
The Hierarchical Chinese Postman Problem: the slightest disorder makes it hard,
yet disconnectedness is manageable

Vsevolod A. Afanaseva, René van Beverna,∗, Oxana Yu. Tsidulkoa,b

aDepartment of Mechanics and Mathematics, Novosibirsk State University, Novosibirsk, Russian Federation
bSobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation

Abstract

The Hierarchical Chinese Postman Problem is finding a shortest traversal of all edges of a graph respecting precedence constraints
given by a partial order on classes of edges. We show that the special case with connected classes is NP-hard even on orders
decomposable into a chain and an incomparable class. For the case with linearly ordered (possibly disconnected) classes, we get
5/3-approximations and fixed-parameter algorithms by transferring results from the Rural Postman Problem.

Keywords: approximation algorithm, fixed-parameter algorithm, NP-hardness, arc routing, rural postman problem, temporal graphs

1. Introduction

The following NP-hard arc routing problem arises in snow plow-
ing, garbage collection, flame and laser cutting [8, 23].

Problem 1.1 (Hierarchical Chinese Postman Problem, HCPP).
Input: An undirected graph G = (V, E), edge weights ω : E →

N, a partition P of E into k classes, a partial order ≺ on P.
Find: A least-weight closed walk traversing each edge in E at

least once such that each edge e in a class E′ is traversed
only after all edges in all classes E′′ ≺ E′ are traversed.

The case k = 1 is the Chinese Postman Problem (CPP), which
reduces to a minimum-weight perfect matching problem [4, 6,
9, 28]. We study the following special cases of HCPP:

HCPP(l): the order ≺ is linear,
HCPP(c): each edge class induces a connected subgraph,

HCPP(c,l): both of the above restrictions.

HCPP(l) and HCPP(c,l) can also be understood as variants of
the Travelling Salesman Problem (TSP) in temporal graphs [26],
with the difference that it is required to explore all edges instead
of all vertices and that edges never disappear from the graph.
HCPP(c,l) is polynomial-time solvable [8, 14, 21]. This naturally
raises two questions about HCPP(c) and HCPP(l):

(a) Is HCPP(c) effectively solvable on other order types, like
several scheduling problems on, for example, tree orders [18],
interval orders [27], and bounded-width orders [1, 30]?

(b) Is HCPP(l) effectively solvable when the number of
connected components in each class is sufficiently small? If
the number of connected components is unbounded, HCPP(l) is
NP-hard already for k = 2 [3].

∗Correspondence to: Deptartment of Mechanics and Mathematics, Novosi-
birsk State University, ul. Pirogova 1, Novosibirsk, 630090, Russian Federation,
rvb@nsu.ru

Email addresses: v.afanasev3@g.nsu.ru (Vsevolod A. Afanasev),
rvb@nsu.ru (René van Bevern), o.tsidulko@nsu.ru (Oxana Yu. Tsidulko)

Our contributions. In Section 3, we show that HCPP(c) is NP-
hard even on partial orders that are decomposable into a linear
order and a class that is incomparable to all others classes, thus
negatively answering (a) for all order types mentioned there.
The remaining sections are dedicated to question (b).

In Section 4, we revisit a construction that reduces HCPP(c,l)
to the s-t-Rural Postman Path Problem (s-t-RPP, Problem 4.1) [8].
We show that, when applied to HCPP(l), the construction trans-
fers performance guarantees of approximation and randomized
algorithms from s-t-RPP to HCPP(l).

In Section 5, we show a 5/3-approximation algorithm for
HCPP(l). This contrasts TSP in temporal graphs, which is not
better than 2-approximable unless P = NP [26]. To get 5/3-ap-
proximations for HCPP(l), we use the construction from Sec-
tion 4 and show a 5/3-approximation algorithm for s-t-RPP
analogously to that for s-t-TSP [17]. Any better approximation
factor for s-t-RPP will directly carry over to HCPP(l).

In Section 6, we use the construction from Section 4 and
known algorithms for the Rural Postman Problem [3, 10, 15] to
show that HCPP(l) is solvable in polynomial-time if each class
induces a constant number c of connected components. When
the edge weights are polynomially bounded, one can even obtain
randomized fixed-parameter algorithms with respect to c.

