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Energy and Reserve Dispatch with

Distributionally Robust Joint Chance Constraints

CHRISTOS ORDOUDIS, VIET ANH NGUYEN, DANIEL KUHN, PIERRE PINSON

Abstract. We develop a two-stage stochastic program for energy and reserve dispatch, which ensures the

safe operation of a power system with a high penetration of renewables and a strong interdependence with the

natural gas system. Distributionally robust joint chance constraints with Wasserstein ambiguity sets ensure

that there is no need for load shedding and renewable spillage with high probability under any distribution

compatible with the given statistical data. To make this problem tractable, we solve it in linear decision

rules, and we develop a family of conditional value-at-risk (CVaR) approximations for the chance constraints.

We show through extensive simulations that the proposed model dominates the corresponding two-stage

stochastic program without chance constraints that models the consequences of load shedding and renewable

spillage explicitly, both in terms of the mean and variability of the out-of-sample cost.

1. Introduction

The increased deployment of renewable energy sources such as wind or solar power and tidal energy has

dramatically changed the electricity generation mix. While conducive to sustainability, renewable energy

sources impair the stability of the transmission system because of their intermittency and limited predictabil-

ity [29]. Therefore, flexible gas-fired power plants (GFPPs) are widely built to replace retiring thermal or

nuclear power plants with the aim to balance the unsteady renewable generation. Thus, a tighter coupling

of electricity and natural gas systems is foreseeable [30]. This perspective prompts us to study both systems

simultaneously.

In the presence of uncertain renewable energy sources the day-ahead dispatch may not be implementable

if the actual renewable production deviates from its forecast. In this case, the conventional power plants need

to adjust their production levels in real time. If—in some extreme scenarios—these plants are not flexible

enough to restore the integrity of the transmission system, then renewable spillage or load shedding may

become necessary. However, such drastic measures incur high economic costs.

The energy and reserve dispatch problem can be addressed with methods from robust optimization [3],

stochastic programming [27] and chance-constrained programming [24]. Robust optimization models minimize

the cost of the day-ahead dispatch and the corrective recourse actions under the worst-case realization of the

renewable forecast error within a prescribed uncertainty set [4, 38]. However, the focus on worst-case scenarios

and the necessity to solve larger problem instances in linear decision rules may result in over-conservative

solutions. Stochastic programming models, on the other hand, minimize the expected cost under a prescribed

discrete distribution [23, 21], but their solutions may display poor out-of-sample performance unless the

number of discretization points grows exponentially with the problem dimensions. Finally, chance-constrained

programming models do not account for renewable spillage and load shedding but ensure that the system

remains stable with high probability in the absence of these drastic recourse measures [5, 18, 25].

In this paper we formulate the energy and reserve dispatch problem as a data-driven distributionally ro-

bust chance-constrained program over a Wasserstein ambiguity set, that is, a ball in the space of probability

distributions with respect to the type-1 Wasserstein metric centered at the empirical distribution on a given
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training dataset [20]. While minimizing the worst-case expected cost, our model prevents violations of the

reserve margins and enforces the transmission capacity limits of the electricity and gas networks through

distributionally robust joint chance constraints. This means that the underlying classical chance constraints

are enforced for all distributions in the ambiguity set. Distributionally robust optimization combines the

specificity of stochastic programming (by modeling uncertainty via probability distributions) with the con-

servatism of robust optimization (by hedging against distributional uncertainty). The proposed approach

acknowledges that the available statistical data can often be explained by many different distributions and

mitigates the overfitting effects characteristic for classical stochastic programs based on a single distribution,

which is invariably corrupted by estimation errors.

Most distributionally robust energy models in the extant literature are based on moment ambiguity sets [9],

which contain all distributions that share the same mean vector and covariance matrix or satisfy a set of

generalized moment constraints [1, 32, 35, 34, 36, 2]. Distributionally robust individual chance constraints are

studied in [2, 36], while two-sided chance constraints are addressed in [34]. Genuine joint chance constraints

enforce simultaneous satisfaction of multiple safety conditions with high probability. They are more expressive

and less conservative than multiple individual chance constraints. For instance, an operating regime under

which the risk of overloading any of 100 transmission lines is at most 1% (joint chance constraint) is preferable

to a regime under which each transmission line has an overloading risk of at most 1% (100 individual chance

constraints). Indeed, in the latter case the risk of overloading any line can be as high as 100%. Unfortunately,

joint chance constraints are less computationally tractable than individual chance constraints. Tractable

conservative approximations are obtained by using Bonferroni’s inequality to decompose the joint chance

constraint into several individual chance constraints or by replacing the non-convex joint chance constraint

with a convex conditional value-at-risk (CVaR) constraint [22]. For distributionally robust joint chance

constraints with mean covariance ambiguity sets the best CVaR approximation is exact, but identifying this

best approximation remains hard [39]. Exact tractable reformulations are only available for a restrictive class

of moment ambiguity sets involving first-order dispersion measures [14].

Distributionally robust joint chance-constrained programs over Wasserstein ambiguity sets are NP-hard,

but they admit an exact mixed-integer conic reformulation if the decision variables and uncertain parameters

are separable [7, 33, 15]. A tractable robust approximation is proposed in [11].

The contributions of this paper are summarized as follows:

(1) We formulate a two-stage stochastic program for energy and reserve dispatch with fuel constraints

for the GFPPs. Distributionally robust joint chance constraints with Wasserstein ambiguity sets

ensure that there is no need for load shedding and renewable spillage with high probability. To

make this problem tractable, we solve it in linear decision rules, and we develop a family of CVaR

approximations for the chance constraints. We also devise a sequential convex optimization algorithm

for tuning the CVaR approximation.

(2) We develop a simulation environment based on a real-time optimal power flow model with load

shedding and renewable spillage that enables us to assess the out-of-sample performance of different

day-ahead dispatch policies.

