Firms can Benefit from Inaccurate Market Beliefs

Qijun Qiu ${ }^{a}$
${ }^{\text {a }}$ School of Management Science and Engineering, Nanjing University of Information Science \& Technology, Nanjing, China, qiu-qijun@163.com
Li Jiang ${ }^{\text {b }}$
${ }^{b}$ Faculty of Business, The Hong Kong Polytechnic University, Hong Kong SAR, China Corresponding author, 1.jiang@polyu.edu.hk

Abstract

A supplier sells to a retailer who serves a market with uncertain demand. Before the season starts, the retailer preorders from the supplier, who stocks to satisfy at least the preorder. After the actual demand is realized, the retailer can place an at-once order, which is satisfied up to stock availability. Market demand, as perceived by a firm, can differ from what it actually is. We find that a firm can benefit from holding an inaccurate market belief.

Keywords: newsvendor; contracting arrangement; market belief

1. Introduction

Extensive empirical evidence shows that people generally hold different predictions for unknowns. In practice, firms rely on a variety of techniques to forecast market demand, while their forecasts seldom accurately capture real conditions. [4] remarks that managers do not update market beliefs, as theorists would predict, after receiving data from alternative sources. [12] observes in controlled experiments that firms hold inaccurate beliefs about market demand and finds that it can explain one third of order mistakes. In an experimental study, [1] finds that inaccurate market beliefs can deter professionals from optimally managing inventories. Despite its practical relevance, prior literature is sparse in the exploration of the effects of inaccurate market beliefs on firms' operations and profits in supply chain settings. The purpose of this work is to study whether and to what extent inaccuracy in firms' market beliefs impacts the performance of an otherwise rational system.

We analyze a setting wherein a supplier sells to a retailer who serves a market with uncertain demand. A two-wholesale-price contract governs the relationship between the firms. Such contract is prevalent in the electronics and automobile industries and is even permeating industries that have long lead times. The retailer preorders from the supplier before the selling season starts, and the supplier stocks to satisfy at least the preorder. After the actual demand is realized, the retailer can place an at-once order, which is satisfied by the supplier up to availability. The supplier and retailer
engage in one of three regimes to allocate inventory responsibility in between. In the Pull regime, the retailer only places an at-once order to pass realized demand to the supplier, who assumes full inventory responsibility by stocking in advance. In the Push regime, the supplier stocks to exactly match the preorder by the retailer, who assumes full inventory responsibility for satisfying realized demand. In the Partial-Advance-Booking (PAB) regime, the retailer places a preorder before and an at-once order after the realization of actual demand, while the supplier manages stocks to satisfy the two orders; thus, the firms share inventory responsibility. [3] is among the first works to study two-wholesale-price contract and classifies firms' decision regime into Push, Pull, and PAB. [6] explores the role of this contracting arrangement in alleviating the negative impacts of capital constraints.

Prior literature has investigated order timing in supply chain settings (e.g. [2], [5], [7], [10], [12]). Most works are premised on the assumption that firms hold accurate market beliefs. By contrast, in our work, a firm can hold a belief about market demand that differs from what it actually is. This infuses a realistic flavor in our theoretical exploration. [8] considers horizontal competition in a newsvendor setting and shows that an inaccurate market belief may result in an improvement in a firm's profit. [9] studies a setting in which a supplier sells to a retailer under a price-only contract and the firms hold different market beliefs. In our model, a two-wholesale-price contract governs the vertical interaction, and the firms engage in a certain decision regime (Push, Pull, or PAB) to share inventory responsibility.

Holding inaccurate market beliefs can cause firms to share inventory responsibility in a way different from that when they hold accurate market beliefs. Even when they adhere to a decision regime, a firm with an inaccurate market belief can make a quantity adjustment that depends on the two wholesale prices through their impacts on the overstocking cost relative to understocking cost. We demonstrate that firms can profit from inaccurate market beliefs. As both firms hold inaccurate market beliefs, termed bilateral deviation, either one firm or both firms can reap profit gains. As only one firm holds an inaccurate market belief, termed unilateral deviation, the profit for the other firm can increase, while the supplier can benefit from its unilateral deviation. We further discuss the robustness of the key insights.

2. Model Preliminaries

We consider a bilateral monopoly wherein a supplier wholesales a product to a retailer who sells to a market with uncertain demand Z, where Z follows a uniform distribution on $[\mu-\sigma, \mu+\sigma]$. We refer to μ as demand mean and $\sigma \leq \mu$ demand spread. Either the supplier or the retailer can hold an inaccurate market belief. We call a firm who holds an inaccurate market belief a deviating firm. A deviating firm i, where $i=s, r$ indicates supplier (s) or retailer (r), believes that market demand is Z_{i} and follows a uniform distribution on $\left[\mu-\sigma_{i}, \mu+\sigma_{i}\right]$, where $\sigma_{i} \triangleq \alpha_{i} \sigma$ and $\alpha_{i} \in[0,1]$ is a proxy
for the extent of inaccuracy in firm i 's belief. Empirical evidence is ample to indicate that firms are generally overconfident about the precision of their estimates for unknown demand. [12] observes in a series of experiments that firms exhibit overconfidence to believe that demand is less variable than it actually is. The assumption of $\alpha_{i} \in[0,1]$ in our model approximately captures this phenomenon. Firm i holds an accurate market belief when $\alpha_{i}=1$, while it believes demand to be deterministic with a value of μ when $\alpha_{i}=0$. In a later section, we briefly discuss the situation where a firm i can perceive demand to be more variable than it actually is.

