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Abstract

In this paper, we study the joint product sequencing and pricing problem faced by many

online retailers such as Amazon. We assume that a consumer’s purchasing behavior can

be explained by a “consider-then-choose” model: she first forms a consideration set by

screening a subset of products sequentially, and then decides which product to purchase

from her consideration set. We propose a cascade browse model to capture the con-

sumer’s browsing behavior, and use the Multinomial Logit (MNL) model as our choice

model. We study two problems in this paper: in the first problem, we assume that

each product has a fixed revenue and preference weight, the goal is to identify the best

sequence of products to offer so as to maximize the expected revenue subject to a car-

dinality constraint. We propose a constant approximate solution to this problem. As a

byproduct, we propose the first fully polynomial-time approximation scheme (FPTAS)

for the classic assortment optimization problem subject to one capacity constraint and

one cardinality constraint. In the second problem, we treat the price of each product as

a decision variable and our objective is to jointly decide a sequence of product and their

prices to maximize the expected revenue. We propose a constant approximate solution

to this problem.
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1. Introduction

In this paper, we consider the setting where the platform has a set of products and a

limited number of vertically differentiated display positions. Our objective is to select

a sequence of products, as well as their prices, so as to maximize the expected revenue.

We assume that the consumer’s purchasing behavior is governed by a “consider-then-

choose” model. Once a sequence of products is displayed to a consumer, she first forms

her consideration set by browsing the products sequentially, then chooses one product

(or nothing) from her consideration set based on MNL model. This modeling approach

is well established in the literature in quantitative marketing and operations [1].

We depart from existing literature in assuming that the browsing behavior of a

consumer is governed by a cascade browse model. Our model is inspired by the cascade

click model proposed in [2], however, their purpose is different from ours, e.g., their

goal is to find a good model that captures the click behavior of a consumer in the

context of online advertising. We next give a brief introduction to our cascade browse

model. Under the cascade browse model, each product is associated with a continuation

probability which represents the probability that a consumer continues to browse the

next product after browsing the current product. The purchasing decision process of a

customer can be roughly described as follows. Upon viewing a sequence of products,

she adds the product displayed in the first position to her consideration set. Then she

will decide whether to make a purchasing decision, including non-purchase option, or

to continue adding the product in the next position to her consideration set. Once a

consumer decides to make a purchase from among her current consideration set, we

assume that her purchasing decision is governed by MNL model, and she will leave

the system after the purchase. Otherwise, if she decides to continue adding the next

product to her consideration set, the whole process continues with the next product

until she makes a purchasing decision at some point.

Our main contributions are summarized as follows.

1. We introduce a cascade browse model to capture the consumer’s browsing behav-

ior. Our model not only captures the position-bias effect but also considers the

externality among displayed products.

2



2. We propose constant approximate solutions to the corresponding assortment opti-

mization and pricing problems.

3. As a byproduct, we propose the first fully polynomial-time approximation scheme

(FPTAS) for the classic assortment optimization problem subject to one capacity

constraint and one cardinality constraint.

Literature Review: Our work is closely related to the assortment optimization

problems [3, 4, 5, 6, 7], which have been extensively studied in the revenue manage-

ment literature. We have limited our review to studies under the MNL model with

position bias. [8] and [9] were the first to study the assortment optimization problem

under MNL model with position bias. However, they assume that consumers browse all

displayed products, and the location of a product only affects its MNL-based preference

weight. In our study, we assume that the consumer only browses a subset of displayed

products, and then makes a purchase from among all browsed products. Recently,

[10, 11] considers the assortment optimization problem with vertically differentiated

locations under MNL model. Similar to our work, they adopt the consider-then-choose

model, e.g., the consumer first browses a random number of products and then makes a

choice within these products according to the MNL model. Different from our cascade

browse model, their model does not capture the externality among displayed products,

e.g., they assume that the probability of a displayed product being browsed is solely

dependent on its location, which is not affected by other displayed products. [1] also

study the consider-then-choose model, however, they assume that each product is con-

sidered by a customer with a fixed probability. Another stream of literature introduces

the search cost in the consumer choice model. For example, [12] assume that a con-

sumer selects a group of products as her consideration set such that the expected utility

net of search cost is maximized. Our study is also related to assortment pricing. In ad-

dition to the literature on assortment pricing under standard MNL model [13, 14, 15],

[16] studied a pricing problem based on a cascade click model. Our model differs from

theirs in that we use a combination of cascade browse model and MNL model to cap-

ture the consumer’s purchasing behavior. Moreover, they assume that the sequence of

displayed products is fixed.