(3) We show through numerical simulations that the proposed CVaR approximation Pareto dominates

the Bonferroni approximation in terms of the out-of-sample cost and the chance constraints’ empirical

violation probability. We also show that the proposed model is preferable to a two-stage stochastic

program without chance constraints that models load shedding and renewable spillage explicitly, both

in view of the mean and variability of the out-of-sample cost.

Our results suggest that in order to minimize the out-of-sample costs, it may be better to solve a distri-

butionally robust chance constrained program than a (seemingly more realistic) two-stage distributionally

robust optimization problem. This may be surprising because the chance constraint program ignores all low-

probability scenarios in which the stability of the power system can only be maintained by costly recourse

actions such as load shedding and renewable spillage, whereas the two-stage problem accounts for all possible
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scenarios and truthfully models the necessary recourse actions as well as their costs. We believe that the

inferior out-of-sample performance of the operating policy obtained from the two-stage problem originates

from the significant loss of optimality incurred by the state-of-the-art decision rule approximations that are

needed to solve the two-stage problem efficiently. Thus, there is merit in ignoring low-probability scenarios

triggering expensive recourse actions that invariably incur large approximation errors in a two-stage model.

This key insight of our paper may serve as a possible explanation for the popularity of chance constrained

energy models, which are often used ad hoc without rigorous justification.

The paper is structured as follows. Section 2 introduces a chance-constrained energy and reserve dispatch

model, which is robustified against distributional uncertainty in Section 3. Section 4 develops efficient ap-

proximation schemes for the distributionally robust model under the Wasserstein ambiguity set. Numerical

results are reported in Section 5.

Notation. We use e to denote the vector of ones. For a logical expression E , the indicator function IE
evaluates to 1 if E is true and to 0 otherwise. The Conditional Value-at-Risk (CVaR) at level ε ∈ (0, 1) of

a measurable loss function `(ξ) depending on a random vector ξ governed by a distribution P is defined as

P-CVaRε(`(ξ)) , infτ
{
τ + 1

εEP[max{0, `(ξ)− τ}]
}

.

2. Model Formulation

We consider a power system consisting of B buses, L transmission lines, W wind farms, G generators and

D demand centers, augmented with P gas pipelines. Each transmission line connects a pair of buses, while

each wind farm, generator and demand center is attached to exactly one bus. Each GFPP is served by exactly

one gas pipeline. Adopting a DC power flow approximation [8], we denote by Qw ∈ RL×W , Qg ∈ RL×G and

Qd ∈ RL×D the matrices of power transfer distribution factors. Thus, Qw
lw and Qg

lg denote the increase in

the power flow on line l per unit of power generated by wind farm w and generator g, respectively. Similarly,

Qd
ld quantifies the decrease in the power flow on line l per unit of power extracted at demand center d. We

denote by Φ ∈ RP×G+ the matrix of gas transfer distribution factors. Thus, Φpg stands for the increase in the

gas flow through pipeline p per unit of power produced by generator g. Specifically, we have Φpg = 0 if g

is not a GFPP. All information about the topology and physical properties of the gas and power system is

hidden in the transfer distribution factors; see [8, 37].

The power output of the wind farms is modeled as C(µ + ξ), where C ∈ RW×W+ is the diagonal matrix

of the wind farm capacities, µ ∈ RW , 0 ≤ µ ≤ e, is the relative power output predicted at stage 1, and

ξ ∈ RW , −µ ≤ ξ ≤ e − µ, is the uncertain deviation from µ, which is revealed at stage 2. We assume that

ξ follows a distribution P centered around 0. Without much loss of generality, we assume that the power

consumption d ∈ RD+ at the demand centers is known at stage 1. The operating decisions for the generators

are taken in two stages. At stage 1, the day-ahead dispatch y1 ∈ RG+ as well as the upward and downward

reserve margins r+, r− ∈ RG+ are chosen for each generator. Upon observation of ξ at stage 2, the real-time

adjustments y2(ξ) ∈ RG to the power production are chosen with the aim to ensure—with high probability—

the integrity of the transmission system while respecting the generator capacities. This energy and reserve

dispatch problem gives rise to the following two-stage stochastic program.

min
y1,y2( · ),r+,r−

c>y1 + c>+r+ + c>−r− + EP[c>y2(ξ)] (1a)

s. t. 0 ≤ r+ ≤ r, 0 ≤ r− ≤ r (1b)

y ≤ y1 − r−, y1 + r+ ≤ y (1c)

e>C (µ+ ξ) + e> (y1 + y2(ξ)) = e>d P-a.s. (1d)

P[−r− ≤ y2(ξ) ≤ r+] ≥ 1− εgen (1e)

P[−f ≤ Qg(y1 + y2(ξ)) +QwC(µ+ ξ)−Qdd ≤ f ] ≥ 1− εgrid (1f)

P[0 ≤ Φ(y1 + y2(ξ)) ≤ q] ≥ 1− εgas (1g)
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The objective function (1a) reflects the expected operating costs, where c ∈ RG+ captures the variable

costs of the generators, and c+, c− ∈ RG+ represent the costs of reserving capacity to balance the system

in real time [21]. The constraints (1b) limit the (positive and negative) reserve capacity procurements up

to the prescribed maximum r ∈ RG+, while (1c) ensures that the day-ahead energy and reserve dispatch

obey the production limits y, y ∈ RG+ of the generators. The almost sure constraint (1d) requires that total

production matches total demand with probability 1, while the chance constraints (1e)-(1g) ensure that

the real-time adjustments to the power output obey the chosen reserve capacities, the power flows respect

the capacity limits f ∈ RL+ of the transmission lines, and the power outputs of the GFPPs are limited by

the maximum delivery rates q ∈ RP+ of the natural gas pipelines, respectively. The prescribed violation

probabilities εgen, εgrid, εgas ∈ (0, 1) reflect the risk attitude of the decision maker.