2. Preliminaries

By N, we denote the set of natural numbers, including zero. For
two multisets A and B, A] B is the multiset obtained by adding
the multiplicities of elements in A and B. By A\B we denote the
multiset obtained by subtracting the multiplicities of elements
in B from the multiplicities of elements in A. Finally, given
some weight function ω : A→ N, the weight of a multiset A is
ω(A) :=

∑
e∈A ν(e)ω(e), where ν(e) is the multiplicity of e in A.

We mostly consider simple undirected graphs G = (V, E)
with a set V(G) := V of vertices and a set E(G) := E ⊆ {{u, v} |
u, v ∈ V, u , v} of edges. Unless stated otherwise, n denotes the

ar
X

iv
:2

01
1.

04
02

2v
2

 [
cs

.D
S]

 2
6

Ja
n

20
21

number of vertices and m denotes the number of edges. Within
proofs, there may occur multigraphs, where E is a multiset, and
directed graphs G = (V, A) with a set of arcs A ⊆ V2. The
degree of a vertex in an undirected multigraph is its number of
incident edges. We call a vertex balanced if it has even degree.
We call a graph balanced if all its vertices are balanced. For a
multiset R of edges, we denote by V(R) the set of their incident
vertices. For a multiset R of edges of G, G〈R〉 := (V(R),R) is
the (multi)graph induced by the edges in R.

A walk from v0 to v` in a graph G is a sequence w = (v0, e1,
v1, e2, v2, . . . , e`, v`) such that ei = {vi−1, vi} (if G is undirected)
or ei = (vi−1, vi) (if G is directed) for each i ∈ {1, . . . , `}. When
there is no ambiguity (like in simple graphs), we will also specify
walks simply as a list of vertices. If v0 = v`, then we call w a
closed walk. If all vertices on w are pairwise distinct, then
w is a path. If only its first and last vertex coincide, then w is
a cycle. A subwalk w′ of w is any subsequence w′ of w that
is itself a walk. By E(w), we denote the multiset of edges
on w, that is, each edge appears on w and in E(w) equally often.
The weight of walk w is ω(w) :=

∑`
i=1 ω(e`). For a walk w,

we denote G〈w〉 := G〈E(w)〉. Note that G〈R〉 and G〈w〉 do
not contain isolated vertices yet might contain edges with a
higher multiplicity than G and, therefore, are not necessarily
sub(multi)graphs of G. An Euler walk for G is a walk that
traverses each edge or arc of G exactly as often as it is present
in G. An Euler tour is a closed Euler walk. A graph is Eulerian
if it allows for an Euler tour. A connected undirected graph is
Eulerian if and only if all its vertices are balanced.

For any α ≥ 1, an α-approximate solution for a minimization
problem is a feasible solution whose weight does not exceed
the weight of an optimal solution by more than a factor of α,
called the approximation factor [13]. The Exponential Time
Hypothesis (ETH) is that 3-SAT (Problem 3.2) with n variables
is not solvable in 2o(n) time [19].

3. NP-hardness for HCPP(c) with one incomparable class

HCPP(c,l) is polynomial-time solvable [8, 14, 21]. We prove that
adding a single incomparable class makes the problem NP-hard.

Theorem 3.1. Even on edges with weight one and orders that
are decomposable into a linear order and a class that is incompa-
rable to all others classes,

(i) HCPP(c) is NP-hard and
(ii) not solvable in 2o(n+m+k) time unless ETH fails.

To prove Theorem 3.1, we use a polynomial-time many-one
reduction from 3-SAT, which is NP-hard [20] and, unless the
ETH fails, is not solvable in 2o(n+m) time [19].

Problem 3.2 (3-SAT).
Input: A formula ϕ in conjunctive normal form with n variables

and m clauses, each containing at most three literals.
Question: Is there a assignment to the variables satisfying ϕ?

The reduction is carried out by the following construction, which
is illustrated in Figure 1.

