that M(R∗) =R∗.

This implies that for any R∗, there is an ε such that for all R that satisfy R∗ <R <R∗ + ε,

M(R)<R. For such an R, if pk(R)− c−R−F k(pk(R))/fk(pk(R)) = 0, then pk(R)− c−M(R)−
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F k(pk(R))fk(pk(R))> 0 and p′k+(R)≥ 0, while if pk(R)− c−R−F k(pk(R))/fk(pk(R))< 0, then

p′k+(R) = 0. Thus, M ′
+(R) ≤ 0. This implies that the function M(R) is non-increasing after R∗.

Hence, there can be only one fixed point R∗.

Next, we show that R∗ maximizes M(R). This is straightforward, since for any R, M(R) is

an achievable revenue rate, achieved by simply using the prices (pk(R))k∈K. Hence, M(R)≤R∗ =

M(R∗). �

We can now show the following main result of this section.

Theorem 2. Suppose that the distributions Fk are strictly regular for each k ∈K. Then starting

from any R0 ≥ 0, the sequence (Rt)t∈N obtained by the relation Rt+1 = M(Rt) converges to the

unique fixed point R∗ of M(R). R∗ is the optimal rate of earning and the corresponding prices

pk(R∗) for k ∈K are the optimal prices.

Proof. Since M(R) ≤ R∗, for any R0, we have that Rt ≤ R∗ for t ≥ 1. Moreover, Rt+1 =

M(Rt) >Rt for any Rt <R∗. Thus (Rt)t∈N; t≥1 is a monotonically increasing sequence bounded

by R∗, and hence converges to some R′ by the monotone convergence theorem. It must be that

R′ =R∗, since if not, then R′ <R∗ and hence M(R′)>R′, which contradicts the fact that R′ is

the limit point. �

Example. Consider two customer classes with loads ρ1 = ρ2 = 1. The hourly willingness to pay

of class 1 is uniformly distributed in [0,1], and that of class 2 is uniformly distributed in [0,2]. Thus

F 1(x) = (1−x)1R∈[0,1] and F 2(x) = (1−x/2)1R∈[0,2]. Suppose that the hourly cost of service is 0.

For a given hourly reserve priceR, pk(R) solves max(p−R)(1−p) for k= 1 and max(p−R)(1−p/2)

for k= 2. We thus obtain p1(R) = 1+R
2
1R∈[0,1] +1R>1 and p2(R) = 2+R

2
1R∈[0,2] + 21R>2.

Thus for R≤ 1, we obtain,

M(R) =
(1−R2)/4 + (4−R2)/8

1 + (2−R)/4 + (1−R)/2
=

6− 3R2

2(8− 3R)
.

And for R∈ (1,2], we obtain,

M(R) =
(4−R2)/8

1 + (2−R)/4
=

4−R2

2(6−R)
.

M(R) = 0 for R> 2. The function M(R) is plotted in Figure 2, where one can see that its unique

fixed point is its maximizer. This is the point R∗ ≈ 0.40589. Thus the optimal hourly prices are

p∗1 ≈ (1 + 0.40589)/2 = 0.7029 and p∗2 ≈ (2 + 0.40589)/2 = 1.2029. Figure 3 shows the convergence

of the iterative procedure to R∗ from different starting points. The convergence is quick (the plot

shows 5 iterations). Observe that as expected, the output values are no larger than R∗ after the

first iteration.
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Figure 2 The plot of y = M(R) and the

line y =R. The fixed point of M(R)

(R∗ ≈ 0.40589) is also the maximizer of

M(R).
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Figure 3 Convergence of the iterative procedure to

R∗ ≈ 0.40589 from different starting points

Remark 1. The above procedure of iteratively estimating the earning rate and using it as the

opportunity cost to compute the optimal prices for each customer class doesn’t generally converge

to the optimal prices in the presence of queueing, or in any system where price discrimination across

classes is necessary despite identically distributed preferences. This can be seen from the example

presented in Section 3.1. In that example, despite the customer classes having the identically

distributed hourly valuations, I showed that price discrimination was necessary for optimality. But

the above procedure can never converge to different prices for the two customer classes, since for

any estimated earning rate, the optimal pricing problem solved by the procedure for the two classes

in every iteration is identical.

