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A regular equilibrium solves the extended HJB
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Abstract

Control problems not admitting the dynamic programming principle
are known as time-inconsistent. The game-theoretic approach is to in-
terpret such problems as intrapersonal dynamic games and look for sub-
game perfect Nash equilibria. A fundamental result of time-inconsistent
stochastic control is a verification theorem saying that solving the ex-
tended HJB system is a sufficient condition for equilibrium. We show
that solving the extended HJB system is a necessary condition for equi-
librium, under regularity assumptions. The controlled process is a general
Itô diffusion.
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1 Introduction

Consider a controlled process Xu with initial data (t, x) and the problem of
choosing a control u that maximizes

J(t, x,u) := Et,x [F (x,Xu

T )] +G(x,Et,x [X
u

T ]), (1)

where F and G are deterministic functions and t < T < ∞ for a constant T .
This problem is inconsistent in the sense that if a control u is optimal for the
initial data (t, x) then u is generally not optimal for other initial data (s, y),
which means that the dynamic programming principle cannot generally hold.
This type of inconsistency is known as time-inconsistency.

The game-theoretic approach is to view problem (1) from the perspective of a
person who controls the process Xu but whose preferences change when (t, x)
changes. Specifically, the problem is viewed as a sequential non-cooperative
intrapersonal game regarding how to control Xu; where each (t, x) corresponds
to one player. See [7, p. 549] for a more comprehensive interpretation along
these lines. The approach is formalized by the definition of a subgame perfect
Nash equilibrium, which is refinement of the notion of a Nash equilibrium for
dynamic games, see Definition 2.4 below. The game-theoretic approach to time-
inconsistency was first studied in a seminal paper by Strotz [33] in which utility
maximization under non-exponential discounting is studied. Selten [31, 32] gave
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the first definition of subgame perfect Nash equilibrium, relying on the approach
of Strotz.

Time-inconsistent problems were first studied in finance and economics. The
time-inconsistency in this literature is typically due to the economic notions
of endogenous habit formation, mean-variance utility and non-exponential dis-
counting. These types of problems can be formulated and studied in the frame-
work of the present paper. We formulate simple examples and give references
in Section 1.1.

The first general results on the game-theoretic approach to Markovian time-
inconsistent stochastic control are due to Björk et al. who around 2010 defined
the extended HJB system — which is a system of simultaneously determined
PDEs and an extension of the standard HJB equation — and proved a verifi-
cation theorem in a general Itô diffusion setting, see the recently published [6].
An analogous treatment of discrete time Markovian time-inconsistent stochastic
control is presented in [7]. Early papers in mathematical finance to study the
game-theoretic approach to time-inconsistent problems are [2, 15, 16, 17] where
PDE methods for specific time-inconsistent problems — that are similar to the
general method relying on the extended HJB system of [6, 7] — are developed.
Recent publications that use different versions of the extended HJB system to
study time-inconsistent stochastic control problems include [4, 8, 9, 19, 23, 25,
26, 27, 35]. In [14], the equilibrium of a time-inconsistent control problem is
characterized by a stochastic maximum principle. Time-inconsistent stopping
problems are studied in e.g. [3, 10, 11, 20]. We refer to [7, 10, 11, 28, 29] for
short surveys of the literature on time-inconsistent stochastic control.

Time-inconsistent problems can also be studied using the notion of dynamic
optimality defined in [28, 29] and the pre-commitment approach. In the present
setting pre-commitment corresponds to finding a control that maximizes (1) for
a fixed (t, x). For a definition of dynamic optimality and a comparison of the
different approaches to time-inconsistency see [10, 28, 29].

In Section 2 we formulate the time-inconsistent stochastic control problem corre-
sponding to (1) in more detail and give the definition of equilibrium. In Section
3 we define the extended HJB system and prove the main result Theorem 3.8
which says that solving the extended HJB system is a necessary condition for
equilibrium, under regularity assumptions. To illustrate the main result we
study a simple example in Section 3.1. Section 3.2 contains a more general
version of the main result.