The stochastic program (1) is intractable because it constitutes an infinite-dimensional optimization prob-

lem. To mitigate its complexity, it has been proposed to approximate the functional recourse decisions y2(ξ)

by linear decision rules of the form y2(ξ) = Y ξ for some finite-dimensional coefficient matrix Y ∈ RG×W [3,

§ 14]. In the context of chance constrained optimal power flow problems, linear decision rules have been used

in [34] and [36]. The stochastic program (1) can thus be approximated by the linear decision rule problem

min
y1,Y,r+,r−

c>y1 + c>+r+ + c>−r− + EP[c>Y ξ] (2a)

s. t. Constraints (1b)–(1c)

e>y1 + e>Cµ = e>d, e>Y + e>C = 0 (2d)

P[−r− ≤ Y ξ ≤ r+] ≥ 1− εgen (2e)

P[−f ≤ (Qgy1 +QwCµ−Qdd) + (QgY +QwC)ξ ≤ f ] ≥ 1− εgrid (2f)

P[0 ≤ Φ(y1 + Y ξ) ≤ q] ≥ 1− εgas, (2g)

where (2d) is obtained by matching the zero- and first-order coefficients of ξ on both sides of (1d), which is

allowed because the support of ξ spans RW [16, § 2.2]. For ease of exposition, we denote by x , (y1, r+, r−) ∈
R3G

+ the collection of all first-stage decisions and by cx , (c, c+, c−) ∈ R3G
+ the corresponding aggregate cost

vector. Using this notation, problem (2) can be represented more compactly as

min
(x,Y )∈Θ

c>x x+ EP[c>Y ξ] (3a)

s. t. P
[
Aj(Y )ξ ≤ bj(x)

]
≥ 1− εj ∀j ∈ J , (3b)

where Θ stands for the set of all (x, Y ) ∈ R3G
+ × RG×W satisfying (1b), (1c) and (2d). The joint chance

constraint (3b) is indexed by j ∈ J , {gen, grid, gas} and thus encodes the capacity constraints (2e) through

Agen(Y ) ,

[
Y

−Y

]
, bgen(x) ,

[
r+

−r−

]
,

the line capacity constraints (2f) through

Agrid(Y ) ,

[
QgY +QwC

−QgY −QwC

]
, bgrid(x) ,

[
f −QwCµ+Qdd−Qgy1

f +QwCµ−Qdd+Qgy1

]
,

and the pipeline capacity constraints (2g) through

Agas(Y ) ,

[
ΦY

−ΦY

]
, bgas(x) ,

[
q − Φy1

Φy1

]
.

In spite of the decision rule approximation, problem (3) remains intractable. In fact, only checking feasi-

bility of the chance constraint (3b) is already #P-hard even if ξ follows a uniform distribution on a box [12].

Moreover, the distribution P, which is needed to evaluate both the expectation in (3a) and the probabilities

in (3b), is not even observable in practice but must be inferred from data. Unfortunately, the available data

is often scarce, and the procurement of additional samples is either infeasible or expensive. Indeed, any
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wind power time series is invariably restricted to the service life of the corresponding wind farm. However,

if problem (3) is fitted to a small training dataset, and the resulting optimal decisions are evaluated on a

(different) test dataset, then the test performance is often disappointing, even if the training and test datasets

are governed by the same (unknown) distribution P [20].

3. Data-driven Distributionally Robust Optimization

Assume now that the decision maker is ignorant of P but has access to finitely many training samples ξ̂i,

i ≤ N , drawn independently from P (a wind power time series). As P is unknown, a fundamental input of

problem (3) is thus lacking. A näıve remedy would be to replace the unknown P with the discrete empirical

distribution P̂N , that is, the uniform distribution on the (known) training samples. This amounts to solving

the sample average approximation of problem (3), which is prone to yield biased decisions that perform poorly

in out-of-sample tests for small sample sizes N . Hence, it makes sense to reformulate (3) as a distributionally

robust optimization problem that hedges against all distributions in a neighborhood of P̂N with respect to

the Wasserstein metric.

Definition 1 (Wasserstein metric). The type-1 Wasserstein distance between two distributions P1 and P2

on RW is defined as

W(P1,P2) , min
Π

{∫

RW×RW

‖ξ1 − ξ2‖Π(d ξ1,d ξ2) :
Π is a distribution on RW × RW

with marginals P1 and P2, respectively

}
.

The Wasserstein distance between P1 and P2 can be viewed as the cost of an optimal mass transportation

plan Π that minimizes the cost of moving P1 to P2, where ‖ξ1−ξ2‖ is the cost of moving a unit mass from ξ1 to

ξ2. In the following we denote byM(Ξ) the set of all distributions on the polyhedron Ξ = {ξ ∈ RW : Hξ ≤ h},
where H = [I − I]> and h = [(e− µ)> µ>]>, and we define the ambiguity set

P ,
{
P ∈M(Ξ) : W(P, P̂N ) ≤ ρ

}

as the family of all distributions on Ξ that have a Wasserstein distance of at most ρ ≥ 0 from the empirical

distribution P̂N . The hope is that, for a judiciously chosen radius ρ, the ambiguity set P contains the

unknown true distribution with high confidence. Following [20], we can then recast (3) as a distributionally

robust optimization problem of the form

min
(x,Y )∈Θ

c>x x+ max
P∈P

EP[c>Y ξ] (4a)

s. t. min
P∈P

P
[
Aj(Y )ξ ≤ bj(x)

]
≥ 1− εj ∀j ∈ J , (4b)

which minimizes the worst-case expected operating costs and requires that the joint chance constraints are

satisfied for all distributions in the ambiguity set P. If the true distribution belongs to P, then the optimal

value of (4) overestimates the true expected cost of the optimal decisions. Moreover, the optimal decisions

satisfy the true chance constraints. Modelling the ambiguity set as a Wasserstein ball in the space of distri-

butions has several benefits that may appeal to decision makers, i.e., it provides rigorous finite-sample and

asymptotic consistency guarantees and offers computational tractability [20, § 2].