3



2. Preliminaries and Problem Formulation

We consider the setting where the platform has N products Ω = [N ] and B ver-

tically differentiated display positions. Our objective is to allocate B products to B

display locations so as to maximize the expected revenue of the platform. We use a

“consider-then-choose” model to capture the consumers’ purchasing behavior. Once

products are allocated to display locations, a consumer chooses among products in two

phases: she first forms a consideration set by sequentially examining the products ac-

cording to the linear order of locations, then decides which product to purchase from

among her consideration set. In this paper, we propose a cascade browse model to

model the consumer’s browsing behavior in the first phase and use the MNL model to

capture the consumer’s purchase behavior in the second phase. We next introduce our

“consider-then-choose” model in more details.

Some notations. Throughout this paper, we use capital letter to denote a sorted se-

quence of products, and use corresponding calligraphy letter to denote a set of prod-

ucts. For example, given a sequence of products S, we use S denote the set of products

involved in S. Moreover, we use S≤i (resp. S<i, S>i, S≥i) to denote the longest subse-

quence of S which is placed no later than (resp. before, after, no earlier than) product i.

Correspondingly, we use S≤i (resp. S<i, S>i, S≥i) to denote the set of products in S≤i

(resp. S<i, Q>i, S≥i). For example, given a sequence of prodicts S = {3, 4, 1, 2, 5},

S<1 = {3, 4}, we have S>1 = {2, 5}, S≤1 = {3, 4, 1}, and S≥1 = {1, 2, 5}. Given

two sequences S1 and S2, we define S1 ⊕ S2 as a new sequence by first displaying S1

and then displaying S2.

2.1. Phase 1: Forming a consideration set

Under our cascade browse model, each product i ∈ Ω has a continuation proba-

bility θi which represents the probability that a consumer continues to browse the next

product (if any) after browsing i.

Given a sequence of products S and a product i ∈ S, we define the reachability ΘS
i
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of i given S as the probability that a consumer browses i given S:

ΘS
i =

∏

j∈S<i

θj

It follows that for any S and i ∈ S, the probability Pr[S≤i | S] that a consumer

browses all and only products in S≤i is

Pr[S≤i | S] =











ΘS
i , if i is the last product in S

ΘS
i (1− θi), otherwise

We refer to S≤i as the random consideration set induced by S.

2.2. Phase 2: Making a purchase

In the second phase, the consumer follows MNL model to make a purchase from

among her consideration set. In the MNL model, each product i ∈ Ω is associated with

a revenue αi, and a MNL-based preference weight βi. For any given realized consid-

eration set S, the probability Pi(S) that i ∈ S is purchased by a single representative

consumer is

Pi(S) =
βi

∑

i∈S βi + 1
(1)

The expected revenue g(S) of the consideration set S is

g(S) =
∑

i∈S

αiPi(S) (2)

The expected revenue f(S) of a sequence of products S can be calculated as

f(S) =
∑

i∈S

Pr[S≤i | S]g(S≤i)

2.3. Problem Formulation

We study two problems in this paper. In the first problem, given that αi and βi

are constants for each i ∈ Ω, we aim to determine the best sequence of products that

maximizes the expected revenue. In the second problem, we relax the assumption that

αi and βi are pre-fixed and assume that αi and βi are functions of i’s price. By treating

the price of each product as a decision variable, we study the joint product selection,

sequencing, and pricing problem.
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2.3.1. Revenue maximizing product selection and sequencing

We first introduce the revenue maximizing product selection and sequencing prob-

lem. Assume αi and βi are given for each i ∈ Ω, our objective is to identify the

best subset of B products, as well as their sequence, so as to maximize the expected

revenue. We present the formal definition of our problem in P.A.