Figure 1. Decision framework
Figure 1 illustrates the decision framework. A two-wholesale-price contract governs the relationship between the supplier and retailer. Prior to the start of the season, the retailer preorders q_{r} from the supplier at wholesale price w_{1}, termed preorder price, and the supplier stocks q_{s} at cost c to at least satisfy the preorder ($q_{s} \geq q_{r}$). Upon realization of the actual demand, the retailer can place an at-once order at wholesale price w_{2}, termed at-once price, and this order is fulfilled up to the supplier's stock availability. Retail price is $p>c$ and the two wholesale prices are $w_{i} \in$ $[c, p], i=1,2$. Let $k \triangleq 1-\frac{c}{p}$ be the service level. We assume away penalty cost and salvage value to focus on the effects of firms' inaccurate market beliefs on their quantity decisions and profits.

Quantity decisions (q_{s}, q_{r}) by the supplier and retailer, which are made before the actual demand is realized, determine the decision regime they adopt to allocate inventory responsibility. In the Pull regime, $0=q_{r}<q_{s}$; the retailer forgoes preordering but relies on at-once order to satisfy realized demand, and the supplier assumes full inventory responsibility by stocking prior to the season. In the PAB regime, $0<q_{r}<q_{s}$; the retailer preorders, which is satisfied by the supplier, who, in addition, reserves stocks to satisfy the retailer's at-once order. As such, the retailer assumes part of overstocking risk, while the supplier assumes all understocking risk. In the Push regime, $0<$ $q_{r}=q_{s}$; the supplier stocks just enough to meet the retailer's preorder, and the retailer assumes full inventory responsibility for satisfying the realized demand. Thus, from Pull to PAB, and to Push, the retailer (supplier) assumes more (less) inventory responsibility.

Given the retailer's preorder q_{r}, the supplier chooses stock level q_{s} to maximize its expected profit based on its market belief, as captured by Z_{s} :

$$
\begin{equation*}
\pi_{s}\left(q_{s} \mid q_{r}, Z_{s}\right)=w_{1} q_{r}+w_{2} \operatorname{Emin}\left\{\left(q_{s}-q_{r}\right),\left(Z_{s}-q_{r}\right)^{+}\right\}-c q_{s}, \tag{1}
\end{equation*}
$$

subject to $q_{s} \geq q_{r}$. In equation (1), $\mathrm{E}\left[\min \left\{\left(q_{s}-q_{r}\right),\left(Z_{s}-q_{r}\right)^{+}\right\}\right]$is the expected at-once order perceived by the supplier, $w_{1} q_{r}$ is the revenue from preorder sales, and $c q_{s}$ is its cost.

Anticipating the supplier's stock decision $q_{s}\left(q_{r}\right)$, the retailer preorders q_{r} to maximize its expected profit based on its market belief, as captured by Z_{r} :

$$
\begin{equation*}
\pi_{r}\left(q_{r} \mid Z_{r}\right)=p \mathrm{E}\left[\min \left\{q_{s}\left(q_{r}\right), Z_{r}\right\}\right]-w_{1} q_{r}-w_{2} \mathrm{E}\left[\min \left\{\left(q_{s}\left(q_{r}\right)-q_{r}\right),\left(Z_{r}-q_{r}\right)^{+}\right\}\right], \tag{2}
\end{equation*}
$$

where $\mathrm{E}\left[\min \left\{q_{s}, Z_{r}\right\}\right]$ is the expected sales and $\mathrm{E}\left[\min \left\{\left(q_{s}-q_{r}\right),\left(Z_{r}-q_{r}\right)^{+}\right\}\right]$is the expected atonce order perceived by the retailer.

We assume that the supplier and retailer are aware of the market beliefs held by one another. It is a reasonable assumption since a firm's market belief is inferable from its operations decisions. Notation-wise, we use superscript $t=t_{s} t_{r}$ to indicate the status of the firms' market beliefs, where $t_{i}=b(u)$ indicates that firm $i=r, s$ holds an inaccurate (accurate) market belief. When both firms hold inaccurate market beliefs, termed bilateral deviation, we assume that their beliefs are inaccurate to the same extent $\left(\alpha_{s}=\alpha_{r}\right)$. Assuming different extents of inaccuracy makes solution expressions much more tedious, without altering the structure of the outcomes.

3. Decision Regime

To facilitate exposition, we define newsvendor quantities $q_{0} \triangleq F_{s}^{-1}\left(\frac{w_{2}-c}{w_{2}}\right), q_{a} \triangleq F_{r}^{-1}\left(\frac{w_{2}-w_{1}}{w_{2}}\right)$, and $q_{e} \triangleq F_{r}^{-1}\left(\frac{p-w_{1}}{p}\right)$, where the subscript of $F_{i}^{-1}(\cdot), i=r, s$ indicates the identity of the firm, based on whose market belief the decision is made. According to the definitions, $q_{0}=\mu+\sigma_{s}\left(1-\frac{2 c}{w_{2}}\right), q_{a}=$ $\mu+\sigma_{r}\left(1-\frac{2 w_{1}}{w_{2}}\right)$, and $q_{e}=\mu+\sigma_{r}\left(1-\frac{2 w_{1}}{p}\right)$.

Lemma 1. Given the status of firms' market beliefs, $\left(q_{r}, q_{s}\right)=\left(0, q_{0}\right)$ in the Pull regime; $\left(q_{r}, q_{s}\right)=$ $\left(q_{a}, q_{0}\right)$ in the PAB regime; $\left(q_{r}, q_{s}\right)=\left(q_{e}, q_{e}\right)$ in the Push regime. Moreover, q_{0} increases in σ_{s} iff $c<w_{2}-c, q_{a}$ increases in σ_{r} iff $w_{1}<w_{2}-w_{1}$, and q_{e} increases in σ_{r} iff $w_{1}<p-w_{1}$.