It is known that the empirical distribution P̂N converges in Wasserstein metric (and thus also weakly)

to the unknown true distribution as N tends to infinity. One can thus show that for any given significance

level β ∈ (0, 1) there is a sequence ρN (β) ≥ 0, N ∈ N, that converges to 0 such that the Wasserstein ball

of radius ρN (β) around P̂N contains the unknown true distribution with confidence 1 − β for every N [20,

Theorem 3.4]. In practice, the best Wasserstein radius for a given sample size is determined in a data-driven

manner, e.g., via cross validation; see Section 5. Moreover, the distributionally robust chance constrained

program (4) admits several tractable conservative approximations.
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4. Tractable Approximations

The distributionally robust chance constrained program (4) is still hard. Indeed, for ρ = 0 it reduces to

a classical chance constrained program under the discrete empirical distribution. Such problems are known

to be NP-hard even in the simplest settings [19, Theorem 1]. Leveraging results from [20], we now derive

tractable conservative approximations for (4). In Section 4.1 we first discuss an exact reformulation for the

objective function (4a). In Sections 4.2 and 4.3 we then provide two conservative approximations for the

feasible set

ΩCC ,

{
(x, Y ) : min

P∈P
P [A(Y )ξ ≤ b(x)] ≥ 1− ε

}

of a generic joint chance constraint of the form (4b), where the superscript j is omitted to avoid clutter. In

Section 4.4 we finally assess the computational tractability of the two approaches.

4.1. Reformulation of the Objective Function

Evaluating the objective function (4a) for a fixed Y ∈ RG×W necessitates the solution of a worst-case

expectation problem of a linear function in ξ over the Wasserstein ball P. By [20, Corollary 5.1] this problem

is equivalent to the conic program

max
P∈P

EP[c>Y ξ] =





min
λo,so,γo

λoρ+ 1
N

∑N
i=1 s

o
i

s. t. c>Y ξ̂i + γoi
>(h−Hξ̂i) ≤ soi ∀i ≤ N

‖H>γoi − Y >c‖∗ ≤ λo ∀i ≤ N
γoi ∈ R2W

+ ∀i ≤ N
λo ∈ R+, s

o ∈ RN ,

where ‖ · ‖∗ stands for the dual norm of ‖ · ‖.

4.2. Combined Bonferroni and CVaR Approximation

If the joint chance constraint involves K linear inequalities, we can decompose the matrix A(Y ) and the

vector b(x) as

A(Y ) =
[
a1(Y ) · · · aK(Y )

]>
, b(x) =

[
b1(x) · · · bK(x)

]>
.

The joint chance constraint is thus equivalent to

min
P∈P

P
[
ak(Y )>ξ ≤ bk(x) ∀k ≤ K

]
≥ 1− ε. (5)

Given a set of individual violation tolerances εk ≥ 0, k ≤ K, with
∑K
k=1 εk = ε, one can exploit Bonferroni’s

inequality to split the original joint chance constraint up into a family of K simpler but more conservative

individual chance constraints. This amounts to approximating the feasible set ΩCC by

ΩB ,

{
(x, Y ) : min

P∈P
P
[
ak(Y )>ξ ≤ bk(x)

]
≥ 1− εk ∀k ≤ K

}
.

Bonferroni’s inequality implies that ΩB ⊆ ΩCC, see [24, § 6.1]. Optimizing over ΩB remains hard even for

ρ = 0, which prompts us to approximate the individual worst-case chance constraints by worst-case CVaR

constraints. Thus, ΩB is conservatively approximated by

ΩBC ,
{

(x, Y ) : max
P∈P

P- CVaRεk

[
ak(Y )>ξ − bk(x)

]
≤ 0 ∀k ≤ K

}
.

One can show that ΩBC constitutes the best convex inner approximation of ΩB in a sense made precise in [22],

and thus ΩBC ⊆ ΩB. Moreover, we have ΩBC = ΩB if εk ≤ N−1 for all k ≤ K [7, Corollary 2]. The following

proposition further guarantees that optimizing over ΩBC is easy.
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Proposition 1. The set ΩBC admits the conic reformulation

ΩBC ,





(x, Y ) ∈ R3G × RG×W :

λkρ+N−1
∑N
i=1 sik ≤ 0 ∀k ≤ K

τk ≤ sik ∀i ≤ N, k ≤ K
ak(Y )>ξ̂i − bk(x) + (εk − 1)τk + εkγ

>
ik(h−Hξ̂i) ≤ εksik ∀i ≤ N, k ≤ K

‖εkH>γik − ak(Y )‖∗ ≤ εkλk ∀i ≤ N, k ≤ K
γik ∈ R2W

+ ∀i ≤ N, k ≤ K
τ ∈ RK , λ ∈ RK , s ∈ RN×K





.

4.3. Optimized CVaR Approximation

The Bonferroni approximation is inadequate when the sets of violating wind power scenarios for different

individual chance constraints in ΩB have significant overlap [6]. In this case, one may convert the original

(linear) joint chance constraint to an equivalent (nonlinear) individual chance constraint before deploying the

CVaR approximation [6, 39]. To do so, denote by ∆++ , {δ ∈ RK++ : e>δ = 1} the relative interior of the

probability simplex, and note that (5) is equivalent to

min
P∈P

P
[
max
k≤K

{
δk
[
ak(Y )>ξ − bk(x)

]}
≤ 0

]
≥ 1− ε (6)

for any fixed δ ∈ ∆++. Note that the overall scale of δ is immaterial, and thus the normalization e>δ = 1 does

not restrict generality. Note also that (6) constitutes a distributionally robust individual chance constraint,

which is immediately susceptible to the CVaR approximation. To see this, denote by

Rδ(x, Y ) , max
P∈P

P- CVaRε

[
max
k≤K

{
δk
[
ak(Y )>ξ − bk(x)

]}]

the worst-case CVaR function, and define

ΩC(δ) , {(x, Y ) : Rδ(x, Y ) ≤ 0} .
As in Section 4.2, one can show that ΩC(δ) ⊆ ΩCC for every δ ∈ ∆++ [22]. We emphasize that ΩC(δ) depends

nontrivially on δ even though the worst-case probability on the left hand side of (6) is manifestly constant in

δ. Hence, δ constitutes a vector of scaling parameters that can be tuned to optimize the quality of the CVaR

approximation. The following proposition further guarantees that Rδ(x, Y ) can be evaluated efficiently, which

implies that optimizing over ΩC(δ) is easy.