P.A max f(S)

subject to: |S| ≤ B;

2.3.2. Joint product selection, sequencing, and pricing

In addition to optimizing the positioning of the products, the platform could also

adjust the price of each product to improve the expected revenue. We next study the

case when the price of a product is also a decision variable. To capture the impact of

price on a consumer’s purchase decision, it is common practise to interpret αi, as well

as βi, as a function of i’s quality, price, and cost for any i ∈ Ω. Assume each product

i ∈ Ω is associated with a fixed quality qi, an adjustable price pi, and a fixed cost ci. If

we set αi = pi − ci and βi = eqi−pi and plug into (1) and (2), we get

Pi(S,p) =
eqi−pi

∑

i∈S eqi−pi + 1
(3)

where p = {pi | i ∈ Ω} ∈ R
|Ω| is a price vector. The expected revenue g(S) of S is

g(S,p) =
∑

i∈S

(pi − ci)Pi(S) (4)

The expected revenue of S and price p can be calculated as

f(S,p) =
∑

i∈S

Pr[S≤i | S]g(S≤i,p)

Our objective is to jointly decide a sequence of products and their prices to max-

imize the expected revenue subject to a cardinality constraint. We next present the

formal definition of the second problem P.B.

P.B max f(S,p)

subject to: |S| ≤ B;
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3. Revenue maximizing product selection and sequencing

We first study the case when αi and βi are fixed for all products i ∈ Ω. Our objec-

tive is to identify the best sequence of products that maximizes the expected revenue

subject to a cardinality constraint. Before presenting our solution to P.A, we show that

given any optimal solutionO to P.A, we can safely remove those products whose reach-

ability is sufficiently small from O such that it does not affect the expected revenue of

O much.

Lemma 1. For any ρ ∈ [0, 1], there is a solution Q of expected revenue at least

f(Q) ≥ (1− ρ)f(O)

such that |Q| ≤ B and ∀i ∈ Q : ΘQ
i ≥ ρ.

Proof: Let O[t] denote the t-th product in O. Assume O[k] is the last question in O

whose reachability is no smaller than ρ, e.g., k = argmaxt(Θ
O
O[t] ≥ ρ). Recall that

we use O>k (resp. O≤k) to denote the sequence of questions scheduled after (resp. no

later than) slot k. Therefore the reachability of every question in O≤k is no smaller

than ρ.

We first show that ρf(O>k) ≥ f(O) − f(O≤k). Let eS denote the event that a

consumer browses all and only products in S. We define Λ1 = {O≤t | t ≤ k} and

Λ2 = {O≤t | t > k}.

f(O) =
∑

A∈Λ1

Pr[eA]g(A) + Pr[eO≤k
]g(O≤k) +

∑

A∈Λ2

Pr[eA]g(A)

≤
∑

A∈Λ1

Pr[eA]g(A) + Pr[eO≤k
]g(O≤k) +

∑

A∈Λ2

Pr[eA](g(A)− g(O≤k) + g(O≤k)) (5)

=
∑

A∈Λ1

Pr[eA]g(A) + Pr[eO≤k
]g(O≤k) +

∑

A∈Λ2

Pr[eA]g(O≤k) +
∑

A∈Λ2

Pr[eA](g(A) − g(O≤k))

≤ f(O≤k) +
∑

A∈Λ2

Pr[eA](g(A)− g(O≤k)) (6)

≤ f(O≤k) +
∑

A∈Λ2

Pr[eA]g(A \ O≤k) (7)

= f(O≤k) + ΘO
O[k]θO[k]f(O>k) (8)

≤ f(O≤k) + ρf(O>k) (9)
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Inequality (6) is due to
∑

A∈Λ1
Pr[eA]g(A)+Pr[eO≤k

]g(O≤k)+
∑

A∈Λ2
Pr[eA]g(O≤k) =

f(O≤k). Inequality (9) is due to k = argmaxt(Θ
O
O[t] ≥ ρ). It remained to prove in-

equality (7), e.g., g(A)− g(O≤k) ≤ g(A \ O≤k) for any A ∈ Λ2.

g(A)− g(O≤k) =
∑

i∈A

αiβi
∑

i∈A βi + 1
−

∑

i∈O≤k

αiβi
∑

i∈O≤k
βi + 1

(10)