1.1 Reasons for time-inconsistency
To give an idea of the type of time-inconsistent problems that are typically stud-
ied in finance and economics we here formulate three simple examples. We also
give references to where problems of these types are studied. For further descrip-
tions of endogenous habit formation, mean-variance utility and non-exponential
discounting, and references, see e.g. [7, 10].

Endogenous habit formation: Problems of this type are studied in e.g. [1,
6, 10, 13, 18, 30]. As a simple example, consider an investor who controls the
evolution of the wealth process Xu by dynamically adjusting the corresponding
portfolio weights, see [22] for a standard model. Suppose the terminal time
utility of the investor is F (x,Xu

T ), where F (x, ·) is a standard utility function
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for each fixed current wealth level x. In this case (1) becomes

J(t, x,u) := Et,x [(F (x,Xu

T )] .

From an economic point of view this may be interpreted as the investor dynam-
ically updating a habitual preference regarding the wealth level.

Mean-variance utility: Problems of this type are studied in e.g. [2, 3, 4, 5,
7, 8, 11, 12, 19, 23, 25, 26, 27, 28, 29, 35]. As an example, consider the model
above but an investor with mean-variance utility corresponding to

J(t, x,u) = Et,x [X
u

T ]−
γ

2
Vart,x [X

u

T ] , where γ > 0.

The interpretation is that the investor wants a large expected wealth but is
averse to risk measured by wealth variance. The parameter γ corresponds to
risk aversion.

Non-exponential discounting: Problems of this type are studied in e.g. [6,
7, 9, 15, 16, 17, 20, 24, 34]. As an example, consider the model above but
an investor with a standard utility function F and a deterministic discounting
function ϕ which cannot be rewritten as a standard exponential discounting
function. Considering the time-space process, (1) becomes in this case

J(t, x,u) = Et,x [ϕ(T − t)F (Xu

T )] ,

where ϕ : [0,∞) → [0, 1] is non-increasing with ϕ(0) = 1.

2 Problem formulation

Consider a stochastic basis (Ω,F , P,F) where F is the augmented filtration
generated by a d-dimensional Wiener process W . Consider a constant time
horizon T < ∞ and an n-dimensional controlled SDE

dXs = µ(s,Xs,u(s,Xs))ds+ σ(s,Xs,u(s,Xs))dWs, Xt = x, t ≤ s ≤ T, (2)

where u : [0, T ] × R
n → R

k, and µ : [0, T ] × R
n × R

k → R
n and σ : [0, T ] ×

R
n × R

k → M(n, d) are continous and satisfy standard global Lipschitz and
linear growth conditions, see e.g. [21, sec 5.2]. M(n, d) denotes the set of n× d

matrices.
We also consider a mapping U that restricts the set of values that controls u

may take, see Definition 2.2. Throughout the present paper we suppose U and
the functions F and G in (1) satisfy the following assumption.

Assumption 2.1 F : Rn×R
n → R is continuous and G : Rn×R

n → R satisfies

G ∈ C2(Rn×R
n). The control constraint mapping U : [0, T ]×R

n → 2R
k

is such
that for each (t, x) ∈ [0, T )×R

n and each u ∈ U(t, x) there exists a continuous
control u with u(t, x) = u.

Note that constant control constraint mappings, which are used in most appli-
cations, trivially satisfy the condition in Assumption 2.1.

Definition 2.2 The set of admissible controls is denoted by U. A control u is
said to be admissible if: u(t, x) ∈ U(t, x) for each (t, x) ∈ [0, T ] × R

n, and for
each (t, x) ∈ [0, T )×R

n the SDE (2) has a unique strong solution Xu with the
Markov property satisfying Et,x [|F (x,Xu

T )|] < ∞ and Et,x [||X
u

T ||] < ∞.
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Definition 2.3 For any u ∈ U the auxiliary functions fu : [0, T ]×R
n×R

n → R

and gu : [0, T ]× R
n → R

n are defined by

fu(t, x, y) = Et,x [F (y,Xu

T )] and gu(t, x) = Et,x [X
u

T ] .

We are now ready to define the subgame perfect Nash equilibrium for the time-
inconsistent stochastic control problem (1). Definition 2.4 is in line with the
equilibrium definition in e.g. [6, 7] to which we refer for a further motivation.

