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Abstract

In a multi-server system, how can one get better performance than random assignment
of jobs to servers if queue-states cannot be queried by the dispatcher? A replication strategy
has recently been proposed where d copies of each arriving job are sent to servers chosen at
random. The job’s completion time is the first time that the service of any of its copies is
complete. On completion, redundant copies of the job are removed from other queues so as
not to overburden the system.

For digital jobs, where the objects to be served can be algebraically manipulated, and
for servers whose output is a linear function of their input, here we consider an alternate
strategy: Maximum Distance Separable (MDS) codes. For every batch of n digital jobs that
arrive, n+m linear combinations are created over the reals or a large finite field, and each
coded job is sent to a random server. The batch completion time is the first time that any n
of the n+m coded jobs are served, as the evaluation of n original jobs can be recovered by
Gaussian elimination. If redundant jobs can be removed from queues on batch completion,
we establish that in order to get the improved response-time performance of sending d copies
of each of n jobs via the replication strategy, with the MDS methodology it suffices to send
n+ d jobs. That is, while replication is multiplicative, MDS is linear.

1 Introduction

It is well known that if a job arrives to a system with many servers, its delay is minimized by
joining the queue with the least waiting time. If there are large numbers of servers, the state of
each of their queues may not be accessible at each job’s arrival time. The celebrated power-of-d
choices result (see [1], [14], [23]) establishes that by sampling a relatively small number of queues
at random and joining the shortest of those, performance is asymptotically much better than
in the case of random assignment. Many other load-balancing schemes have been proposed and
investigated, see [22] for a current survey.

An interesting variant of this system has recently been introduced where the waiting times
at any of the queues may not be available to an arriving job, see [20, 4, 3] and references therein.
In that setting, as opposed to sampling d queues and joining the shortest waiting time, instead a
replication-d strategy is proposed: for each job that arrives, a copy of it is placed in d distinct
queues whose lengths and waiting times are unknown. The job’s work is complete when the first
of its replicas exits service, and the remaining d − 1 duplicate jobs are then removed from the
system. For a heuristic illustration of the performance gain that is obtained from this strategy,
assume that a system is in stationarity where any job sent to any server experiences a sojourn
time, say W , comprised of the waiting time in the queue and the service time once it reaches the
server, with distribution P (W ≤ t) = FW (t). Assuming queues are independent and identically
distributed, a single job arrives and is subject to replication-d. With R denoting the job’s
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completition time, its distribution is given by the minimum of d independent sojourn times

P (R1,d > t) = P (min(W1, . . . ,Wd) > t) = (1− FW (t))d.

With the system in stationarity and a batch of n jobs arriving where each job is subject to
replication-d, the tail of the batch completion time distribution is governed by last job comple-
tion time in the batch and satisfies

P (Rn,d > t) = P (max(R1,d
1 , . . . , R1,d

n ) > t) = 1−
(

1− (1− FW (t))d
)n
∼ n(1− FW (t))d, (1)

for large t. Thus, through the use of the replication-d strategy, the tail of the completion time
distribution of the batch of n jobs is exponentially curtailed from approximately n(1− FW (t)).
That tail reduction is significant, and greatly reduces the straggler problem where the system
is held up waiting for one job to be served before it can proceed to the next task.

In the present paper we consider the performance of an alternative approach that is available
when the jobs to be served can be subject to algebraic manipulation and the output of the servers
is a linear function of their input. This is the case, for example, if the jobs consist of digital
packets that are traversing a network where the output of a server is its input and for large matrix
multiplication tasks for Machine Learning. In the network setting, the replication-d strategy
is similar in spirit to repetition coding [18], which is known to be sub-optimal, and instead
we consider a MDS (Maximum Distance Separable) approach. The benefits of MDS codes
for making communications robust in networks subject to packet erasures are well-established.
For information retrevial from a multi-server storage system, the improvements in response
time that is attainable through the use of coding have been studied [8, 19, 9, 12, 11]. Both
replication and MDS coding have also been proposed recently to resolve the stragglers problem
in distributed gradient descent for Machine Learning [20, 10, 21, 2, 5, 13, 16, 15]. To the best
of our knowledge, however, this is one of the first times its utility in reducing queueing delay in
a feed-forward system has been shown.