Construction 3.3. Let ϕ be an instance of 3-SAT. First, delete
each clause containing both x and x̄: they are always satisfied.
Consider now the variables x1, . . . , xn and clauses C1, . . . ,Cm.
For each i ∈ {1, . . . , n}, let µi denote the number of clauses con-
taining either xi or x̄i. We describe an instance Iϕ = (G, ω,P,≺)
of HCPP(c). Each edge will have weight one.

Graph G contains a path (c1
j , c
∗, c2

j) for each j ∈ {1, . . . ,m}
and, for each i ∈ {1, . . . , n} and ` ∈ {1, . . . , 6µi}, a path P`

i :=
(t`i , z

`
i , f `i). For each i ∈ {1, . . . , n}, it contains a cycle

Xi := (t1
i , t

2
i , . . . , t

6µi−1
i , t6µi

i , f 6µi
i , f 6µi−1

i , . . . , f 2
i , f 1

i , t
1
i).

For each i ∈ {1, . . . , n} and i′ = i mod n + 1, cycles Xi and Xi′

are connected to each other via a cycle

Yii′ = (t6µi
i , f 1

i′ , f 6µi
i , t1

i′ , t
6µi
i).

For each literal xi in a clause C j, graph G contains a cycle

Zi j := (t6`−3
i , c1

j , ai j, c2
j , t

6`−2
i , bi j, t6`−3

i),

where ` ≤ µi is such that C j is the `-th clause containing xi or x̄i.
For each literal x̄i in a clause C j, graph G contains a cycle

Z̄i j := (f 6`−3
i , c1

j , ai j, c2
j , f 6`−2

i , bi j, f 6`−3
i),

where ` ≤ µi is such that C j is the `-th clause containing xi or x̄i.
The edges are ordered as follows. For each i ∈ {1, . . . , n}

and ` ∈ {1, . . . , 6µi}, E`
i = E(P`

i) is a connected class. They are
lexicographically ordered, that is,

E`
i ≺ E`′

i′ ⇐⇒ (i < i′) ∨ (i = i′ ∧ ` ≤ `′).

They are preceded by the connected class

E0 =

n⋃
i=1

E(Xi) ∪
n⋃

i=1

E(Yi,i mod n+1) ∪
⋃
xi∈C j

E(Zi j) ∪
⋃
x̄i∈C j

E(Z̄i j),

Finally, the edge set E∗ consisting of all edges incident to c∗

forms a connected class incomparable to all other classes.

For convenience, we collect the vertices of Iϕ of the form t`i
and f `i and of the form c1

j and c2
j into sets

VFT :=
n⋃

i=1

6µi⋃
`=1

{t`i , f `i } and VC :=
m⋃

j=1

{c1
j , c

2
j }.

Observation 3.4. Let Iϕ = (G, ω,P,≺) be the HCPP(c) instance
constructed by Construction 3.3 from a 3-SAT instance ϕ with
n variables and m clauses. Then,

(i) the subgraph G〈E0〉 is Eulerian: it is connected and the
union of pairwise edge-disjoint cycles, that is, balanced,

(ii) the imbalanced vertices of G are therefore VFT ∪ VC , and
(iii) the number of vertices, edges, and classes is O(n + m),

since
∑n

i=1 µi ≤ 3m in any 3-SAT formula.

In the following, we will show that the HCPP(c) instance Iϕ
allows for a tight tour if and only if ϕ is satisfiable:

2

X1

Y34

Z̄22

Z41

t1
1

z1
1

f 1
1

t2
1

z2
1

f 2
1

t3
1

z3
1

f 3
1

t4
1

z4
1

f 4
1

t5
1

z5
1

f 5
1

t6
1

z6
1

f 6
1

t1
2

z1
2

f 1
2

t2
2

z2
2

f 2
2

t3
2

z3
2

f 3
2

t4
2

z4
2

f 4
2

t5
2

z5
2

f 5
2

t6
2

z6
2

f 6
2

t1
3

z1
3

f 1
3

t2
3

z2
3

f 2
3

t3
3

z3
3

f 3
3

t4
3

z4
3

f 4
3

t5
3

z5
3

f 5
3

t6
3

z6
3

f 6
3

t1
4

z1
4

f 1
4

t2
4

z2
4

f 2
4

t3
4

z3
4

f 3
4

t4
4

z4
4

f 4
4

t5
4

z5
4

f 5
4

t6
4

z6
4

f 6
4

a11

b11

a41

b41

a22

b22

a32

b32

c∗

c1
1

c2
1 c1

2

c2
2

Figure 1: Illustration of Construction 3.3. The graph is generated from the formula ϕ = (x̄1 ∨ x4) ∧ (x̄2 ∨ x3), that is, C1 = (x̄1 ∨ x4) and C2 = (x̄2 ∨ x3). The dotted
edges form the edge set E0. The solid edges form the paths P`i and (c1

j , c
∗, c2

j). The gray areas illustrate the types of cycles introduced in the construction: they consist
of the dashed edges enclosed in the gray areas. Note that E0 (the dotted edges) forms an Eulerian subgraph: it is the union of cycles and thus each vertex has an even
number of incident edges in E0. Thus, each vertex of the form t`i , f `i , c1

j and c2
j is imbalanced and they are the only imbalanced vertices.

t1
1

z1
1

f 1
1

t2
1

z2
1

f 2
1

t3
1

z3
1

f 3
1

t4
1

z4
1

f 4
1

t5
1

z5
1

f 5
1

t6
1

z6
1

f 6
1

t1
2

z1
2

f 1
2

t2
2

z2
2

f 2
2

t3
2

z3
2

f 3
2

t4
2

z4
2

f 4
2

t5
2

z5
2

f 5
2

t6
2

z6
2

f 6
2

t1
3

z1
3

f 1
3

t2
3

z2
3

f 2
3

t3
3

z3
3

f 3
3

t4
3

z4
3

f 4
3

t5
3

z5
3

f 5
3

t6
3

z6
3

f 6
3

t1
4

z1
4

f 1
4

t2
4

z2
4

f 2
4

t3
4

z3
4

f 3
4

t4
4

z4
4

f 4
4

t5
4

z5
4

f 5
4

t6
4

z6
4

f 6
4

a11

b11

a41

b41

a22

b22

a32

b32

c∗

c1
1

c2
1 c1

2

c2
2

Figure 2: A minimum-weight closed walk for the graph in Figure 1 first visits each edge in E0 exactly once (the dotted edges in Figure 1), and then follows the arrows
as shown in this figure. The walk corresponds to x1 = 0 and x2 = x3 = x4 = 1.

3

Definition 3.5. A feasible solution for an HCPP(c) instance (G, ω,
P,≺) with G = (V, E) is a tight tour if it has weight at most
|E| + b/2, where b is the number of imbalanced vertices in G.

Proposition 3.6. The HCPP(c) instance Iϕ = (G, ω,P,≺) cre-
ated from a 3-SAT instance ϕ by Construction 3.3 allows for a
tight tour if and only if ϕ is satisfiable.

In the rest of this section, it remains to prove Proposition 3.6,
which, together with Observation 3.4(iii), yields Theorem 3.1.

Satisfiability of ϕ implies a tight tour in Iϕ. Assume that ϕ is
satisfiable. We show a tight tour T for Iϕ. Without loss of
generality, assume that x1 is “true”: otherwise, we can replace x1
by x̄1 throughout the formula ϕ.

The tight tour T for Iϕ then looks as follows (an example is
shown in Figure 2). It starts in f 1

1 , first visits each edge of E0
exactly once and returns to f 1

1 . This is possible by Observa-
tion 3.4(i). Then, it remains to traverse the paths (t`i , z