Definition 2.4 (Equilibrium)

• Consider a point (t, x) ∈ [0, T )×R
n, two controls u, û ∈ U and a constant

h > 0. Let

uh(s, y) :=

{

u(s, y), for t ≤ s < t+ h, y ∈ R
n

û(s, y), for t+ h ≤ s ≤ T, y ∈ R
n.

• The control û ∈ U is said to be an equilibrium control if, for any point
(t, x) ∈ [0, T )× R

n and any u ∈ U, it satisfies the equilibrium condition

lim inf
hց0

J(t, x, û)− J(t, x,uh)

h
≥ 0. (3)

• If û is an equilibrium control then Vû defined by Vû(t, x) = J(t, x, û) is
said to be the corresponding equilibrium value function and the quadruple
(û, Vû, fû, gû) is said to be the corresponding equilibrium.

The following definition will be used throughout the present paper.

Definition 2.5

• The differential operator Au, corresponding to (2), is defined by

Au =
∂

∂t
+

n
∑

i=1

µi(t, x,u(t, x))
∂

∂xi

+
1

2

n
∑

i,j=1

σσT
ij(t, x,u(t, x))

∂2

∂xixj

.

Moreover, for any constant u ∈ R
k we define

Au =
∂

∂t
+

n
∑

i=1

µi(t, x, u)
∂

∂xi

+
1

2

n
∑

i,j=1

σσT
ij(t, x, u)

∂2

∂xixj

.

• Placing the third variable as a superscript for a function f : [0, T ]×R
n ×

R
n → R, i.e. fy(t, x) = f(t, x, y), means that y is to be taken as a con-

stant. For example, fy ∈ C1,2([0, T )×R
n) means that f(t, x, y) is continu-

ously differentiable with respect to t and twice continuously differentiable
with respect to x for a fixed y, and Aufy(t, x) involves only derivatives
with respect to t and x. Moreover, Auf(t, x, x) should be interpreted as
Auf̄(t, x) with f̄(t, x) := f(t, x, x).

• For a function g : [0, T ]×R
n → R

n we write g(t, x) = (g1(t, x), ..., gn(t, x))
T

and let Aug(t, x) := (Aug1(t, x), ...,A
ugn(t, x))

T .
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• The operator Hu is defined by

Hug(t, x) = Gy(x, g(t, x))A
ug(t, x), where Gy(x, y) :=

∂G

∂y
(x, y). (4)

Hu is defined analogously.

•
G ⋄ g(t, x) := G(x, g(t, x)). (5)

We will use the observation that (1), Definition 2.3, Definition 2.4 and (5) imply,

Vû(t, x) = J(t, x, û)

= fû(t, x, x) +G ⋄ gû(t, x). (6)

3 The main result

The extended HJB system is system a of simultaneously determined PDEs which
we here define in line with [6]. Remark 3.2 clarifies what constitutes a solution
to the extended HJB system.

Definition 3.1 (Extended HJB system) For (t, x, y) ∈ [0, T )× R
n × R

n,

Aūfy(t, x) = 0,

fy(T, x) = F (y, x),
(7)

Aūg(t, x) = 0,

g(T, x) = x,
(8)

supu∈U(t,x){A
uV (t, x)−Auf(t, x, x) +Aufx(t, x)

−AuG ⋄ g(t, x) +Hug(t, x)} = 0,
(9)

V (T, x) = F (x, x) +G(x, x) (10)

where

ū(t, x) ∈ arg maxu∈U(t,x){A
uV (t, x) −Auf(t, x, x) +Aufx(t, x)

−AuG ⋄ g(t, x) +Hug(t, x)}. (11)

Remark 3.2 For a fixed function ū equations (7) and (8) are Kolmogorov
backward equations. For fixed functions f and g equation (9)–(10) is an HJB
equation. The non-standard attribute of (7)–(10) is that ū, f and g are not fixed
in this way. Instead, (7)–(10) is a system simultaneously determined through
(11). Let us describe what constitutes a solution: If four functions V : [0, T ]×
R

n → R, f : [0, T ]× R
n × R

n → R, g : [0, T ]× R
n → R

n and ū : [0, T ]× R
n →

R
k, where ū(t, x) ∈ U(t, x) for each (t, x) ∈ [0, T ] × R

n, satisfy the following
conditions then (ū, V, f, g) is a solution to the extended HJB system:

• fy and ū satisfy (7), for each fixed y ∈ R
n.