In the Pull regime, the supplier bases on belief Z_{s} to stock q_{0}, which balances overstocking $\operatorname{cost} c$ and understocking cost $w_{2}-c$, where w_{2} is the revenue from each unit of at-once sales. In the Push regime, the retailer bases on belief Z_{r} to preorder q_{e}, which balances overstocking cost w_{1} and understocking cost $p-w_{1}$, where p is the revenue from each unit of sales. In the PAB regime, the retailer preorders q_{a} to balance overstocking $\operatorname{cost} w_{1}$ and understocking $\operatorname{cost} w_{2}-w_{1}$, which occurs when the realized demand exceeds the preorder, and the supplier stocks q_{0}. Thus, even as the retailer shares overstocking risk, the supplier manages the same stock level as that in a Pull regime. In each decision regime, the supplier's stock level determines system inventory availability. Lemma 1 further states that a deviating firm either increases or decreases its quantity, i.e., q_{0} for the supplier and q_{a}, q_{e} for the retailer. Specifically, as the relevant overstocking cost is low (high) relative to the
understocking cost, a firm reserves a positive (negative) safety stock, and perceiving market demand to be less variable than it actually is induces the firm to reduce (increase) safety stock.

Proposition 1 states the decision regimes adopted by the two firms with their respective market beliefs.

Proposition 1. Let $w_{1}^{t}, t=t_{s} t_{r} \in\{u u, b b, u b, b u\}$ be as defined in the Appendix. Referring to Figure 2, the firms adopt the Push regime if $c<w_{1} \leq w_{1}^{t}$, the PAB regime if $w_{1}^{t}<w_{1} \leq w_{2}$, and the Pull regime if $w_{1}>\max \left\{w_{1}^{t}, w_{2}\right\}$.

Figure 2. Decision regimes adopted by the firms
Note. $w_{1}^{b b}\left(w_{2}\right)=w_{1}^{u u}\left(w_{2}\right)$ when $w_{2} \geq \sqrt[3]{c^{2} p}$.
The firms engage in the Push regime when preorder price is low ($w_{1} \leq w_{1}^{t}$), even when it exceeds at-once price ($w_{1} \geq w_{2}$). In other situations, they engage in the Pull (PAB) regime when preorder price exceeds (undercuts) at-once price. An increase in preorder price weakens the retailer's incentive to preorder, shifting more inventory responsibility to the supplier. The status t of firms' market beliefs influences the relative positions of thresholds $w_{1}^{t}, t=u u, b b, b u, u b$. Note that $w_{1}^{b b}<w_{1}^{u u}$ when $w_{1}>w_{2}$, and $w_{1}^{b b}=w_{1}^{u u}$ otherwise. Compared to when both firms hold accurate market beliefs, bilateral deviation affects the adoption of decision regime only when preorder price exceeds at-once price, inducing the firms to less (more) likely adopt the Push (Pull) regime. Under unilateral deviation, $w_{1}^{u b}>w_{1}^{u u}$ when w_{2} is low but $w_{1}^{u b} \leq w_{1}^{u u}$ otherwise, while $w_{1}^{b u}<w_{1}^{u u}$ when w_{2} is low but $w_{1}^{b u} \geq w_{1}^{u u}$ otherwise. Thus, the only deviating firm has a stronger (weaker) incentive to assume inventory responsibility at low (high) at-once prices.

Figure 2 illustrates the complete pattern for the firms' adoption of decision regime, which is applicable when service level is high $(k>0.5)$. An increase in service level causes $w_{1}^{u b} \leq w_{1}^{u u}$ and $w_{1}^{b u} \geq w_{1}^{u u}$ to more likely occur, implying a weakened incentive of the only deviating firm to assume inventory responsibility. At low service levels ($k \leq 0.5$), $w_{1}^{u b}>w_{1}^{u u}$ and $w_{1}^{b u}<c$ always
hold. In this case, firms are under relieved pressure to stock for demand satisfaction. An inaccurate market belief, which reduces the perceived demand variability, strengthens the incentive of the only deviating firm to assume inventory responsibility, i.e., Push (Pull/PAB) regime expands when only the retailer (supplier) holds an inaccurate market belief. Our presentation is focused on the situation when service levels are high ($k>0.5$). In a later section, we comment on the impacts of low service levels ($k \leq 0.5$).

4. Performance Implications

The decision regime adopted by the firms can change as either one or both firms hold inaccurate market beliefs. Even when the firms adhere to a decision regime, holding an inaccurate market belief can cause a firm to make quantity adjustment. This has substantial profit implications. We measure the profit for a firm by applying its decisions stated in Proposition 1 to its profit function where market demand follows the true distribution.