Consider a batch arrival of n jobs, J1, . . . , Jn, each of which consists of data of fixed size
whose symbols take values in the reals or a large Galois field. The principle of the MDS coding
approach is that rather than send duplicate jobs, one instead creates n+m linear combinations
of the form

Kj = A
(j)
1 J1 + · · ·+A(j)

n Jn, j ∈ {1, . . . , n+m},

where the A
(j)
i are chosen in the reals or a finite fields. The principle behind MDS codes is to

consider each coded job, Kj , as a random linear equation such that the reciept of any linear
function of any n of the n + m linear combinations allows recovery of the processing of the
original n jobs by Gaussian elimination. Reed-Solomon codes, for example, [17] are MDS codes.
More generally, a Random Linear Code, where the coefficients are chosen uniformly at random,
is an MDS code with high probability for a sufficiently large field size, e.g. [7].

When MDS is employed, the completion time of a batch is equal to the job completion time
of any n out of the n+m coded jobs. To heuristically understand the gain that can be obtained
by MDS, again assume that the system is in stationarity with each queue independently having
a sojourn time distribution FW . A batch of n jobs arrives and are coded into n+m MDS jobs.
Their completition time has the same distribution as n-th order statistics of n + m random
variables with distribution FW , whose complementary distribution is known to be given by

P (Cn,m > t) = (n+m)

(
n+m− 1

n− 1

) n−1∑
k=0

(
n− 1

k

)
(−1)k

1

m+ k + 1
(1− FW (t))m+k+1 .

As t→∞, the tail is equivalent to its leading term

(n+m)

(
n+m− 1

n− 1

)
1

m+ 1
(1− FW (t))m+1 . (2)
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Thus the tail of the response time with the MDS strategy is smaller than the tail of the response
time achieved by replication-d in (1) so long as m ≥ d. This non-rigorous sketch illustrates the
main message of this paper: where nd copies of jobs are used for replication-d, for digital data
subject to linear processing, MDS can provide better tail response times with only n+d copies.

We present the precise model considered in the paper in Section 2. In Section 3 we consider
the case where k, the number of servers, tends to infinity. Under the mean-field assumption
used in the replication-d literature, we demonstrate that as long as m ≥ d the tail distribution
of batch completion times of jobs in stationarity is strictly smaller in the case of MDS when
compared with replication-d, making the above heuristic arguments rigorous.

2 A more precise model

In the rest of the paper we shall assume that there are k servers, each with an infinite-buffer
queue to store outstanding jobs. Each arrival is a batch of n jobs that appears according to
a Poisson process of intensity λk/n, so that, on average, there are λk jobs arriving per unit
of time. For digital data as in communication networks, the batch arrival assumption is not
restrictive as individual jobs can be sub-divided. Batch arrivals are also appropriate to represent
the parallelisation of MapReduce computations and more general parallel-processing computer
systems (see, e.g., [24]).

We assume each version of any job takes an exponential time with rate 1 to complete on
any server, taken independently of everything else, including other copies of the same job, and
each server’s output is a linear function of its input.

Another key question is how, once one copy of a job has been processed to completion, its
remaining copies are treated. In some circumstances, such as the queueing of data jobs in a
communications network, it is not practical to remove copied jobs and they must be served. In
other instances, such as for parallelisation of MapReduce computations, it would be possible to
remove waiting tasks from queues and cease the service of copies being processed. This latter
setting, considered in [3] and references therein, provides a model of greater mathematical
interest, and we focus on it in this paper.

3 MDS vs replication-d with redundant removals

The tails of batch completition times are challenging to analyse, but one can examine the
behaviour in the limit as the number of queues, k, becomes large.