5. Worker competition

A natural question that arises at this point is if any of these insights carry over in the presence of

competition. Indeed, in reality, several workers offering the same services operate on any service

platform. The traditional revenue management response to this concern would be that the customer

arrival rates already factor in everything exogenous to the decisions of the worker in focus; in

particular, these are the residual arrival rates after having accounted for the competition. However,

such a response is valid only if one assumes that the competitive environment is stable, and that it

does not change in response to the prices set by the worker. There is a priori no reason to assume

so in our setting. In this section, I offer a rather optimistic resolution of this concern.

First, I start with a basic observation about a setting that I will refer to as uniform workers

setting. Suppose that there are N ≥ 2 workers that offer identical services, which are indistinguish-

able in terms of dimensions like quality, etc. Moreover, without loss of generality, suppose that

their hourly service costs are identical and equal to 0. Also, suppose that there is a single customer

class with Poisson arrivals with rate λ, and an arbitrary job length distribution with a finite mean
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1/µ. Each customer’s maximum hourly willingness-to-pay is drawn independently from a strictly

regular common distribution F . Moreover, suppose that each arriving customer, a) chooses the

cheapest available worker whose hourly price is lower than her hourly willingness to pay, b) leaves

if there is no such worker or if all the workers are unavailable, and c) breaks ties arbitrarily if there

are multiple workers that offer the same smallest price. Given a vector of prices (p1, · · · , pN) chosen

by the workers, let Ri(p1, · · · , pN) be the long-run average revenue of worker i for i ∈ {1, · · · ,N}.

Recall the definition of Nash equilibrium.

Definition 1 (Nash Equilibrium). We say that the vector of prices (p1, · · · , pN) is a Nash

equilibrium if for all i∈ {1, · · · ,N},

Ri(p1, · · · , pi, · · · , pN)≥Ri(p1, · · · , p′i, · · · , pN) for any p′i ∈R.

I informally call such a Nash equilibrium vector of prices a price equilibrium. The main observa-

tion is that in the uniform workers setting, there exists no price equilibrium. The basic idea is the

same as the “Edgeworth Paradox” in economics Fisher (1925). We record this observation in the

following proposition.

Proposition 1. In the uniform workers setting described above with N ≥ 2, there exists no

Nash equilibrium vector of prices.

Proof. Suppose that there exists a price equilibrium and without loss of generality, let workers

1 and 2 offer the two smallest prices at equilibrium, p1 ≤ p2. Let p∗ be the unique (due to strict

regularity of F ) monopolistic optimal price when there is a single worker. First, note that it cannot

be that p1 > p∗, since if so then 1 can lower his price to p∗ and make the monopolistic optimal

revenue. Also, it cannot be that p1 < p
∗ ≤ p2, since again 1 can raise her price closer to p∗ and make

a revenue closer to the monopolistic optimal revenue. Thus it must be that p1 ≤ p2 ≤ p∗. It cannot

be that p1 < p2 ≤ p∗, since 1 can raise her price while still being less than p2 and obtain a higher

revenue by inching closer to the monopolistic optimal price of p∗. Thus we have p1 = p2 ≤ p∗; but

again this cannot be an equilibrium unless p1 = p2 = 0, since either 1 or 2 can undercut the other

and get a larger share of the market for negligible loss in revenue. But p1 = p2 = 0 cannot be an

equilibrium either since either worker is incentivized to raise the price to capitalize (i.e., earn a

positive expected revenue) in the situations where all the other workers are busy and they are the

only worker available for the customer. Hence, there is no price equilibrium. �

This suggests that amongst undifferentiated workers, there is no hope of obtaining a price equi-

librium. However, it is rarely the case that the workers on a platform are undifferentiated – they

are typically ranked in order of quality as determined by the reputation systems of the platforms.