Proposition 2. For any fixed (x, Y ) ∈ R3G×RG×W and δ ∈ ∆++, the worst-case CVaR Rδ(x, Y ) coincides

with the optimal value of the conic program

inf λρ+ 1
N

∑N
i=1 si

s. t. τ ∈ R, λ ∈ R, s ∈ RN , γik ∈ R2W
+ ∀i ≤ N, k ≤ K

τ ≤ si ∀i ≤ N
δk

[
ak(Y )>ξ̂i − bk(x)

]
+ (ε− 1)τ + εγ>ik(h−Hξ̂i) ≤ εsi ∀i ≤ N, k ≤ K

‖εH>γik − δkak(Y )‖∗ ≤ ελ ∀i ≤ N, k ≤ K.

Returning to problem (4), we denote the number of inequalities in the j-th chance constraint by Kj and

define ∆j
++ as the relative interior of the Kj-dimensional probability simplex. Moreover, for any δj ∈ ∆j

++,

we denote by Rjδj (x, Y ) the worst-case CVaR function corresponding to the j-th chance constraint, j ∈ J .

The previous discussion implies that

min
(x,Y )∈Θ

c>x x+ max
P∈P

EP[c>Y ξ] (7a)

s. t. Rjδj (x, Y ) ≤ 0 ∀j ∈ J (7b)

constitutes a tractable conic program and provides an upper bound on (4) for every fixed set of scaling

parameters. In principle, the best upper bound can be found by minimizing (7) over all δj ∈ ∆j
++, j ∈ J .
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We emphasize that this best upper bound generally exceeds the optimal value of (4); see [7, § 3]. Moreover,

unfortunately, the variant of problem (7) that treats the δj as additional decision variables is nonconvex, thus

resisting efficient solution. This motivates us to devise an iterative algorithm that optimizes sequentially over

(x, Y ) and δj , j ∈ J , which is inspired by [39]. In the following we denote by η > 0 the minimum relative

improvement per iteration and by t ∈ N the maximum iteration count.

(0) Initialization. Set g0 ← +∞, t← 1, δjt ← e/Kj ∀j ∈ J .

(1) Step 1. Find a solution (xt, Yt, vt) of

gt =





min
(x,Y )∈Θ,v≥0

c>x x+ max
P∈P

EP[c>Y ξ] + Me>v

s. t. Rj
δjt

(x, Y ) ≤ vj ∀j ∈ J ,

which is a tractable conic program thanks to the results of Sections 4.1 and 4.3. If |(gt − gt−1)/gt| < η

or t ≥ t, then stop and report (xt, Yt, vt), else go to Step 2.

(2) Step 2. Find a solution δt+1 of

min
δ

{∑

j

Rjδj (xt, Yt) : δj ∈ ∆j
++ ∀j ∈ J

}
,

which is a tractable conic program by virtue of Proposition 2. Set t← t+ 1, and return to Step 1.

The sequence {gt}t∈N of objective values generated by the algorithm is non-increasing and thus guaranteed

to converge.

The auxiliary slack variables v ≥ 0 in the optimization problem of Step 1 are penalized with a big-M

constant in the objective. They ensure feasibility in case of poor initialization of the scaling parameters. If

M is chosen sufficiently large, then the algorithm is guaranteed to terminate with v = 0 and thus outputs a

decision (xt, Yt) that is feasible in (7).

4.4. Discussion

The results of this section give rise to two tractable conservative approximations for the chance constrained

program (4). Under the joint Bonferroni and CVaR approximation, the worst-case expectation in the objec-

tive function (4a) is replaced by the conic program derived in Section 4.1, while each joint chance constraint is

conservatively approximated by its corresponding Bonferroni feasible set ΩBC, which admits a conic represen-

tation by virtue of Proposition 1. This results in a single tractable conic program that can be solved efficiently

with off-the-shelf software. Under the optimized CVaR approximation, on the other hand, a feasible (and

hopefully near-optimal) solution to (4) is found by the efficient sequential convex optimization algorithm from

Section 4.3. We emphasize that all conic programs underlying the two approaches reduce to simple linear

programs if the Wasserstein metric is defined in terms of the 1-norm or the ∞-norm.

The sequential convex optimization algorithm underlying the optimized CVaR approximation enjoys several

benefits. First, it bypasses the necessity to solve a nonconvex optimization problem with bilinear terms, which

emerge in the exact reformulations of joint chance constraints derived in [20, § 5.1]. Moreover, in contrast to

the approaches proposed in [34, 7], it remains applicable even when there are K > 2 inequalities in the chance

constraint and when these inequalities involve products of decision variables and uncertain parameters.

In retrospect, we conclude that the optimized CVaR approximation from Section 4.3 is superior to the

joint Bonferroni and CVaR approximation from Section 4.2 because the feasible set ΩC(δ) involves fewer

constraints and auxiliary variables than ΩBC. Indeed, ΩBC introduces 2K + (N × K) + (N × K × 2W )

auxiliary variables and K + 4(N ×K) constraints, while ΩC(δ) creates only 2 +N + (N ×K × 2W ) auxiliary

variables and 1+N+3(N×K) constraints. The relative advantage of ΩC(δ) over ΩBC in terms of complexity

of representation becomes increasingly significant for higher dimensions N , K and W . We emphasize that the

parsimonious representation of ΩC(δ) comes at the expense of solving a sequence of conic programs. However,

as we will demonstrate through numerical experiments in Section 5, the sequential convex optimization

algorithm usually terminates after only a few iterations and outputs superior decisions.
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We highlight that the choice of the individual violation tolerances εk critically affects the performance of

the joint Bonferroni and CVaR approximation. Unfortunately, however, finding the optimal values of εk is

hard [22, Remark 2.1], and optimizing separately over the εk and the decision variables as in the algorithm of

Section 4.3 is also impractical because of bilinear terms. In the numerical experiments we thus set εk = ε/K

for all k ≤ K as recommended in [22] even though this choice is known to be conservative when ε is small or

when the inequalities in the joint chance constraint are positively correlated [39, Example 3.1].