In the system with replication, the job completition time distribution is derived in [3, Section
5]) under an assumption on asymptotic independence of queues (Assumption 1, given below).
It is straightforward to adapt that derivation to the case of batch arrivals considered here. The
tail of the completion time of any one of the n jobs is given by

P (R1,d > t) =

(
1

λ+ (1− λ)et(d−1)

)d/(d−1)
.

The completion time for n jobs in a batch is then the maximum of n independent random
variables with this distribution, and a batch’s response time then has the tail given by

P (Rn,d > t) = 1−

(
1−

(
1

λ+ (1− λ)et(d−1)

)d/(d−1))n
. (3)

Following [3], we adopt Assumption 1 on the asymptotic independence of the queues for our
analysis of the MDS strategy, and refer to that article for a discussion of it.
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Assumption 1. Let Ti denote the completition time of a job, not subject to removal, at queue i
out of a total of k. For k sufficiently large, the random variables (Ti1 , . . . Tin+m) are independent
for any distinct i1, . . . , in+m.

We prove the following along the lines of the proof introduced in [3, Section 5]. We note
that a differential equation on the completion times may also be obtained from the result of [6,
Theorem 5.2] where much more general workload-based policies are considered (using derivations
similar to those in Section 6.1 therein). We however present below a simple derivation of (4),
using only straightforward queueing arguments.

Theorem 2. For every batch arrival of n jobs, n + m coded jobs are sent to n + m queues
chosen uniformly at random without replacement. As soon as any n coded jobs are completed,
the remaining m jobs are removed from the system, including those currently in service. Let V
be the random waiting time of a single (virtual) job that is subject to neither coding or removal,
which is needed to determine the batch waiting time. Under Assumption 1, its waiting time
satisfies the following differential equation

dP (V > t)

dt
= −P (V > t) (4)

+ α(n+m− 1)

(
n+m− 2

n− 1

) n−1∑
i=0

(
n− 1

i

)
(−1)i

1

(m+ i)(m+ i+ 1)
(P (V > t))m+i+1,

where α = λ(m+ n)/n. For large waiting times, the tail of its distribution satisfies

lim sup
t→∞

etP (V > t) <∞.

Let Cn,m denote the random MDS batch completion time. Its distribution satisfies

P(Cn,m > t) = (n+m)

(
n+m− 1

n− 1

) n−1∑
i=0

(
n− 1

i

)
(−1)i

1

m+ i+ 1
(P (V > t))m+i+1 , (5)

and its tail satisfies
lim sup

t→∞
e(m+1)tP (Cn,m > t) <∞. (6)

We note that this result encompasses the replication-d strategy by setting n = 1 and m =
d − 1, and that in that setting (4) is exactly the differential equation obtained in [3] (see the
displayed equation just after (24) therein). These results confirm the heuristic analysis in the
introduction that the tail of the batch completition time distribution for replication in equation
(3) is slower than when MDS is used, equation (6), so long as m ≥ d. Thus with only n + d
coded jobs, one can achieve better tail performance than sending nd jobs under the replication
strategy.

In the case of replication, a closed form for the batch completition time distribution is
available, but that is not the case for MDS as the differential equation (4) describing the virtual
waiting time distribution of a non-coded job cannot be solved in closed form in general. It
can, however, be readily solved numerically and inserted into equation (5) to evaluate the batch
completition time distribution for MDS.

An example comparison is presented in Fig. 1 where batches consist of n = 3 jobs and the
replication strategy places d = 3 copies of each into the system. For MDS, we consider a range
of values for m from 2 to 6. The figure recapitulates the conclusion that MDS with m ≥ d leads
to significant gains in completition time tail for larger values of t. Note that for m = d = 3,
the batch completition time of MDS is not stochastically dominated by that of replication and
that short delays are more likely with MDS, and it is only in the tail that MDS outperforms
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Figure 1: Complementary batch completition time distribution for a batch of n = 3 jobs. The
dashed line corresponds to replication with d = 3 giving nd replicated jobs, while the solid lines
correspond to MDS with n+m coded jobs.

replication. For values of m ≥ 4, however, the MDS batch completition time distribution is
better for all times.