In this case, I argue that the situation may not be as bleak and a price equilibrium may exist.
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Consider again the setting where there are K classes of customers, with Poisson arrivals (rate λk)

and arbitrary job length distributions (mean 1/µk). Suppose that a class k customer’s hourly will-

ingness to pay is drawn independently from the distribution Fk. There are N workers, {1, · · · ,N},

ranked in descending order of perceived quality, i.e, 1> 2> 3> · · ·>N . Each worker i sets a price

pik for a customer of class k. I propose the following model for how a customer accounts for price

and quality information in making purchase decisions on platforms.

Definition 2 (A best-I-can-afford (BICA) buyer). From the available workers, the cus-

tomer chooses the highest ranked worker with an hourly price (for her class) less than or equal to

her hourly willingness to pay. She leaves if there is no such worker.

I argue that this is a natural model for quality sensitive customer behavior on platforms. For

example, for high-value software development jobs on labor platforms like Upwork, clients have

predetermined management approved budgets for their hourly expenditures and naturally, they

want to get the best available freelancer that meets their budget constraint. Moreover, in cases

where customers are not expected to persist on the platform for long, the absolute values of the

worker reputation scores may not be very informative beyond the ranking information that they

provide and thus, opting for the best ranked worker that one can afford may be perceived to be a

safe strategy in the face of quality uncertainty. Finally, the search and filtering abilities provided

by platforms naturally support such behavior by making it easy to list products or services in

decreasing order of quality scores.

With this model, I argue that not only does a price equilibrium exist, it can be computed

efficiently. The idea is simple. Since the highest rated worker 1 gets priority from the customers,

she is unaffected by the pricing decisions of the remaining workers. That is, when she is available,

she gets priority from all the customers who can afford to pay the price that she sets, irrespective

of prices set by other available workers. Thus, she can independently solve the single worker price

optimization problem that we solved in Section 4. Once her prices are fixed, she consumes a part of

the incoming demand of customers who can afford to pay her prices – not all since a fraction of these

customers are rejected service from her because she is busy. The residual demand is thus composed

of all the arriving customers who cannot afford to pay the first worker’s prices and a fraction of the

customers who are able to but are denied service due to unavailability. The second worker now has

priority over these customers and is unaffected by the pricing decisions of the workers who have a

lower rating than her. Thus, she again solves the single worker price optimization problem with the

residual demand as earlier. Then the third worker sets the optimal prices with the residual demand

that is rejected by the first and second workers and so on and so forth, until all the workers have

set their prices. We record this observation in the following proposition.
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Proposition 2. With workers ranked by their quality and BICA buyers, a price equilibrium

exists.

The above argument also implies the following two points. First, with customers’ hourly willing-

ness to pay identically distributed across multiple classes, price discrimination due to systemic

reasons is unnecessary for worker 1, and assuming that worker 1 doesn’t price discriminate, such a

price discrimination is unnecessary for worker 2, and so on. Second, if the workers asynchronously

implement the algorithm discussed in Section 4, this would lead to each worker converging to the

equilibrium price. This is trivial to see for the highest rated worker. But once the highest rated

worker’s prices have converged, the second highest rated worker will face a stable environment and

her prices will converge, and so on and so forth.

6. Discussion and future directions

Extensions. Below are a couple of extensions that are subsumed by the model.

1. Hourly vs. per-job pricing. Hourly pricing is equivalent to per-job pricing in terms of

maximizing the long-run earnings assuming that a) the mean job duration is commonly known to

the worker and the customer, and b) a customer’s per-unit-time valuation is same as her per-job

valuation divided by the mean duration. In this case, the optimal per job price is the same as the

optimal hourly prices multiplied by the mean duration of the job.

2. Commissions. Typically, workers have to pay a fixed percentage of their revenue to the

platform. In this case, if the worker charges p per hour to the customer, her net revenue is βp for

some β < 1. In this case, we can simply redefine pk to be the net revenue rate of the worker coming

in from customer class k and the probability that an incoming customer is willing to support that

rate can be defined to be F
′
k(p) = F k(p/β). Thus the analysis remains identical.

Applicability. Removed from the context of on-demand platforms, the present paper essentially

studies the optimal pricing problem faced by a single server in stochastic system with no queueing.

The rising on-demand nature of services in the gig economy is the main reason why this question is

of pertinence now and is likely the reason why this specific sub-case hasn’t received much attention

earlier.