5. Numerical Results and Concluding Remarks

We assess the quality of the two approximations described in Section 4 on an extended variant of the

IEEE 24-bus Reliability Test System [13]. The original system accommodates 24 buses, 34 transmission lines,

12 generators (6 of which are GFPPs) and 17 demand centers. For further details see [13]. We augment

this system with 6 wind farms connected to buses 1, 2, 11, 12, 12 and 16, respectively, all of which have a

capacity of 250 MW. We also add 3 gas pipelines that serve a pair of GFPPs each. The pipelines serving

the pairs {1, 2}, {3, 4} and {5, 6} have capacity 10,000 kcf, 5,500 kcf and 7,000 kcf, respectively. Under this

parameterization, the total installed wind capacity adds up to 55% of the system demand. We assume that

each generator can use at most 40% of its capacity for reserve provision (i.e., r = 0.4y) at a cost equal to 20%

of the variable production cost (i.e., c+ = c− = 0.2c).

Throughout the experiments we work with the Wasserstein metric induced by the 1-norm on RW , and

thus all arising optimization problems are equivalent to tractable linear programs. Moreover, we set H = 0

and h = 0, which amounts to approximating Ξ by RW . We have observed that this approximation greatly

accelerates the computations but has no significant impact on the results for the Wasserstein radii of interest.

Finally, we set εj = 5% for all j ∈ J .

Recall that the distribution P of the uncertain deviation ξ from the relative wind power output forecast µ

is only indirectly observable through independent and identically distributed (i.i.d.) samples from P. In our

experiments we construct µ and synthetic samples from P as in [10] using relative wind power output data

for 6 wind farms in southeastern Australia from 2012 to 2013.

We first pass the raw (percentage) data through the inverse logistic function to obtain data on the real

line and compute the corresponding sample mean µ̂ and sample covariance matrix Σ̂. We then construct

provisional datapoints in [0, 1] by applying the logistic function componentwise to N +M i.i.d. samples from

the normal distribution N (µ̂, Σ̂). Finally, we set the predicted wind power output µ to the sample average of

the first N provisional datapoints, and we construct N training samples and M test samples by subtracting

µ from the provisional datapoints. Note that the resulting training samples are asymptotically independent

for large N , while the test samples are independent conditional on the training samples.

The full input data of all numerical experiments is described in the e-component and in the online repository,

which can be found at https://github.com/nvietanh/DR_JCC. All simulations are run on a 4 core 3.4 GHz

desktop computer running Windows 8. All optimization problems are implemented in MATLAB using the

YALMIP interface [17] and solved via Gurobi 7.5.

5.1. Operation without Reoptimization

In the first experiment we assess the candidate solutions of (4) obtained with the methods from Section 4,

assuming that the system operator implements the linear decision rules without reoptimizing. To this end,

we generate N ∈ {50, 200} training samples ξ̂i, i ≤ N , and M = 103 test samples ξ̂N+i, i ≤ M , with the

procedure described above. Using the training data, we then solve (4) both with the combined Bonferroni and

CVaR approximation as well as the optimized CVaR approximation for ε = 5% and for different Wasserstein

radii ρ ∈ R+. The quality of an optimal solution x̂(ρ) and Ŷ (ρ) (which constitutes an implicit function of the

training samples) is assessed by its empirical out-of-sample cost

Ĉ(ρ) , c>x x̂(ρ) + 1
M

∑M
i=1 c

>Ŷ (ρ)ξ̂N+i

https://github.com/nvietanh/DR_JCC
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Figure 1. Pareto frontiers of the out-of-sample costs versus the out-of-sample violation

probabilities for the joint Bonferroni and CVaR (left) and optimized CVaR (right) approxi-

mations with N = 50 (top) and N = 200 (bottom).

and its empirical out-of-sample violation probabilities

V̂j(ρ) , 1
M

∑M
i=1 IA(Ŷ (ρ))ξ̂N+i>b(x̂(ρ)), j ∈ J .

Finally, all results are averaged across 100 independent simulation runs in order to increase their statistical

robustness.

Figure 1 visualizes the trade-off between the out-of-sample costs and violation probabilities under the

two approximations. Note that with increasing Wasserstein radius ρ the costs increase, while all three

violation probabilities decrease. This is expected as larger Wasserstein radii result in more conservative

solutions that dispatch more expensive generators. The curves in Figure 1 can thus be interpreted as Pareto

frontiers. Note that for sufficiently large values of ρ, both approximations can guarantee that all chance

constraints are satisfied out of sample (i.e., the empirical violation probabilities are smaller than ε = 5%).

We also observe that, as N increases, the violation probabilities for fixed ρ tend to decrease. Finally, for the

majority of all Wasserstein radii that result in sufficiently small out-of-sample violation probabilities ≤ 5%,

the optimized CVaR approximation generates lower out-of-sample costs than the combined Bonferroni and

CVaR approximation.

5.2. Operation with Reoptimization

In the second experiment we assess the candidate solutions (x̂, Ŷ ) of (4) under the premise that only the

first-stage decision x̂ = (ŷ1, r̂+, r̂−) is implemented and that the real-time adjustments y2(ξ) to the power

production are determined by solving a deterministic optimal power flow problem

min
y2,r,l,w

c>y2 + cre
>r + cle

>l + cwe
>w

s. t. 0 ≤ ŷ1 + y2 ≤ y, −(r̂− + r) ≤ y2 ≤ r̂+

e>y2 + e>(Cξ − w) + e>l = 0

−f ≤ Qg(ŷ1 + y2) +Qw(Cµ+ Cξ − w)−Qd(d− l) ≤ f
0 ≤ Φ(ŷ1 + y2) ≤ q
0 ≤ r ≤ ŷ1 − r̂−, 0 ≤ l ≤ d, 0 ≤ w ≤ C(µ+ ξ),