`
i , f `i) for

each i ∈ {1, . . . , n} and ` ∈ {1, . . . , 6µi} and the paths (c1
j , c
∗, c2

j)
for each j ∈ {1, . . . ,m}. This is done as follows. For i from 1
to n, if xi is “true”, T visits the vertices

f 1
i , z

1
i , t

1
i , t2

i , z
2
i , f 2

i , f 3
i , z

3
i , t

3
i , t4

i , z
4
i , f 4

i . . . , t6µi
i , z6µi

i , f 6µi
i ,

for some ` ∈ {1, . . . , µi} taking a detour through the vertices
t6`−3
i , c1

j , c
∗, c2

j , t
t`−2
i if clause C j contains xi and (c1

j , c
∗, c2

j) has
not been traversed before. If xi is “false”, then T visits

t1
i , z

1
i , f 1

i , f 2
i , z

2
i , t

2
i , t3

i , z
3
i , f 3

i , f 4
i , z

4
i , t

4
i , . . . , f 6µi

i , z6µi
i , t6µi

i ,

for some ` ∈ {1, . . . , µi} taking a detour through the vertices
f 6`−3
i , c1

j , c
∗, c2

j , f 6`−2
i if clause C j contains x̄i and (c1

j , c
∗, c2

j) has

not been traversed before. Finally, after f 6µn
n or t6µn

n , the walk T
returns to f 1

1 . Note that this traversal is possible due to the
cycle Yi,i mod n+1 for each i ∈ {1, . . . , n}.

Observe that the closed walk T contains all edges and re-
spects precedence constraints: For the edges in E0 and all
paths (t`i , z

`
i , f `i) for i ∈ {1, . . . , n} and ` ∈ {1, . . . , 6µi}, this is

obvious. To see that the path (c1
j , c
∗, c2

j) has been traversed for
each j ∈ {1, . . . ,m}, observe that each clause C j contains a true
literal, so that a detour via c1

j , c
∗, c2

j is taken.
To see that T is tight, we check which edges are traversed

a second time. When xi is “true”, the edges { f 2`
i , f 2`+1

i } ∈ E0
for ` ∈ {1, . . . , µi − 1} are visited a second time, whereas each
edge {t2`−1

i , t2`
i } ∈ E0 for ` ∈ {1, . . . , µi} is traversed a second

time or skipped by a detour that traverses the edges {t2`−1
i , c1

j }

and {t2`
i , c

2
j } a second time. Analogously when xi is “false”.

Moreover, for each i ∈ {1, . . . , n}, one edge of the cycle Yi,i mod n+1
is visited a second time: it joins the last vertex visited by T in Xi

to the first vertex visited by T in Xi mod n+1. We thus see that the
edges visited a second time form a matching. Their endpoints
are the b imbalanced vertices VFT ∪ VC . Thus, T traverses not
more than |E| + b/2 edges.

Tight tour for Iϕ implies satisfiability of ϕ. Assume that Iϕ al-
lows for a tight tour T . We show that ϕ is satisfiable.

Lemma 3.7. Let M = E(T) \ E, that is, M is the multiset of
the edges that the tight tour T traverses additionally to E (taking
into account the multiplicity of additional visits). Then,

(i) M ⊆ E0 is a perfect matching on the vertices VFT ∪ VC , in
particular, M contains each edge at most once,

(ii) each edge in M has an endpoint in VFT ,
(iii) G〈(E \ E0) ∪ M〉 is connected.

Proof. (i) Since T is a closed walk, all vertices in G〈T 〉 are
balanced, whereas its subgraph G〈E〉 = G has b imbalanced
vertices. Since T contains at most |E|+b/2 edges, the graph G〈T 〉
contains at most b/2 edges additionally to those in G〈E〉. Thus,
G〈T 〉 contains a set M of at most b/2 edges whose endpoints
are the b imbalanced vertices of G〈E〉. By Observation 3.4(ii),
these are exactly the vertices VFT ∪ VC . This is only possible if
M is a perfect matching on VFT ∪ VC . Since each edge of G that
is not in E0 has at least one balanced endpoint (namely, c∗ or
one of the z`i), we easily get M ⊆ E0.

(ii) The only edges in E0 that have no endpoints in VFT have
one of the vertices of the form ai j or bi j as endpoints. Since
these are only on the cycle Zi j or Z̄i j, they are balanced. Thus,
M cannot contain such edges.