=
∑

i∈A∩O≤k

αi(
βi

∑

i∈A βi + 1
−

βi
∑

i∈O≤k
βi + 1

) (11)

+
∑

i∈A\O≤k

αiβi
∑

i∈A βi + 1
(12)

≤
∑

i∈A\O≤k

αiβi
∑

i∈A βi + 1
(13)

≤
∑

i∈A\O≤k

αiβi
∑

i∈A\O≤k
βi + 1

= g(A \ O≤k) (14)

This finishes the proof of ρf(O>k) ≥ f(O) − f(O≤k). Due to O is the optimal

solution to P.A, we have f(O>k) ≤ f(O). It follows that (1 − ρ)f(O) ≤ f(O≤k).

Because |O≤k| ≤ B and all products in O≤k can be browsed with probability at least

ρ, O≤k is one such sequence that satisfies all conditions in Lemma 1. �

Lemma 2. For any ρ ∈ [0, 1], there is a sequence R with |R| ≤ b and ∀i ∈ R : ΘR
i ≥

ρ such that

g(R) ≥ (1− ρ)f(O)

Proof: Based on Lemma 1, for any ρ ∈ [0, 1], there is a solution Q of expected profit

at least f(Q) ≥ (1 − ρ)f(O). Let Q[t] denote the t-th product in Q. Assume that

|Q| = k, we have

f(Q) =
∑

t∈[1,k−1]

ΘQ
Q[t](1− cQ[t])g(Q≤t) + ΘQ

Q[k]g(Q≤k) ≥ (1− ρ)f(O)

The equality is due to the definition of f(Q). Because
∑

t∈[1,k−1] Θ
Q
Q[t](1 − cQ[t]) +

ΘQ
Q[k] = 1, we have

max
t∈[1,k]

g(Q≤t) ≥ (1 − ρ)f(O)
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Because maxt∈[1,k] g(Q≤t) is a subsequence of Q, we have |maxt∈[1,k] g(Q≤t)| ≤ B

and every product inmaxt∈[1,k] g(Q≤t) has readability at least ρ. Therefore,maxt∈[1,k] g(Q≤t)

is one such sequence that satisfies all conditions in Lemma 2. �

Based on Lemma 2, in order to obtain a near-optimal solution, it suffice to consider

those products whose reachability is sufficiently high. This motivates us to introduce a

new problem P.A.1. The goal of P.A.1 is to find a sequence of products that maximizes

the expected revenue while ignoring those products whose reachability is sufficiently

small. The solution to P.A.1 is composed of two parts: a set of products S and a single

product y ∈ Ω, where y is displayed after S. The reason we separate y from other

products in S is that y is scheduled at the last slot, thus there is no restriction on y’s

continuation probability. Constraint (C1) ensures that every product can be viewed

with probability at least ρ, and constraint (C2) ensures that the size of our solution is

upper bounded by B.

P.A.1 Maximizey,S⊆Ω\{y} g(S ∪ y)

subject to:











−
∑

i∈S log(θi) ≤ − log ρ (C1)

|S| < B (C2)

We next present our algorithm Algorithm 1.

Description of Algorithm 1.

1. We first propose a fully polynomial-time approximation scheme (FPTAS) for

P.A.1.

2. After solving P.A.1 (approximately) and obtaining a solution (Salg1 , yalg1), we

build the final solution by first displaying Salg1 (an arbitrary sequence of Salg1 )

and then displaying yalg1 .

In the rest of this section, we first present a FPTAS for P.A.1 and then analyze the

performance of Algorithm 1.
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3.1. FPTAS for P.A.1

Our basic idea, inspired by [17], is to enumerate the last product y ∈ Ω in the

optimal solution to P.A.1, for each fixed y, we present a FPTAS for P.A.1. At last,

we choose the solution with the largest expected revenue as the final solution to P.A.1.

Note that given a fixed y, P.A.1 reduces to an assortment optimization problem subject

to one capacity constraint and one cardinality constraint. [18] develops a FPTAS for

the assortment optimization problem subject to one capacity constraint, we extend their

solution and provide a FPTAS, inspired by [19], to P.A.1 when y is fixed, e.g., we pro-

vide the first FPTAS for the assortment optimization problem subject to one capacity

constraint and one cardinality constraint.