(8)
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which optimizes over the power adjustments y2 ∈ RG and the reserve increments r ∈ RG+ of the conventional

generators, the load shedding quantities l ∈ RD+ at the different demand centers and the wind spills w ∈ RW+
at the different wind farms. We impose penalties cw = 0, cl = 1,000 and cr = 2,000 to prioritize wind

spilling over load shedding and reserve adjustments. The constraints in the last line of (8) ensure that the

reserve increments are compatible with the generator capacities and that the load shedding and wind spilling

quantities do not exceed the actual demands and wind power output realizations, respectively. All other

constraints have natural counterparts in (1), and thus their meaning is evident. Note that in contrast to

the day-ahead scheduling problem (1), the real-time optimal power flow problem (8) enforces the capacity

constraints for the reserves, the transmission lines and the gas pipelines deterministically. This is possible

because (8) is always feasible irrespective of x̂ and ξ. A trivial feasible solution is obtained, for instance, by

setting y2 = ŷ1, r = ŷ1 − r̂−, l = d and w = C(µ+ ξ).

The second experiment relies on N ∈ {25, 50, 100, 200} training samples ξ̂i, i ≤ N , and M = 103 test

samples ξ̂N+i, i ≤ M , generated with the same procedure as before. Using the training data, we solve

the day-ahead scheduling problem (4) both with the combined Bonferroni and CVaR approximation as well

as the optimized CVaR approximation for ε = 5% and for different Wasserstein radii ρ ∈ R+. The so-

lution (x̂(ρ), Ŷ (ρ)) of (4) then serves as an input for the real-time dispatch problem (8), whose solution

(ŷ2(ρ, ξ), r̂(ρ, ξ), l̂(ρ, ξ), ŵ(ρ, ξ)) inherits the dependence on ρ. The quality of these solutions (all of which

depend on the training data) is measured by the empirical out-of-sample cost

Ĉ(ρ) , c>x x̂(ρ) + 1
M

∑M
i=1 c

>y2(ρ, ξ̂N+i) + cre
>r(ρ, ξ̂N+i)

+ 1
M

∑M
i=1 cle

>l(ρ, ξ̂N+i) + cwe
>w(ρ, ξ̂N+i).

Figure 2 illustrates Ĉ(ρ) as a function of ρ, computed using the optimized CVaR approximation and

averaged across 100 simulation runs. A closer inspection of the results for each simulation run reveals that

Ĉ(ρ) attains a distinct minimum at a critical Wasserstein radius ρ̂? > 0 for all tested sample sizes N . This

shows that a näıve operator who ignores ambiguity (by setting ρ = 0) faces higher out-of-sample costs than

a more sophisticated operator who acknowledges the presence of ambiguity (by setting ρ = ρ̂?). The benefits

of an ambiguity-aware model are more substantial for lower sample sizes N . For example, accounting for

ambiguity can reduce the out-of-sample costs by 1.4% when there are N = 200 training samples, while a

reduction of up to 6.3% is possible when there are only N = 25 training samples. Figure 3 visualizes the

interquantile range between the empirical 10% and 90% quantiles of Ĉ(ρ) with respect to 100 simulation

runs. In analogy to Figure 2, we observe that the variability of the out-of-sample cost Ĉ(ρ) displays a sharp

minimum at a strictly positive Wasserstein radius. Thus, accounting for ambiguity has the dual benefit of

reducing both the expectation and (to a larger extent) the variability of the out-of-sample costs. In both

cases, the potential benefits are more significant when there are fewer training samples. Qualitatively similar

results are obtained under the joint Bonferroni and CVaR approximation. Further details are provided in the

e-component.

By solving the chance constrained program (4) we ignore a fraction ε of the scenarios in which the con-

straints are most difficult to satisfy. Once the first-stage decisions of (4) have been implemented and the

uncertainty ξ has been revealed, the real-time dispatch problem (8) determines a feasible recourse action

(which may involve drastic measures such as load shedding etc. that are not modeled in (4)). Instead of this

indirect reoptimization approach, one could alternatively require all constraints in (4) to hold with proba-

bility 1 while directly allowing for wind spilling, load shedding and reserve adjustments. This amounts to

solving a combination of models (4) and (8), which we will henceforth refer to as the collective optimization

model (see the e-component for details).

If ρ > 0, then the constraints of the collective model must hold P-almost surely for each P ∈ P, that is,

they must hold for all ξ ∈ Ξ. In this case we solve the problem in linear decision rules y2(ξ) = Y ξ and

use the results of Section 4.1 to reformulate the objective function. If ρ = 0, on the other hand, then the

constraints of the collective model must only hold for all training samples ξ̂i, i ≤ N . In this case we solve the
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Figure 2. Average out-of-sample cost Ĉ(ρ) for the reoptimization approach.
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Figure 3. Interquantile range between the empirical 10% and 90% quantiles of Ĉ(ρ) using

the optimized CVaR approximation and reoptimization.

Table 1. Average and interquantile range between the 10% and 90% quantiles (in brackets)

of the empirical out-of-sample cost obtained with the collective and chance constrained mod-

els. The lowest means and interquantile ranges for each training sample size are highlighted

in bold.

N = 25 N = 50 N = 100 N = 200

Collective model 24,081 22,718 22,313 22,176

with ρ = 0 (4,566) (2,756) (1,003) (743)

Collective model 24,532 24,540 24,531 24,522

with ρ = ρ̂? (297) (301) (268) (267)

Bonferroni & CVaR 22,275 22,042 21,927 21,888

with ρ = ρ̂? (2,083) (1,206) (589) (522)

Optimized CVaR 22,139 22,024 21,916 21,886

with ρ = ρ̂? (1,204) (850) (653) (545)

problem exactly by assigning a separate real-time adjustment decision to each training sample and replacing

the expectation in the objective function with the sample average.