4.1 Bilateral deviation

Compared to when both firms hold accurate market beliefs, bilateral deviation has a fundamental impact on their decision regime only when pre-order price exceeds at-once price. Proposition 2 states the circumstances in which it can benefit either one or both firms.
Proposition 2. Under bilateral deviation, let $w_{1,1}=\max \left\{w_{2}-c, \min \left\{w_{1}^{b b}, \frac{p}{2}\right\}\right\}$ and $w_{1,2}$ be defined in the Appendix, referring to Figure 3, compared to when both firms hold accurate market beliefs:

1) The retailer is better off if $w_{2}<2 c \& w_{1}>\max \left\{w_{1}^{b b}, w_{2}\right\}$ or $w_{1}^{b b}<w_{1}<\min \left\{w_{1,2}, w_{2}\right\}$ (Areas $I_{r 1}$ and $I_{r 2}$), but is worse off otherwise (Areas $D_{r 1}-D_{r 4}$).
2) The supplier is better off if $w_{1,1}<w_{1}<\max \left\{w_{1}^{b b}, w_{2}\right\}\left(\right.$ Area $\left.I_{s}\right)$, but is worse off otherwise (Areas $D_{s 1}$ and $D_{s 2}$).

a) Retailer

b) Supplier

Figure 3. Effects of bilateral deviation

In the situation where $w_{1}^{b b}<w_{1}<w_{1}^{u u}$, where $w_{1}^{b b}$ and $w_{1}^{u u}$ are defined in Proposition 1, bilateral deviation causes a decision-regime change from Push to Pull, resulting in stock reductions by both firms (detailed outcomes of the comparison of firms' quantity decisions in all scenarios are presented in the Appendix). It has contrasting consequences for firms' profits: the retailer is better off as it shakes off inventory responsibility, while the supplier is worse off due to a sales reduction.

As they adhere to the Pull regime, deviation causes the supplier to stock more when at-once price is low ($w_{2} \leq 2 c$) but stock less otherwise (Proposition 1). Suboptimal decision undermines the profit for the supplier (Area $D_{s 2}$ with $w_{1}>w_{1}^{u u_{i n}}$ Figure 3.b). In contrast, the profit for the retailer increases when the supplier stocks more (Area $I_{r 1}$ with $w_{1}>w_{1}^{u u}$ in Figure 3.a) but decreases when the supplier stocks less (Area $D_{r 3}$ in Figure 3.a). As they adhere to the Push regime, the deviating retailer profits less due to its preorder adjustment triggered by inaccurate market belief: it preorders less when preorder price is low (Area $D_{r 1}$ in Figure 3.a) but preorders more otherwise (Area $D_{r 4}$ in Figure 3.a). The supplier follows suit to adjust stock level, suffering a profit loss as the retailer preorders less (Area $D_{s 1}$ with $w_{1}<w_{1}^{u u}$ in Figure 3.b) but reaping a profit gain otherwise (Area I_{s} with $w_{1}<w_{1}^{u u}$ in Figure 3.b).

As they adhere to the PAB regime, the supplier adjusts stock level in the same fashion as that in the Pull regime, while the retailer adjusts preorder in a fashion similar to that in the Push regime. The profit for the supplier increases (Area I_{s} with $w_{1}>w_{1}^{u u}$ in Figure 3.b) unless at-once price is high and preorder price is low (Area $D_{s 1}$ with $w_{1}>w_{1}^{u u}$ in Figure 3.b), in which case, the supplier suffers from its lowered stock level and a reduced preorder by the retailer. The retailer is generally worse off by its suboptimal preorder. An exception occurs when preorder and at-once prices are medium (Area $I_{r 2}$ in Figure 3.a), in which case, bilateral deviation in market belief increases the retailer's preorder and the supplier's stock availability, and the gain from a sales improvement can outweigh the loss from the suboptimal preorder to benefit the retailer. Thus, bilateral deviation can benefit both firms when they adhere to a decision regime to share inventory responsibility.

4.2 Unilateral deviation by the supplier

Unilateral deviation by the supplier can cause the firms to switch decision regime and entice the supplier to make stock adjustment in the circumstance where it has inventory responsibility. In this case, the two firms are asymmetric in the accuracy of their market beliefs. To study the impacts on firms' profits, we compare the outcomes in the scenarios where $t=b u$ and $t=u u$.

Proposition 3 states that holding an inaccurate market belief unilaterally by the supplier has mixed effects on the profit for the retailer, but it can benefit the supplier itself.
Proposition 3. Under unilateral deviation by the supplier, referring to Figure 4, compared to when both firms hold accurate market beliefs:

1) The retailer is better off when $w_{2}<2 c \& w_{1}>w_{1}^{b u}$ (Areas $I_{r 1}$ and $I_{r_{2}}$), is unaffected when $w_{1}<\min \left\{w_{1}^{b u}, w_{1}^{u u}\right\}\left(\right.$ Area U), but is worse off otherwise (Areas $D_{r 1}$ and $D_{r 2}$).
2) The supplier is better off when $w_{1}^{u u}<w_{1}<\min \left\{w_{1}^{b u}, \frac{c p}{2 w_{2}-p}\right\}$ (Area $\left.I_{s}\right)$, is unaffected when $w_{1}<\min \left\{w_{1}^{b u}, w_{1}^{u u}\right\}\left(\right.$ Area U), but is worse off otherwise (Areas $D_{s 1}-D_{s 3}$).