Note that when y is fixed, we only consider those products in Ω \ {y}. For ease

of presentation, we relabel all products in Ω \ {y} such that Ω \ {y} = [N − 1]. We

first introduce some notations. Let αmin = mini∈Ω αi be the minimum revenue of a

single product and αmax = maxi∈Ω αi be the maximum revenue of a single product.

Let βmin = mini∈Ω βi and βmax = maxi∈Ω βi. Let γi = αiβi, γmin = mini∈Ω γi,

and γmax = maxi∈Ω γi.

For a given ǫ > 0, we build the following group of guesses.

I = {γmin(1 + ǫ)a | a ≤ ln
Nγmax

ǫγmin
}, J = {βmin(1 + ǫ)b | b ≤ ln

Nβmax

ǫβmin
}

For a given guess γmin(1+ ǫ)a ∈ I and βmin(1 + ǫ)b ∈ J , we discretize the values

of γi and βi as follows,

γ̃i = ⌈
γi

γmin(1 + ǫ)aǫ/B
⌉, β̃i = ⌊

βi

βmin(1 + ǫ)bǫ/B
⌋

We use ωi to denote − log(θi) for all i ∈ Ω \ {y}. Denote by function h(j, u, v, l)

for j ∈ [N ], u ∈ [⌈N2/ǫ⌉], v ∈ [⌈N2/ǫ⌉], l ∈ [B] the optimal solution value of the

following problem:

h(j, u, v, l) := min{

j
∑

i=1

ωixi :

j
∑

i=1

γ̃ixi = u,

j
∑

i=1

β̃ixi = v,

j
∑

i=1

xi = l, xi ∈ {0, 1}, l ∈ [B]}

We set the initial values as follows: we first set h(j, u, v, l) = +∞ for i = 0, u ∈

[⌈N2/ǫ⌉], v ∈ [⌈N2/ǫ⌉], l ∈ [B], and then set h(0, 0, 0, 0) = 0.
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Then we fill up the dynamic program table using the following recurrence function.

h(j, u, v, l) =























h(j − 1, u, v, l) if u < γj or v < βj ;

min











h(j − 1, u, v, l)

h(j − 1, u− γj , v − βj , l − 1) + ωj

otherwise.

After filling up the dynamic programming table, we go through all entries with

h(j, u, v, l) ≤ − log ρ, and return the solution with the largest expected revenue.

We repeat the above process for every guess in I × J , then return the one with the

largest expected revenue as the final solution to P.A.1. Denote the returned solution by

(Salg1 , yalg1). We next prove that the above solution achieves
1−ǫ(1+ǫ)
1+ǫ(1+ǫ) approximation

ratio for P.A.1.

Lemma 3. Let (S∗, y∗) denote the optimal solution to P.A.1. For any ǫ > 0,

g(Salg1 ∪ yalg1) ≥
1− ǫ(1 + ǫ)

1 + ǫ(1 + ǫ)
g(S∗ ∪ y∗)

Proof: Assume γmin(1 + ǫ)a ≤
∑

i∈S∗ γi ≤ γmin(1 + ǫ)a+1 and βmin(1 + ǫ)b ≤
∑

i∈S∗ βi ≤ βmin(1 + ǫ)b+1. Recall that to obtain a FPTAS for P.A.1, we enumerate

the last product o ∈ Ω and solve the dynamic program for each y and each guess in

I × J . Consider the case when (y∗, γmin(1 + ǫ)a+1 ∈ I, βmin(1 + ǫ)b+1 ∈ J) is

enumerated, let u∗ =
∑

i∈S∗ γ̃i and v∗ =
∑

i∈S∗ β̃i denote the summation of the

scaled values. It is clear that h(N, u∗, v∗, |S∗|) ≤ − log ρ, let S′ denote the solution

stored in h(N, u∗, v∗, |S∗|). We first give a lower bound on
∑

z∈S′ γz ,

∑

z∈S′

γz ≥
∑

z∈S′

γ̃zǫγmin(1 + ǫ)a+1/B − ǫγmin(1 + ǫ)a+1 (15)