For any fixed ρ ≥ 0, the out-of-sample cost Ĉ(ρ) of the collective model is computed as before via re-

optimization. Table 1 reports the average as well as the interquantile range between the 10% and 90%
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quantiles of the empirical out-of-sample cost Ĉ(ρ) with respect to 100 independent simulation runs for the

collective model (for ρ = 0 and ρ = ρ̂?) as well as the chance constrained model with the combined Bonfer-

roni and CVaR approximation and with the optimized CVaR approximation (both for ρ = ρ̂?). Recall that

ρ̂? ∈ arg minρ≥0 Ĉ(ρ). Maybe surprisingly, we observe that the out-of-sample cost is smallest for the chance

constrained programming model (4) with optimized CVaR approximation even though wind spillage, load

shedding and reserve increments, all of which impact the out-of-sample cost, are disregarded in (4). In fact,

the chance constraints in (4) only ensure that the necessity of resorting to such drastic measures arises with

a probability of at most ε. Thus, (4) provides better first-stage decisions than the (seemingly more realistic)

collective model. While the collective model with ρ = 0 disregards distributional uncertainty and thus leads

to the largest variability in the out-of-sample cost, the collective model with ρ = ρ̂? achieves a lower cost

variability than both chance constrained models.

For N = 200, problem (4) is solved in 20 seconds on average under the combined Bonferroni and CVaR

approximation. The algorithm for computing the optimized CVaR approximation from Section 4.3 converges

in 38 seconds on average and typically requires less than 3 iterations.
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6. Appendix

Proof of Proposition 1. Using standard duality techniques, each worst-case CVaR in

ΩBC ,
{

(x, Y ) : max
P∈P

P- CVaRεk

[
ak(Y )>ξ − bk(x)

]
≤ 0 ∀k ≤ K

}
(9)

can be rewritten as

max
P∈P

P- CVaRεk

[
ak(Y )>ξ − bk(x)

]
= max

P∈P
min
τ∈R

{
τ +

1

εk
EP
[(
ak(Y )>ξ − bk(x)− τ

)+]}
(10a)

= max
P∈P

min
τ∈R

{
EP
[
max

{
τ,

1

εk

(
ak(Y )>ξ−bk(x)

)
+

(
1− 1

εk

)
τ

}]}
(10b)

≤min
τ∈R

{
max
P∈P

EP
[
max

{
τ,

1

εk

(
ak(Y )>ξ−bk(x)

)
+

(
1− 1

εk

)
τ

}]}
, (10c)

where (10a) uses the definition of CVaR from [26, Theorem 1], and the inequality in (10c) follows from

the minimax inequality. Notice that the objective function of the max-min problem (10b) is convex in τ

and linear in P. Furthermore, by using [31, Theorem 7.12 (ii)], one can show that the ambiguity set P is

weakly compact. As a result, [28, Theorem 4.2] implies that the inequality (10c) holds in fact as an equality.

Because the integrand inside the expectation constitutes a pointwise maximum of two affine functions in ξ, [20,

Corollary 5.1 (i)] allows us to reformulate the worst-case expectation in (10c) as a finite convex minimization

problem, and thus we can rewrite the worst-case CVaR as

max
P∈P

P- CVaRεk

[
ak(Y )>ξ − bk(x)

]
=





min
τk,λk,sk,γk

λkρ+N−1
∑N
i=1 sik

s. t. τk ≤ sik ∀i ≤ N
ak(Y )>ξ̂i − bk(x)+(εk − 1)τk

+εkγ
>
ik(h−Hξ̂i) ≤ εksik ∀i ≤ N

‖εkH>γik − ak(Y )‖∗ ≤ εkλk ∀i ≤ N
γik ∈ R2W

+ ∀i ≤ N
τ ∈ RK , λ ∈ RK , s ∈ RN×K .

(11)

Consequently, ΩBC admits an explicit conic representation, which is obtained by substituting the reformula-

tion (11) into the feasible set (9). The claim then follows. �
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Proof of Proposition2. By [26, Theorem 1], the worst-case CVaR appearing in the feasible set

ΩC(δ) ,

{
(x, Y ) : max

P∈P
P- CVaRε

[
max
k≤K

{
δk
[
ak(Y )>ξ−bk(x)

]}]
≤ 0

}
, (12)

can be expressed as

max
P∈P

P- CVaRε

[
max
k≤K

{
δk
[
ak(Y )>ξ−bk(x)

]}]

= max
P∈P

min
τ∈R

{
τ +

1

ε
EP

[(
max
k≤K

{
δk
[
ak(Y )>ξ−bk(x)

]}
− τ
)+
]}

= max
P∈P

min
τ∈R

{
EP
[
max

{
τ,

(
max
k≤K

{
δk
ε

[
ak(Y )>ξ−bk(x)

]})
+

(
1− 1

ε

)
τ

}]}

≤min
τ∈R

{
max
P∈P

EP
[
max

{
τ,

(
max
k≤K

{
δk
ε

[
ak(Y )>ξ−bk(x)

]})
+

(
1− 1

ε

)
τ

}]}
. (13a)

Using the same reasoning as in the proof of Proposition 1, one can show that the inequality in (13a) holds

in fact as an equality. The integrand inside the expectation operator constitutes a pointwise maximum of

K + 1 affine functions. As such, one can use [20, Corollary 5.1 (i)] to reformulate the worst-case CVaR over

the Wasserstein ambiguity set P as

max
P∈P

P- CVaRε

[
max
k≤K

{
δk
[
ak(Y )>ξ−bk(x)

]}]
=





min
τ,λ,s,γ

λρ+ 1
N

∑N
i=1 si

s. t. τ ∈ R, λ ∈ R, s ∈ RN , γik ∈ R2W
+ ∀i ≤ N, k ≤ K

τ ≤ si ∀i ≤ N
δk

[
ak(Y )>ξ̂i − bk(x)

]
+ (ε− 1)τ + εγ>ik(h−Hξ̂i) ≤ εsi ∀i ≤ N, k ≤ K

‖εH>γik − δkak(Y )‖∗ ≤ ελ ∀i ≤ N, k ≤ K.

(14)

Substituting (14) into the feasible set (12) completes the proof. �
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