Figure 4. Effects of unilateral deviation by the supplier
Unilateral deviation by the supplier causes a change in decision regime if $\min \left\{w_{1}^{u u}, w_{1}^{b u}\right\} \leq$ $w_{1} \leq \max \left\{w_{1}^{u u}, w_{1}^{b u}\right\}$. At low at-once prices, the condition reduces to $w_{1}^{b u} \leq w_{1} \leq w_{1}^{u u}$, where the regime changes from Push to Pull/PAB, forcing the retailer to preorder less and the supplier to stock less as well. It benefits the retailer (Area $I_{r 1}$ in Figure 4.a), who shakes off inventory responsibility, but harms the supplier (Area $D_{s 1}$ in Figure 4.b), who stocks less but assumes more inventory risk. At high at-once prices, the condition reduces to $w_{1}^{u u} \leq w_{1} \leq w_{1}^{b u}$, where the regime changes from Pull/PAB to Push, boosting the retailer's preorder but inducing the supplier to stock more (less) when at-once price is medium (high). The retailer suffers a profit loss (Area $D_{r 1}$ in Figure 4.a) by assuming full inventory responsibility, while the supplier profits more from riskless sales when atonce price is medium high (Area I_{s} in Figure 4.b) but suffers from a sales reduction otherwise (Area $D_{s 3}$ in Figure 4.b). Thus, the supplier can profit from a decision-regime change triggered by its unilateral deviation in market belief, by shaking off inventory responsibility and inducing the retailer to preorder more.

As the firms adhere to the Push regime, the decision by the retailer, who holds full inventory responsibility and holds an accurate market belief, remains unaffected, leaving both firms with the same profits as those when they hold accurate market beliefs (Area U in Figure 4). As the firms adhere to the Pull/PAB regime, the supplier assumes main inventory responsibility, stocking more at low at-once prices $\left(w_{2} \leq 2 c\right)$ to benefit the retailer, whose preorder remains unchanged, with higher stock availability (Area $I_{r 2}$ in Figure 4.a) but stocking less at high at-once prices ($w_{2}>2 c$) to harm
the retailer (Area $D_{r 2}$ in Figure 4.a). Nevertheless, the supplier profits less due to its suboptimal decision (Area $D_{s 2}$ in Figure 4.b).

4.3 Unilateral deviation by the retailer

Next, we study the impacts of unilateral deviation by the retailer on the profits for the two firms, by comparing the outcomes in the scenarios where $t=u b$ and $t=u u$. Proposition 4 states that the retailer never profits from unilaterally deviating in market belief.

Proposition 4. Under unilateral deviation by the retailer, let $w_{1,3}=\max \left\{\frac{w_{2}}{2}, \min \left\{w_{1}^{u u}, \frac{p}{2}\right\}\right\}$ and $w_{1,4}$ be as defined in the Appendix, referring to Figure 5, compared to when both firms hold accurate market beliefs:

1) The retailer is worse off when $w_{1}<\max \left\{w_{1}^{u b}, w_{2}\right\}$ (Areas $D_{r 1}$ and $D_{r 2}$), but is unaffected otherwise (Area U).
2) The supplier is better off when $w_{1}<\min \left\{w_{1,3}, w_{1,4}\right\}$ or $w_{1,3}<w_{1}<\max \left\{w_{1}^{u b}, w_{2}\right\}$ (Areas $I_{s 1}$ and $I_{s 2}$), is worse off when $\operatorname{Max}\left\{w_{1,4}, 0\right\}<w_{1}<w_{1,3}\left(\right.$ Area $\left.D_{s}\right)$, but is unaffected otherwise (Area U).

Figure 5. Effects of unilateral deviation by the retailer
The condition for unilateral deviation by the retailer to result in a change in decision regime is $\min \left\{w_{1}^{u u}, w_{1}^{u b}\right\} \leq w_{1} \leq \max \left\{w_{1}^{u u}, w_{1}^{u b}\right\}$. At low at-once prices, the condition reduces to $w_{1}^{u u} \leq$ $w_{1} \leq w_{1}^{u b}$, where the regime changes from Pull/PAB to Push. The deviating retailer preorders more to assume more responsibility, but the supplier, who holds an accurate market belief, follows suit to stock more but shakes off inventory responsibility. Consequently, the profit for the retailer decreases (Area $D_{r 2}$ with $w_{1}^{u u} \leq w_{1} \leq w_{1}^{u b}$ in Figure 5.a), while that for the supplier increases (Area $I_{s 2}$ with $w_{1}^{u u} \leq w_{1} \leq w_{1}^{u b}$ in Figure 5.b). At high at-once prices, the condition reduces to $w_{1}^{u b} \leq w_{1} \leq w_{1}^{u u}$, where the regime changes from Push to PAB. The supplier stocks less and the regime change has it assume more inventory responsibility. The retailer preorders less (more) when preorder price is low
(high). While the profit for the retailer decreases, that for the supplier can increase, either due to more preorder sales (Area $I_{s 2}$ with $w_{1}^{u b} \leq w_{1} \leq w_{1}^{u u}$ in Figure 5.b) or more at-once sales (Area $I_{s 1}$ in Figure 5.b).

As the firms adhere to the Pull regime, the supplier assumes full inventory responsibility and an accurate market belief stabilizes its stock level, insulating both firms from the effect of unilateral deviation by the retailer (Area U in Figure 5). As the firms adhere to the PAB regime, the supplier, who maintains its stock decision, profits more from the preorder adjustment made by the retailer (Area $I_{s 2}$ with $w_{1}>\max \left\{w_{1}^{u b}, w_{1}^{u u}\right\}$ in Figure 5.b). The retailer, however, suffers a profit loss from its suboptimal decision (Area $D_{r 2}$ with $w_{1}>\max \left\{w_{1}^{u b}, w_{1}^{u u}\right\}$ in Figure 5.a). As the firms adhere to a Push regime, the deviating retailer preorders more (less) when preorder price is high (low), forcing the supplier to follow suit in stock adjustment. While the retailer suffers a profit loss, the supplier can profit from an increase in the retailer's preorder.