= u∗ǫγmin(1 + ǫ)a+1/B − ǫγmin(1 + ǫ)a+1 (16)

≥ u∗ǫγmin(1 + ǫ)a+1/B − ǫ(1 + ǫ)
∑

i∈S∗

γi (17)

≥
∑

i∈S∗

γi − ǫ(1 + ǫ)
∑

i∈S∗

γi (18)

= (1− ǫ(1 + ǫ))
∑

i∈S∗

γi (19)

where the last inequality is due to γ̃i ≥
γi

γmin(1+ǫ)a+1ǫ/n for all i ∈ Ω.
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Then we give an upper bound on
∑

z∈S′ βz ,

∑

z∈S′

βz ≤
∑

z∈S′

β̃zǫβmin(1 + ǫ)b+1/B + ǫβmin(1 + ǫ)b+1 (20)

= v∗ǫβmin(1 + ǫ)b+1/B + ǫβmin(1 + ǫ)b+1 (21)

≤ v∗ǫβmin(1 + ǫ)b+1/B + ǫ(1 + ǫ)
∑

i∈S∗

βi (22)

≤
∑

i∈S∗

βi + ǫ(1 + ǫ)
∑

i∈S∗

βi (23)

= (1 + ǫ(1 + ǫ))
∑

i∈S∗

βi (24)

where the last inequality is due to β̃i ≤
βi

βmin(1+ǫ)a+1ǫ/n for all i ∈ Ω.

It follows that

g(Salg1 ∪ yalg1) ≥ g(S ′ ∪ y∗) (25)

=

∑

z∈S′ γz + γy∗

∑

z∈S′ βz + βy∗ + 1
(26)

≥
(1− ǫ(1 + ǫ))

∑

i∈S∗ γi + γy∗

(1 + ǫ(1 + ǫ))
∑

i∈S∗ βi + βy∗ + 1
(27)

≥
1− ǫ(1 + ǫ)

1 + ǫ(1 + ǫ)
g(S∗ ∪ y∗) (28)

�

3.2. Performance analysis of Algorithm 1

We next analyze the performance bound of Algorithm 1. Recall that after obtaining

(Salg1 , yalg1) from the previous stage, Algorithm 1 returns Salg1 ⊕ yalg1 as the final

solution where Salg1 is an arbitrary sequence of Salg1 . We next prove that for any ǫ > 0

and ρ ∈ [0, 1], Algorithm 1 achieves
1−ǫ(1+ǫ)
1+ǫ(1+ǫ)ρ(1− ρ) approximation ratio.

Theorem 1. For any ǫ > 0 and ρ ∈ [0, 1],

f(Salg1 ⊕ yalg1) ≥
1− ǫ(1 + ǫ)

1 + ǫ(1 + ǫ)
ρ(1− ρ)f(O)

Proof: Due to constraint (C2), a consumer views all product in Salg1 ⊕ yalg1 with

probability at least ρ, then we have

f(Salg1 ⊕ yalg1) ≥ ρg(Salg1 ∪ yalg1) (29)

12



Based on Lemma 3, we have

g(Salg1 ∪ yalg1) ≥
1− ǫ(1 + ǫ)

1 + ǫ(1 + ǫ)
g(S∗ ∪ y∗) (30)

(29) and (30) imply that

f(Salg1 ⊕ yalg1) ≥ ρ
1− ǫ(1 + ǫ)

1 + ǫ(1 + ǫ)
g(S∗ ∪ y∗) (31)

In Lemma 4 (whose proof we defer until later), we prove that

g(S∗ ∪ y∗) ≥ (1− ρ)f(O) (32)

(31) and (32) imply that f(Salg1 ⊕ yalg1) ≥ 1−ǫ(1+ǫ)
1+ǫ(1+ǫ)ρ(1− ρ)f(O). �

We next focus on proving Lemma 4.