• g and ū satisfy (8).

• V satisfies (10).
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• V, f, g and ū satisfy (9) and (11), i.e for each fixed (t, x) ∈ [0, T ) × R
n

the inequality AuV (t, x) − Auf(t, x, x) + Aufx(t, x) − AuG ⋄ g(t, x) +
Hug(t, x) ≤ 0 holds for each constant u ∈ U(t, x), and it holds with
equality for the constant u := ū(t, x).

In order to prove the main result, Theorem 3.8, we need Lemma 3.4, Lemma
3.5 and Proposition 3.6 below. We remark that Lemma 3.4 and Lemma 3.5
are versions of the Feynman-Kac formula. A proof is included for the sake of
completeness. We will use the following definition.

Definition 3.3 Consider a control u ∈ U. For a function k : [0, T ]× R
n → R

we write k ∈ L2
T (X

u) if, for each (t, x) ∈ [0, T ) × R
n, there exists a constant

h̄ > 0 satisfying t+ h̄ < T such that

Et,x

[

sup
0≤h≤h̄

∣

∣

∣

∣

∫ t+h

t

A
uk(s,Xu

s )

h
ds

∣

∣

∣

∣

+

∫ t+h̄

t

∣

∣

∣

∣

∣

∣

∣

∣

∂k

∂x
(s,Xu

s )σ(s,X
u

s ,u(s,X
u

s ))

∣

∣

∣

∣

∣

∣

∣

∣

2

ds

]

< ∞.

Lemma 3.4 Consider a continuous control u ∈ U. Suppose the auxiliary func-
tion fu satisfies fy

u ∈ C1,2([0, T )× R
n) ∩ L2

T (X
u), for any fixed y ∈ R

n. Then,
fy
u
is, for any fixed y ∈ R

n, a solution to the PDE

Aufy(t, x) = 0, fy(T, x) = F (y, x), (t, x) ∈ [0, T )× R
n.

Proof. By definition fy
u(t, x) = Et,x[F (y,Xu

T )] and the boundary condition is
therefore satisfied. Consider an arbitrary point (t, x, y) ∈ [0, T )×R

n ×R
n. Let

Xu be the strong solution to the SDE (2) for the initial data (t, x). Consider
an arbitrary constant h with 0 < h < h̄, where h̄ is as in Definition 3.3. The
Markov property and Itô’s formula imply that

0 = Et,x

[

fy
u(t+ h,Xu

t+h)
]

− fy
u(t, x)

= Et,x

[

∫ t+h

t

Aufy
u
(s,Xu

s )ds

]

,

where the Itô integral vanished since fy
u ∈ L2

T (X
u). Hence,

Et,x

[

∫ t+h

t
Aufy

u(s,X
u
s )ds

h

]

= 0. (12)

The condition fy
u

∈ L2
T (X

u) implies that we can use dominated convergence
when sending sending h ց 0 in (12). Moreover, the integrand in (12) is contin-
uous in s for a.e. ω, since µ, σ and u are continuous and fy

u ∈ C1,2([0, T )×R
n).

Hence, limhց0 Et,x

[ ∫
t+h

t
A

ufy
u
(s,Xu

s )ds

h

]

= Aufy
u
(t, x). The result follows. �

Lemma 3.5 Consider a continuous control u ∈ U. Suppose the elements of
the auxiliary function gu satisfy gu,i ∈ C1,2([0, T )×R

n) ∩ L2
T (X

u), i = 1, ..., n.
Then gu is a solution to the PDE

Aug(t, x) = 0, g(T, x) = x, for (t, x) ∈ [0, T )× R
n.