4.4 Discussions and insights

Based on the analysis for the various scenarios differentiated by the status of firms' market beliefs, we explore the effects of inaccurate market beliefs on firms' profits. Then, we discuss the roles of the extent of inaccuracy, demand distribution, and market parameters in affecting performance.

4.4.1 Profit implications of inaccurate market beliefs held by firms

Under either unilateral or bilateral deviation, the supplier can stock more, either to actively tailor to a regime change or the deviation in its market belief, or passively respond to the preorder adjustment by the retailer; i.e., circumstances exist in which $q_{s}^{t}>q_{s}^{u u}, t=b b, u b, b u$. Recall that the supplier's stock level determines system inventory availability. Thus, system profit can improve wherever the supplier stocks more as either firm holds an inaccurate market belief.

Table 1. Conditions for firms to benefit from inaccurate market beliefs

Status	Supplier benefits	Retailer benefits	Both firms benefit	
Bilateral deviation	$w_{1,1}<w_{1}<\max \left\{w_{1}^{b b}, w_{2}\right\}$	$\begin{gathered} w_{2}<2 c \& w_{1}>\max \left\{w_{1}^{b b}, w_{1,2}\right\} \\ \\| w_{1}^{b b}<w_{1}<\max \left\{w_{1,2}, w_{2}\right\} \\ \hline \end{gathered}$	$w_{1}^{b b}<w_{1}<\min \left\{w_{1,2}, w_{2}\right\}$	
Unilateral deviation by the supplier $b u$	$w_{1}^{u u}<w_{1}<\min \left\{w_{1}^{b u}, \frac{c p}{2 w_{2}-p}\right\}$	$w_{2}<2 c \& w_{1}>w_{1}^{b u}$	NA	
Unilateral deviation by the retailer $u b$	$\begin{gathered} w_{1}<\min \left\{w_{1,3}, w_{1,4}\right\} \\ \\| w_{1,3}<w_{1}<\max \left\{w_{1}^{w b}, w_{2}\right\} \end{gathered}$	NA	NA	

Notes. $w_{1}^{t}, t=b b, b u, u b$ are defined in Proposition 1, $w_{1,1}$ and $w_{1,2}$ are defined in Proposition 2, and $w_{1,3}$ and $w_{1,4}$ are defined in Proposition 4.

Table 1 summarizes the conditions for either one or both firms to benefit from deviating in market beliefs. As both firms hold inaccurate market beliefs, they may change decision regime to shift full inventory responsibility from the retailer to the supplier. Such a regime change benefits the retailer but hurts the supplier. In the situations where the firms adhere to the decision regime as that
when they hold accurate market beliefs, inaccurate market beliefs lead them to adjust preorder and stock level, producing mixed consequences for their profits. As the firms adhere to the Pull regime, the stock adjustment by the supplier can benefit the retailer, although it harms the supplier itself. As the firms adhere to the Push regime, an increased preorder by the retailer benefits the supplier, while the retailer suffers a profit loss from its suboptimal decision. As the firms adhere to the PAB regime and share inventory responsibility, the supplier benefits from an increased preorder by the retailer, while the retailer can, despite an increase in preorder, profit from higher stock availability at the supplier. Thus, bilateral deviation can benefit both firms.

Unilateral deviation by a firm never results in profit improvements for both firms. However, the system can be insulated from the impacts of the inaccurate market belief held by the deviating firm. This occurs when the deviating firm is the supplier (retailer) and the firms adhere to the Push (Pull) regime. In the case where the firms adhere to a regime where the deviating firm has inventory responsibility, this particular firm suffers a profit loss from its suboptimal decisions, while the other firm can freeride on its quantity adjustment to reap a profit gain. In the case where unilaterally holding an inaccurate market belief by a firm leads to a change in decision regime, the other firm can be better off when the regime change causes it to shake off inventory responsibility but largely suffers a profit loss otherwise. Such a regime change generally causes the profit for the deviating firm to decrease. An exception occurs to the supplier when its unilateral deviation causes a decisionregime change that results in the retailer preordering more to share overstocking risk, enabling the supplier to reap a profit gain.

Proposition 5 further states the effects of holding an inaccurate belief on the profit for a firm, given that the other firm holds an inaccurate market belief.

Proposition 5.

1) Given that the supplier holds an inaccurate belief, holding an inaccurate belief by the retailer is inconsequential to its profit when $w_{1}>\max \left\{w_{1}^{b u}, w_{1}^{b b}\right\}$ but undermines its profit otherwise.
2) Given that the retailer holds an inaccurate belief, holding an inaccurate belief by the supplier is inconsequential to its profit when $w_{1} \leq \min \left\{w_{1}^{u b}, w_{1}^{b b}\right\}$ but undermines its profit otherwise.

Hence, given that the other firm holds an inaccurate market belief, a firm never benefits from holding an inaccurate belief. In the situation where system inventory is controlled by its deviating partner, inaccurate market belief is inconsequential to the profit for a firm. Otherwise, holding an inaccurate market belief undermines the profit for a firm by distorting its decisions. Recall that, as the retailer has an accurate market belief, the supplier can benefit from its inaccurate market belief by shifting inventory responsibility to the retailer. However, when the retailer holds an inaccurate belief, the profit for the supplier never increases once it holds an inaccurate market belief as well.