Lemma 4. For any ρ ∈ [0, 1],

g(S∗ ∪ y∗) ≥ (1− ρ)f(O)

Proof: Recall that in Lemma 2, we prove that there exists a sequence R with |R| ≤ B

and ∀i ∈ R : ΘR
i ≥ ρ such that g(R) ≥ (1 − ρ)f(O). Let s denote the last product

in R, it is easy to verify that (R \ s, s) is a feasible solution to P.A.1. As a result,

g(S∗ ∪ y∗) ≥ g(R) ≥ (1− ρ)f(O). �

4. Joint product selection, sequencing, and pricing

We next study the case when the price of each product is also a decision variable. As

described in Section 2.3.2, assume each product i ∈ Ω is associated with a fixed quality

qi, an adjustable price pi, and a fixed cost ci, we set αi = pi − ci and βi = eqi−pi .

Our objective is to find a solution (S,p) to P.B, where S is a sequence of products

and p = {pi | i ∈ Ω} is the corresponding pricing vector. Let (O,pOPT ) denote

the optimal solution to P.B. Based on similar proofs of Lemma 1 and 2, we have the

following two lemmas.

Lemma 5. For any ρ ∈ [0, 1], there is a sequence Q with |Q| ≤ B and ∀i ∈ Q :

ΘQ
i ≥ ρ such that

f(Q,pOPT ) ≥ (1− ρ)f(O,pOPT )

13



Proof Sketch: We fix the price p
OPT , then apply the proof of Lemma 1 to complete

the proof.

Lemma 6. For any ρ ∈ [0, 1], there is a sequence R with |R| ≤ B and ∀i ∈ R : ΘR
i ≥

ρ and price p such that

g(R,pOPT ) ≥ (1− ρ)f(O,pOPT )

Proof Sketch: We fix the price p
OPT , then apply the proof of Lemma 2 to complete

the proof.

We next introduce a new problem P.B.1 whose goal is to jointly decide a considera-

tion set and a pricing to maximize the expected revenue, while ignoring those products

whose reachability is sufficiently small. Similar to P.A.1, we still use y to denote the

last product in a sequence, (C1) ensures that all products in a feasible solution can be

viewed with probability at least ρ, and (C2) ensures that the cardinality of the solution

is bounded by B. We next describe the design of our algorithm (Algorithm 2).

P.B.1 Maximizey,S⊆Ω\{y},p g(S ∪ y,p)

subject to: (C1) and (C2)

Description of Algorithm 2.

1. We first propose a FPTAS for P.B.1.

2. After solving P.B.1 (approximately) and obtaining a (1 − ǫ)-approximate solu-

tion (Salg2 , yalg2 ,palg2), we build the final solution by first displaying Salg2 (an

arbitrary sequence of Salg1 ) and then displaying yalg2 using price palg2 .

In the rest of this section, we first present a FPTAS for P.B.1 and then analyze the

performance bound of Algorithm 2.

4.1. A FPTAS for P.B.1

To facilitate our study, we first introduce a well-known result in the field of assort-

ment optimization.

Lemma 7. [15] Given any consideration set S, the maximum revenue maxp g(S,p) is

achieved at pi = W (
∑

i∈S eqi−ci−1)+ci+1 for all products i ∈ Ω where W (z) is the
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solution to xex = z. Moreover, the value of the maximum revenue is maxp g(S,p) =

W (
∑

i∈S eqi−ci−1).

Based on Lemma 7, we obtain a closed form solution of the maximum revenue for

any consideration set. This enables us to remove the decision variable p from P.B.1 to

obtain an equivalent, but simplified, formulation in P.B.2. In particular, we replace the

objective function g(S ∪ y,p) in P.B.1 by W (
∑

i∈S vi + vy) in P.B.2.

P.B.2 Maximizey,S⊆Ω\{y} W (
∑

i∈S vi + vy)

subject to: (C1) and (C2)

Note that maximizing W (
∑

i∈S vi + vy) is equivalent to maximizing
∑

i∈S vi + vy .

We can further simplify P.B.2 by replacing the objective function W (
∑

i∈S vi + vy)

by
∑

i∈S vi + vy . We denote by P3.2 the new formulation of P.B.2.