Proof. The proof is analogous to that of Lemma 3.4 and is omitted. �

6



Proposition 3.6 Consider two controls v, ṽ ∈ U where v is continuous. Sup-
pose the auxiliary functions fṽ and gṽ satisfy f

y
ṽ
, gṽ,i ∈ C1,2([0, T ) × R

n) ∩
L2
T (X

v), for any fixed y ∈ R
n and i = 1, ..., n. Consider a point (t, x) ∈

[0, T )× R
n. Let

vh(s, y) :=

{

v(s, y), for t ≤ s < t+ h, y ∈ R
n

ṽ(s, y), for t+ h ≤ s ≤ T, y ∈ R
n.

Let v := v(t, x). Then,

lim
hց0

fṽ(t, x, x)− fvh
(t, x, x)

h
= −Avfx

ṽ (t, x), (13)

lim
hց0

G ⋄ gṽ(t, x)−G ⋄ gvh
(t, x)

h
= −Hvgṽ(t, x). (14)

Proof. Et,x

[

fx
ṽ
(t+ h,Xv

t+h)
]

− fx
ṽ
(t, x) = Et,x

[

∫ t+h

t
Avfx

ṽ
(s,Xv

s )ds
]

is found

as in Lemma 3.4. By definition, vh and v coincide on [t, t + h], except at the
point t+ h. By definition, vh(s, y) and ṽ(s, y) coincide on [t+ h, T ]. Thus,

Et,x

[

fx
ṽ (t+ h,Xv

t+h)
]

= Et,x

[

Et+h,Xv

t+h
[F (x,X ṽ

T )]
]

= Et,x

[

Et+h,X
vh
t+h

[F (x,Xvh

T )]
]

= fvh
(t, x, x).

From the above it follows that fvh
(t, x, x)−fx

ṽ
(t, x) = Et,x

[

∫ t+h

t
Avfx

ṽ
(s,Xv

s )ds
]

.

Using arguments analogous to those in the proof of Lemma 3.4 we thus obtain

lim
hց0

fṽ(t, x, x) − fvh
(t, x, x)

h
= lim

hց0

−Et,x

[

∫ t+h

t
Avfx

ṽ
(s,Xv

s )ds
]

h

= −Avfx
ṽ (t, x),

which, since v := v(t, x), means that (13) holds. Using the same arguments

as above we obtain gvh
(t, x) = gṽ(t, x) + Et,x

[

∫ t+h

t
Avgṽ(s,X

v
s )ds

]

. Standard

Taylor expansion gives

G

(

x, gṽ(t, x) + Et,x

[

∫ t+h

t

Avgṽ(s,X
v

s )ds

])

= G (x, gṽ(t, x)) +Gy (x, gṽ(t, x))Et,x

[

∫ t+h

t

Avgṽ(s,X
v

s )ds

]

+ o(h).

Hence, (14) follows from,

lim
hց0

G(x, gṽ(t, x)) −G(x, gvh
(t, x))

h

= lim
hց0

−Gy (x, gṽ(t, x))Et,x

[

∫ t+h

t
Avgṽ(s,X

v
s )ds

]

+ o(h)

h

= −Gy(x, gṽ(t, x))A
vgṽ(t, x).
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Let us now define what is meant by a regular equilibrium and present main result
Theorem 3.8. An example with a regular equilibrium is studied in Section 3.1.

Definition 3.7 An equilibrium (û, Vû, fû, gû) is said to be regular if:

(i). The equilibrium control û is continuous.

(ii). f
y
û
, gû,i ∈ L2

T (X
û) and f

y
û
, gû,i, f̄ ∈ C1,2([0, T )×R

n) for each fixed y ∈ R
n

and i = 1, ..., n, where f̄(t, x) := fû(t, x, x).

(iii). For each (t, x) ∈ [0, T )×R
n and each u ∈ U(t, x), there exists a continuous

control u ∈ U with u(t, x) = u such that fy
û
, gû,i ∈ L2

T (X
u).

Theorem 3.8 A regular equilibrium (û, Vû, fû, gû) solves the extended HJB
system.