4.4.2 Effects of inaccuracy in market belief

We examine the robustness of the key insights to the inaccuracy in firms' beliefs. Let firm $i=s, r$ make decisions as if market demand follows a uniform distribution on $\left[\mu-\sigma_{i}, \mu+\sigma_{i}\right]$ with $\sigma_{i}>\sigma$, while the true distribution is uniform $[\mu-\sigma, \mu+\sigma]$. That is, a deviating firm now perceives demand to be more variable than it actually is. We find that, for a given status of market beliefs by the firms, the pattern for their adoption of decision regime is similar to that shown in Proposition 1, while the relative positions of the various thresholds that delimit decision regimes alter. With threshold $w_{1}^{u u}$ as benchmark, $w_{1}^{b b}>w_{1}^{u u}$ when $w_{1}>w_{2}$ and $w_{1}^{b b}=w_{1}^{u u}$ when $w_{1} \leq w_{2}$; thus, bilateral deviation can result in the retailer (supplier) more (less) likely assuming full inventory responsibility. Under unilateral deviation, $w_{1}^{b u}>w_{1}^{u u}$ when at-once price is low and $w_{1}^{b u}<w_{1}^{u u}$ otherwise, but $w_{1}^{u b}<$ $w_{1}^{u u}$ when at-once price is low and $w_{1}^{u b}<w_{1}^{u u}$ otherwise. Thus, the firm who unilaterally holds an inaccurate belief shakes off (assume) inventory responsibility at low (high) at-once prices. All these are in stark contrast to the counterpart results when a deviating firm perceives the demand to be less variable, as done in the main analysis.

The differences in the relative positions of threshold curves as the firms hold diverse market beliefs have critical consequences. In the situation where holding inaccurate market beliefs by either one or both firms leads to a change in decision regime, the firms reallocate inventory responsibility in a fashion that contrasts with what they would do when they perceive demand to be less variable. The firm who would shake off inventory responsibility in the situation where firms perceive demand to be less variable now has to assume more inventory responsibility. Moreover, as the firms, under either unilateral or bilateral deviation, adhere to the same decision regime as that when they both hold accurate market beliefs, their policies for quantity adjustments differ from those when they perceive demand to be less variable. Specifically, a low overstocking cost relative to understocking cost now causes a deviating firm to stock more, while it would cause a deviating firm to stock less when it perceives demand to be less variable.

Nevertheless, the key insights from the main analysis remain intact. Bilateral deviation can benefit either one or both firms. Unilateral deviation by a firm can benefit the other firm, either by causing a decision-regime change that relieves its inventory responsibility or by enhancing inventory availability through quantity adjustments. Unilateral deviation by the supplier can benefit itself, but the retailer never benefits from its unilateral deviation. Moreover, unilateral deviation by a firm can be inconsequential when the firms adhere to a decision regime where the non-deviating firm holds inventory responsibility. However, the specific circumstances where firms profit from inaccurate market beliefs alter. For instance, both firms can now benefit from bilateral deviation as they adhere to PAB when at-once price is high and preorder price is medium, while the supplier can benefit from
its unilateral deviation when it causes the firms to switch decision regime at low at-once prices. In the situations where a firm could be better off as the other firm perceives demand to be less variable, it can be worse off as the other firm perceives demand to be more variable and adopts a different policy for quantity adjustment.

4.4.3 Demand distribution

Our analysis so far is premised on the assumption that demand uncertainty follows a uniform distribution. This distribution warrants tractability and yields closed-form quantity decisions and profits, leading to a comparative study. We have tried normal distribution as an alternative, i.e., Z follows $N\left(\mu, \sigma^{2}\right)$, where μ is demand mean and σ is demand spread. Given status t of firms' market beliefs, the pattern for their decision regime resembles the one shown in Figure 2. In prior literature, [3] studies a setting that is similar to ours. Assuming random demand follows a normal distribution and firms' beliefs are accurate, [3] presents a pattern for the adoption of decision regime that is close to the one shown in Figure 2 where thresholds $w_{1}=w_{1}^{u u}$ and $w_{1}=w_{2}$ divide the space to sustain various decision regimes. [3] uses extensive numerical studies to explore profit performance since quantity decisions are defined implicitly. This also applies to our setting, where a complete analysis based on normal distribution is hard to proceed. We perform numerical experiments to study firms' profits under either unilateral or bilateral deviation. The results closely resemble those based on the theoretical exploration under a uniform distribution. The main insights into the effects of holding inaccurate market beliefs on firms' profit performance remain intact.

4.4.4 Remarks on service level

Next, we comment on the impacts of low service levels, i.e., $k \leq 0.5$. In this case, the relative position of $w_{1}^{u u}$ and $w_{1}^{b b}$ is the same as that at high service levels, while $w_{1}^{u b}>w_{1}^{u u}$ and $w_{1}^{b u}<c$ always hold. Thus, the effects of bilateral deviation remain the same as those shown in the main analysis. Unilateral deviation by the supplier causes the firms to engage in either a Pull regime ($w_{1} \geq w_{2}$) or a PAB regime ($w_{1}<w_{2}$). It always undermines the profit for the supplier, while it may improve the profit for the retailer at a low at-once price, in which case, the supplier stocks more or the retailer assumes less inventory responsibility. Unilateral deviation by the retailer causes the firms to more (less) likely to engage in a Push (Pull/PAB) regime. It is largely inconsequential to firms' profit performance, and, when it triggers a change in decision regime or an adjustment in quantity decision, the supplier is better off while the retailer is worse off.