Proof of Theorem 2. Equation (5) is a direct application of known results on order-
statistics distributions. We now prove (4). Following derivations in [3, Section 5], denote by Ti
the non-redundant response time for a tagged job in queue i. Then

Ti = Wi + Ei,

where Wi is the workload (real workload, i.e. time to empty the queue if there were no more
arrivals) and Ei is an Exponential(1) random variable (service requirement). Let us denote by
FT and FW the distribution functions of T and W , respectively. Let us also denote their tails
by F T and FW . Then we can write

F T (t) = e−t +

∫ t

0
e−yFW (t− y)dy = e−t +

∫ t

0
e−(t−y)FW (y)dy = e−t + e−t

∫ t

0
eyFW (y)dy,

differentiating which we get
F T
′
(t) = FW (t)− F T (t). (7)

Let us now write an expression for FW (t). We can look at the previous arrival (which in the case
of MDS happens an Exponential(λ(m+n)/n) time earlier than the tagged arrival. For simplicity
denote α = λm/n. Condition first on the previous arrival having been y time before the tagged
arrival. Then W > t in one of two cases: either the previous arrival sees workload larger than
t+ y, or the previous arrival sees workload smaller than t+ y, its own (non-redundant) time in
queue i is larger than t + y and by the time t + y no more than n − 1 of the other n + m − 1
copies left other queues (or, in other words, nth order statistic of n + m − 1 random variables
exceeds t+ y);
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Integrating over all values of y, we obtain:

FW (t) =

∫ ∞
0

αe−αydy

(
FW (t+ y)

+ (F T (t+ y)− FW (t+ y))(n+m− 1)

(
n+m− 2

n− 1

) n−1∑
i=0

(
n− 1

i

)
(−1)i

1

m+ i
(F T (t+ y))m+i

= eαt
∫ ∞
t

αe−αzdz

(
FW (z)

+ (F T (z)− FW (z))(n+m− 1)

(
n+m− 2

n− 1

) n−1∑
i=0

(
n− 1

i

)
(−1)i

1

m+ i
(F T (z))m+i

)
,

where we used known results for the tail distribution of nth order statistic of n+m− 1 random
variables. Differentiating the above relation, we get

FW
′
(t) = αFW (t)− α

(
FW (t)

+ (n+m− 1)

(
n+m− 2

n− 1

)
(F T (t)− FW (t))

n−1∑
i=0

(
n− 1

i

)
(−1)i

1

m+ i
(F T (t))m+i

)

= α(n+m− 1)

(
n+m− 2

n− 1

)
F T
′
(t)

n−1∑
i=0

(
n− 1

i

)
(−1)i

1

m+ i
(F T (t))m+i,

where in the last equality we used (7). The above can be integrated and plugged into (7) to
obtain

F T
′
(t) = −F T (t)+α(n+m−1)

(
n+m− 2

n− 1

) n−1∑
i=0

(
n− 1

i

)
(−1)i

1

(m+ i)(m+ i+ 1)
(F T (t))m+i+1.

This proves (4). Recall that m− n ≥ 1. Since F T (x)→ 0 as x→∞, there exists X such that

F T
′
(x) ≤ −F T (x) +A(F T (x))2,

for all x ≥ X, with some constant A > 0. Denote by g(x) = 1/F T (x). Then

g′(x) = − F T (x)

(F T (x))2
≥ −−F T (x) +A(F T (x))2

(F T (x))2
= g(x)−A

for all x ≥ X. Since g(x) → ∞ as x → ∞, we can also assume that g(x) ≥ A for all x ≥ X.
Then the above implies that

g′(x)

g(x)−A
≥ 1

for all x ≥ X. Integrating the above inequality from X to x implies

log

(
g(x)−A
g(X)−A

)
≥ x−X,

and hence g(x) ≥ A + (g(X) − A)ex−X ≥ Bex, with a constant B. This of course implies (6),
and the proof is complete.
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