Proof. Lemma 3.4 implies that the auxiliary function f
y
û
(t, x) and the equilib-

rium control û satisfy (7), for each y ∈ R
n. Lemma 3.5 implies that the auxiliary

function gû(t, x) and û satisfy (8). Sufficient regularity for the use of these lem-
mas is provided by (i) and (ii) in Definition 3.7. The boundary condition (10)
is directly verified using (5), (6) and Definition 2.3. Now consider an arbitrary
point (t, x) ∈ [0, T )× R

n. In order to show that the equilibrium (û, Vû, fû, gû)
is a solution to the extended HJB system we only have left to show that the
inequality (15) below holds for any u ∈ U(t, x) and that it holds with equality
for u := û(t, x):

AuVû(t, x) −Aufû(t, x, x) +Aufx
û(t, x)

−AuG ⋄ gû(t, x) +Hugû(t, x) ≤ 0. (15)

Consider an arbitrary u ∈ U(t, x). From (6) it follows that

AuVû(t, x) = Aufû(t, x, x) +AuG ⋄ gû(t, x), (16)

where differentiability is provided by (ii) and Assumption 2.1. Consider a con-
tinuous control u satisfying u(t, x) = u for which f

y
û
, gû,i ∈ L2

T (X
u), cf. (iii).

Use Proposition 3.6 and (16) to find

lim
hց0

fû(t, x, x) +G ⋄ gû(t, x)− (fuh
(t, x, x) +G ⋄ guh

(t, x))

h

= −Hugû(t, x) −Aufx
û
(t, x)

= −(AuVû(t, x)−Aufû(t, x, x) +Aufx
û
(t, x)

−AuG ⋄ gû(t, x) +Hugû(t, x)). (17)

Now use the definition of J(t, x,u) and the assumption that û is an equilibrium
control, cf. the equilibrium condition (3), to obtain

lim
hց0

fû(t, x, x) +G ⋄ gû(t, x)− (fuh
(t, x, x) +G ⋄ guh

(t, x))

h

= lim
hց0

J(t, x, û)− J(t, x,uh)

h
≥ 0. (18)

8



Recall that u ∈ U(t, x) was arbitrarily chosen. Hence, (17) and (18) imply that
(15) holds for any u ∈ U(t, x).

Since fy
û
and û satisfy (7) for any y it follows that Aûfx

û
(t, x) = 0. Since gû and

û satisfy (8) it follows that Aûgû(t, x) = 0 which with (4) gives Hûgû(t, x) = 0.
From (6) it follows that AûVû(t, x) = Aûfû(t, x, x) +AûG ⋄ gû(t, x). Hence,

AûVû(t, x)−Aûfû(t, x, x) +Aûfx
û(t, x)−AûG ⋄ gû(t, x) +Hûgû(t, x) = 0.

This is equivalent to (15) holding with equality for u := û(t, x). �

3.1 An example
Let us study a simple time-inconsistent problem to illustrate Theorem 3.8. Sup-
pose a person controls the evolution of a one-dimensional diffusion process with
constant volatility by choosing its drift function. Specifically,

dXt = u(t,Xt)dt+ σdWt,

where admissible controls are restricted to the interval U = [−a, a] for some
a > 0, σ > 0. Suppose the person would like a large difference between the
current value of the process and its value at a fixed terminal time T . Specifically,

J(t, x,u) = Et,x

[

(Xu

T − x)2
]

. (19)

This corresponds to F (x, y) = (y−x)2 andG(x, y) = 0. We make the ansatz that
û = 0 is an equilibrium control. Simple calculations give us the corresponding
auxiliary functions gû(t, x) = x and fû(t, x, y) = (x − y)2 + σ2(T − t). Hence,
∂f

y

û
(t,x)

∂t
= −σ2,

∂f
y

û
(t,x)

∂x
= 2x−2y and

∂2f
y

û
(t,x)

∂x2 = 2. Let us now show that û = 0
does indeed satisfy the equilibrium condition (3). Consider an arbitrary control
u ∈ U and an arbitrary point (t, x). From Itô’s formula it follows that

Et,x

[

fx
û
(t+ h,Xu

t+h)
]

− fx
û
(t, x)

= Et,x

[

∫ t+h

t

Aufx
û(s,X

u

s )ds+ σ

∫ t+h

t

∂fx
û
(s,Xu

s )

∂x
dWs

]

= Et,x

[

∫ t+h

t

u(s,Xu

s )(2X
u

s − 2x)ds

]

.