4.4.5 Wholesale pricing

Recall that preorder price (w_{1}) and at-once price (w_{2}) intricately interplay to influence the decision regime adopted by firms to allocate inventory responsibility. Table 1 presents the conditions needed for firms to benefit from inaccurate market beliefs. The wholesale prices stated in the conditions do
not assume extreme values, shedding light on the reasonable ranges of contract parameters under which inaccurate market beliefs cause firms to reallocate inventory responsibility and benefit their profits. In reality, as firms adopt a two-order arrangement, at-once price is often higher than preorder price to encourage the sharing of inventory responsibility. Our results indicate that, when preorder price is not too low, such sharing of inventory responsibility is stable even as both firms hold diverse beliefs about market demand. Moreover, bilateral deviation benefits the supplier, while it can make the retailer better off as well when at-once price is medium. Unilateral deviation by the supplier can benefit the retailer when preorder price is medium, while that by the retailer can largely benefit the supplier. Nevertheless, the only firm who holds an inaccurate belief always suffers a profit loss.

As the firms stipulate a low preorder price, the status of market beliefs has intricate impacts. The decision regime remains stable under bilateral deviation provided at-once price is not too high. However, it results in quantity adjustments that undermine the profits for both firms. Unilateral deviation by the supplier can have the retailer (supplier) assume more responsibility when at-once price is high (low), which can benefit the other firm. Provided at-once price is not too low, unilateral deviation by the retailer can shift more inventory responsibility to the supplier, who may, however, profit from the regime change, while the retailer is always worse off. Thus, at a low preorder price, the supplier can benefit from unilateral deviation by either firm when at-once price is medium high.

Furthermore, we can show that, when authorized the right to manage wholesale prices and allocate inventory responsibility, the supplier would set the wholesale prices at $w_{1}=w_{2}=p$ to induce a Pull/PAB regime and make the most from each unit of sales, while the retailer would set preorder price at $w_{1}=c$ to maintain a Push regime. All this is irrespective of the status of firms' market beliefs. Hence, a firm has an incentive to manage wholesale prices in a fashion that grants itself inventory control. At $w_{1}=w_{2}=p$, the supplier suffers a profit loss by holding an inaccurate market belief unilaterally (Proposition 3) but is unaffected as both firms hold inaccurate market beliefs (Proposition 2), whereas the retailer always suffers a profit loss as the supplier holds an inaccurate market belief. At a preorder price $w_{1}=c$, the retailer always suffers a loss by holding an inaccurate market belief (Propositions 2 and 4), which can, however, benefit the supplier.

5. Concluding Remarks

We have studied a two-tier supply chain setting, in which a two-wholesale-price contract governs the interaction between the supplier and retailer. Demand variability, as perceived by a firm, can be different from what it actually is. We show that holding inaccurate market beliefs can cause firms to change the decision regime (Push, Pull or PAB) from that when their market beliefs are accurate. Even when they adhere to a pattern for the allocation of inventory responsibility, inaccurate market beliefs can cause the firms to adjust quantity decisions. This has intricate impacts on their profits.

Bilateral deviation, in which case both firms hold inaccurate market beliefs, can increase the profits for either an individual firm or both firms. Unilateral deviation, in which case only a firm holds an inaccurate market belief, can benefit the firm holding an accurate belief, while the supplier can profit from its unilateral deviation. System profit can improve as either one or both firms hold inaccurate market beliefs. These results are largely robust to the assumption about demand distribution, service level requirement, and the extent of inaccuracy in the market beliefs held by the firms.

Acknowledgement

The authors are grateful to Professor Mahesh Nagarajan, an associate editor and two anonymous referees for their comments and guidance that have significantly improved the presentation and content of the paper. This research is supported in part by National Natural Science Foundation of China (Grant \#72001115), Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant \#20KJB410006), Humanities and Social Sciences Foundation of Ministry of Education of China (Grant \#20YJC630041), and Startup Foundation for Introducing Talent of NUIST (Grant \#2019r067).

References

[1] Ancarani, A., C. D. Mauro, D. D'Urso, Diego. 2016. Measuring overconfidence in inventory management decisions. Journal of Purchasing \& Supply Management 22(2): 171-180.
[2] Cachon, G. 2004. The allocation of inventory risk in a supply chain: Push, Pull, and AdvancePurchase Discount contracts. Management Science 50(2): 222-238.
[3] Dong, L., K. Zhu. 2007. Two-wholesale-price contracts: Push, Pull, and Advance- Purchase Discount contracts. Manufacturing \& Service Operations Management 9(3): 291-311.
[4] Donohue, K., Ö. Özer, Y. Zheng. 2019. Behavioral operations: past, present, and future. Manufacturing \& Service Operations Management. Forthcoming
[5] Iyer, A., M. Bergen. 1997. Quick response in manufacturer-retailer channels. Management Science 43(4): 559-570.
[6] Jiang L. Z. Hao. 2014. Alleviating supplier's capital restriction by two-order arrangement. Operations Research Letters 42 444-449.
[7] Lariviere, M., E. Porteus. 2001. Selling to the newsvendor: An analysis of price-only contracts. Manufacturing \& Service Operations Management 3(4): 293-305.
[8] Li, M., N. Petruzzi, J. Zhang. 2017. Overconfident competing newsvendors. Management Science 63(8): 2637-2646.
[9] Li, M. 2018. Overconfident distribution channels. Production and Operations Management 28(6): 1347-1365.
[10] Özer, Ö., W. Wei. 2006. Strategic commitments for an optimal capacity decision under asymmetric forecast information. Management Science 52(8): 1238-1257.
[11] Perakis, G., G. Roels. 2007. The price of anarchy in supply chains: Quantifying the efficiency of price-only contracts. Management Science 53(8): 1249-1268.
[12] Ren Y., R. Croson. 2013. Overconfidence in newsvendor orders: An experimental study. Management Science 59(11): 2502-2517.