As I mentioned in the introduction, I believe that the present formulation is the most applicable

to on-demand labor markets for skilled or semi-skilled labor for jobs like graphic design, software

development, application/website development etc. In these cases, the amount of time clients are

willing to spend in hiring a worker is negligible compared to the duration of the job. Additionally,

workers are not incentivized to multi-task, i.e., accept multiple jobs at the same time, for two

reasons. One is that clients are time-sensitive and offering a short turnaround time is critical

to winning a contract. Moreover, and perhaps more importantly, platforms like Upwork provide
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worker monitoring service (by taking worker’s screen snapshots at random intervals) to the client

to ensure that she is billed for exactly the hours that the workers spend working. This further

diminishes the incentive to multi-task since there is no possibility of billing multiple clients for the

same time spent. This also makes hourly billing mutually attractive to both the client and the

worker as compared to fixed prices: the worker doesn’t have to worry about working too much

without compensation (high uncertainty in duration is typical for large projects), and platform

monitoring ensures that the client doesn’t overpay.

The present formulation can be applicable for pricing on rental marketplaces like Airbnb, Turo,

etc., except for a couple of caveats. In these cases, there is seasonality in demand, e.g., weekends

demand characteristics may be different from weekdays, summer demand may have different char-

acteristics than other seasons, etc. Although these can be modeled as different customer classes,

due to the cyclic nature of their arrivals, Poisson arrivals may not be an appropriate assumption.

An additional concern is that hosts may want to price discriminate based on the time from the

date of renting, similar to traditional revenue management settings, since high paying customers

typically arrive later. Having said so, either because of the desire for simplicity of the price menu,

or because these above two effects are believed to be negligible, the optimal pricing formulation

presented in the paper can potentially be a reasonable approximation in these settings.

Future directions. There are several interesting avenues for further investigation. It would

be interesting to quantify the impact of decentralized competitive pricing on platform revenues

when compared to centralized pricing. Another issue is that of learning customer preferences. In

the present work, I assumed that the worker knows the distribution of the customers’ per-unit-

time willingness to pay. It would be interesting to explore how these distributions can be learned

while strategically experimenting with prices. The novel aspect here is the need to account for

externalities imposed by accepting jobs on the intertwined goals of revenue maximization and

demand learning. I am optimistic that the structure of the optimal pricing solution and especially

the iterative procedure that I presented in this paper will inform the design of good “learning while

earning” pricing strategies in this setting.
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Appendix

A. Derivation of (13)

Let P0 be the expected earnings between two successive times when the system is empty and the worker is

idle (expected earnings in a renewal cycle). Let P1 (P2) be the expected earning till the system is empty

starting from the time when a job of class A (B) is accepted and there is no customer in queue. Let T0 be the

expected time till the system is empty again after taking up a job, starting with an empty system (expected

duration of a renewal cycle). Let T1 (T2) be the expected time till the system is empty starting from the

time when a job of class A (B) is accepted and there is no customer in queue. Then from the renewal reward

theorem, the long-run average earning converges almost surely to P0/T0. Denote λ′i = λi(1− pi) for i= 1, 2.

Then we have the following set of first-step equations satisfied by the various quantities.

P0 =
λ′1P1

λ′1 +λ′2
+

λ′2P2

λ′1 +λ′2
(26)

P1 =
p1
µ1

+
λ′1P1

λ′1 +λ′2 +µ1

+
λ′2P2

λ′1 +λ′2 +µ1

(27)

P2 =
p2
µ2

+
λ′1P1

λ′1 +λ′2 +µ2

+
λ′2P2

λ′1 +λ′2 +µ2

(28)

T0 =
1

λ′1 +λ′2
+

λ′1T1

λ′1 +λ′2
+

λ′2T2

λ′1 +λ′2
(29)

T1 =
1

µ1

+
λ′1T1

λ′1 +λ′2 +µ1

+
λ′2T2

λ′1 +λ′2 +µ1

(30)

T2 =
1

µ2

+
λ′1T1

λ′1 +λ′2 +µ2

+
λ′2T2

λ′1 +λ′2 +µ2

. (31)

Solving, we obtain (13) as the expression for P0/T0.
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