Using arguments similar to those in the proof of Proposition 3.6 we find fuh
(t, x, x)−

fû(t, x, x) = Et,x

[

∫ t+h

t
u(s,Xu

s )(2X
u
s − 2x)ds

]

. Since G(x, y) = 0 it follows

that

J(t, x, û)− J(t, x,uh) = fû(t, x, x)− fuh
(t, x, x)

= Et,x

[

∫ t+h

t

u(s,Xu

s )(2x− 2Xu

s )ds

]

≥ −2aEt,x

[

∫ t+h

t

|Xu

s − x|ds

]

.

It follows that the equilibrium condition (3) holds and that û = 0 therefore is
an equilibrium control. The corresponding equilibrium is

(û, Vû, fû, gû) = (0, σ2(T − t), (x− y)2 + σ2(T − t), x). (20)
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From Theorem 3.8 it follows that (20) solves the extended HJB system corre-
sponding to F (x, y) = (y − x)2 and G(x, y) = 0, which is also easily verified.

Remark 3.9 The pre-commitment approach is in this example to maximize
(19) over admissible controls, by treating x as an arbitrary but fixed parameter.
It is easy to see that the pre-commitment optimal control is, for any fixed x,

u(t, y) =

{

a, for y ≥ x

−a, for y < x.

3.2 A more general problem
In this section we include a running time function H and allow F and G to
depend on the initial time t. Specifically, we consider

J(t, x,u) := Et,x

[

∫ T

t

H(t, x, r,Xu

r ,u(r,X
u

r ))dr + F (t, x,Xu

T )

]

+G(t, x,Et,x [X
u

T ])

where F : [0, T ]×R
n×R

n → R and G : [0, T ]×R
n×R

n → R satisfy conditions
analogous to those in Assumption 2.1 and H : [0, T ]×R

n× [0, T ]×R
n×R

k → R

is continuous and bounded. The definition of an admissible control is analogous
to Definition 2.2. Let

G ⋄ g(t, x) := G(t, x, g(t, x)),

Hug(t, x) := Gy(t, x, g(t, x))A
ug(t, x),

fu(t, x, s, y) := Et,x

[

∫ T

t

H(s, y, r,Xu

r ,u(r,X
u

r ))dr + F (s, y,Xu

T )

]

.

The equilibrium definition is analogous to Definition 2.4. Placing the third and
fourth variables of a function f : [0, T ]× R

n × [0, T ]× R
n → R as superscripts,

i.e. f s,y(t, x) = f(t, x, s, y), means s and y are to be taken as constant.

Definition 3.10 (Extended HJB system II) For (t, x, s, y) ∈ [0, T )×R
n ×

[0, T )× R
n,

Aūf s,y(t, x) +H(s, y, t, x, ū(t, x)) = 0,

f s,y(T, x) = F (s, y, x),

Aūg(t, x) = 0,

g(T, x) = x,

supu∈U(t,x){A
uV (t, x)−Auf(t, x, t, x) +Auf t,x(t, x)

−AuG ⋄ g(t, x) +Hug(t, x) +H(t, x, t, x, u)} = 0,

V (T, x) = F (T, x, x) +G(T, x, x),

where

ū(t, x) ∈ arg maxu∈U(t,x){A
uV (t, x) −Auf(t, x, t, x) +Auf t,x(t, x)

−AuG ⋄ g(t, x) +Hug(t, x) +H(t, x, t, x, u)}.

10



The definition of a regular equilibrium is analogous to that of Definition 3.7.
Theorem 3.11 generalizes the main result of this paper to the present setting.
The proof is analogous to that of Theorem 3.8 and is omitted.

Theorem 3.11 A regular equilibrium (û, Vû, fû, gû) solves the extended HJB
system II.

Acknowledgments: The author is grateful to Tomas Björk and Jan-Erik Björk for helpful

discussions. An early pre-print version of this paper had the title Time-inconsistent stochastic

control: solving the extended HJB system is a necessary condition for regular equilibria.
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