P.B.3 Maximizey,S⊆Ω\{y}

∑

i∈S vi + vy

subject to: (C1) and (C2)

Now we are ready to present the solution to P.B.1. We first enumerate the last

product o ∈ Ω and solve P.B.3 for each y. The solution with the largest expected

revenue is returned as the final solution to P.B.1. Let P.B.3(y) denote P.B.3 when the

last product y is given. It is easy to verify that for a fixed y, P.B.3(y) is a classic

knapsack problem subject to a capacity constraint and a cardinality constraint. Given

that P.B.3(y) admits an FPTAS [19], P.B.3 also admits an FPTAS. A detailed proof is

provided in Lemma 8.

P.B.3(y) MaximizeS⊆Ω\{y}

∑

i∈S vi

subject to: (C1) and (C2)

Lemma 8. If P.B.3(y) admits an FPTAS for any fixed y, P.B.1 also admits an FPTAS.

Proof: Recall that to solve P.B.1, we solve P.B.3(y) approximately for all y ∈ Ω and

choose the best one as the final solution. Because P.B.1 and P.B.2 are equivalent, to

prove this lemma, it is equivalent to proving that any (1 − ǫ)-approximate solution to

P.B.3(y) is also a (1 − ǫ)-approximate solution to P.B.2 for a fixed y and any ǫ < 1.

Given any y, assume there exists a (1 − ǫ)-approximate solution D to P.B.3(y), i.e.,
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∑

i∈D vi ≥ (1 − ǫ)maxS(
∑

i∈S vi) subject to all constraints in P.B.3(y). It follows

that
∑

i∈D vi+vy ≥ (1−ǫ)(maxS
∑

i∈S vi+vy). It implies that W (
∑

i∈D vi+vy) ≥

W ((1−ǫ)(maxS
∑

i∈S vi+vy)). BecauseW is concave, we haveW (
∑

i∈D vi+vy) ≥

(1− ǫ)W (maxS(
∑

i∈S vi + vy)) = (1− ǫ)maxS W (
∑

i∈S vi + vy). �

4.2. Performance analysis of Algorithm 2

We next analyze the performance bound of Algorithm 2. We use (S∗, y∗,p∗) to

denote the optimal solution to P.B.1.

Theorem 2. For any ǫ < 1, we have

f(Salg2 ⊕ yalg2 ,palg2) ≥ (1 − ǫ)ρ(1− ρ)f(O,pOPT )

Proof: Recall that in Lemma 6, we prove that there exists a sequence R with |R| ≤ B

and ∀i ∈ R : ΘR
i ≥ ρ such that g(R,pOPT ) ≥ (1 − ρ)f(O,pOPT ). Let s denote

the last product in R, it is easy to verify that (R \ s, s,pOPT ) is a feasible solution to

P.B.1. As a result,

g(S∗ ∪ y∗,p∗) ≥ g(R,pOPT ) (33)

≥ (1− ρ)f(O,pOPT ) (34)

The first inequality is due to (S∗, y∗,p∗) is the optimal solution to P.B.1.

It follows that

f(Salg2 ⊕ yalg2 ,palg2) ≥ ρg(Salg2 ∪ y,palg2) (35)

≥ (1 − ǫ)ρ(1− ρ)f(O,pOPT ) (36)

The first inequality is due to the following observation: Because (Salg2 , yalg2) is a

feasible solution to P.A.1, constraint (C2) ensures that all products in Salg2 ⊕ yalg2 can

be browsed with probability at least ρ. Thus, f(Salg2 ⊕ yalg2 ,palg2) ≥ ρg(Salg2 ∪

y,palg2). The second inequality is due to the assumption that P.B.1 admits an FPTAS,

i.e., g(Salg2 ∪ y,palg2) ≥ (1− ǫ)g(S∗ ∪ y∗,p∗) for any ǫ < 1, and (34). �
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5. Conclusion

We study the product sequencing and pricing problem under the cascade browse

model. In the first setting, we assume that both the revenue and MNL-based preference

weight are fixed for all products, and focus on finding the best sequence of products

subject to a cardinality constraint. In the second setting, we consider the joint sequenc-

ing and pricing problem. We develop approximate solutions to both settings. As a by

product, we propose the first FPTAS for the assortment optimization problem subject

to one capacity constraint and one cardinality constraint.
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