(iii) Let T ∗ be a tight tour for (G, ω,P,≺) such that T ∗ visits
exactly the edges in M twice and the minimal prefix T1 of T ∗

traversing all edges in E0 has minimum length (the tight tour T
and (i) witness the existence of T ∗). Let T2 be the rest of T ∗. We
will prove that T1 is an Euler tour for G〈E0〉. Then (iii) follows
since G〈(E \ E0) ∪ M〉 is even Eulerian: T2 visits all edges
in (E \ E0) ∪ M, since they are not visited by T1; T2 is closed
since T ∗ and its prefix T1 are; and, by choice of T ∗, T2 does not
visit any edge in (E \ E0) ∪ M more than once. It remains to
prove that T1 is indeed an Euler tour for G〈E0〉.

We first prove that T1 is a closed walk. By the minimality
of T1 and choice of ≺, T1 does not end in c∗ and does not
contain edges from any class E`

i . It might contain edges from E∗.
Assume, for the sake of a contradiction, that T1 starts at some
vertex s and ends at some vertex t , s. Then, t is not balanced in
G〈T1〉 but balanced in G〈E0〉 by Observation 3.4(i). Thus, there
is an edge e = {t′, t} ∈ E∗ ∪ M on T1. The graph G〈E(T1) \ {e}〉
contains E0, is connected, all its vertices except for s and t′ are
balanced, and it therefore has an Euler walk T ′1. It follows that
(T ′1, e,T2) is another tight tour for G visiting all edges with the
same multiplicity as T ∗, yet its prefix T ′1 containing E0 satisfies
|T ′1| < |T1|. This contradicts the choice of T ∗.

We now show that T1 traverses each edge e ∈ E0∪E∗ at most
once. Towards a contradiction, assume that it traverses e = {u, v}
twice. Then, v ∈ VFT by (ii). Thus, v is not incident to any edges
in E∗ and, because v is balanced in G〈E0〉 by Observation 3.4(i),
it is also balanced in G〈E0 ∪ E∗〉. Since v is balanced in G〈E0 ∪

E∗〉, balanced in G〈T1〉, and T1 traverses e twice, T1 also tra-
verses another edge incident to v twice, contradicting (i).

Finally, we prove that T1 contains only edges of E0. Towards
a contradiction, assume that T1 contains an edge {c∗, c} ∈ E∗.
Vertex c ∈ VC is balanced in G〈T1〉, yet not balanced in its sub-
graph G〈E0 ∪ {c∗, c}〉 by Observation 3.4(i). Thus, G〈T1〉 con-
tains some edge e ∈ E0 ∪ E∗ twice, which is impossible.

4

t6`−1
i

f 6`−1
i

t6`−2
i

f 6`−2
i

t6`−3
i

f 6`−3
i

t6`−4
i

f 6`−4
i

t6`−5
i

f 6`−5
i

t6`
i

f 6`
i

c2
jc1

j

(a) Case 1: { f 6`−3
i , f 6`−2

i } is covered.

t6`−1
i

f 6`−1
i

t6`−2
i

f 6`−2
i

t6`−3
i

f 6`−3
i

t6`−4
i

f 6`−4
i

t6`−5
i

f 6`−5
i

t6`
i

f 6`
i

c2
jc1

j

(b) Case 2: { f 6`−3
i , f 6`−2

i } is not covered.

Figure 3: The two cases in the proof of Lemma 3.9. Dotted edges are all the possibly present edges in E0 available for inclusion in M by Lemma 3.7(i) (the edge
{t6`−5

i , f 6`−5
i } is present if ` = 1, the edge {t6`i , f 6`

i } is present if ` = µi). Including { f 6`−3
i , f 6`−2

i } in M or excluding it from M force all the bold edges into M due to
the fact that all vertices must be contained in some edge of M and that edges drawn above each other cannot both be part of M.

We now show that the matching M from Lemma 3.7 takes one
of two possible forms in each variable cycle Xi. This will corre-
spond to setting a variable to “true” or “false”.

Definition 3.8. Let i ∈ {1, . . . , n} and ` ∈ {1, . . . , µi}. We call
an edge {t6`−3

i , t6`−2
i } covered if {t6`−3

i , t6`−2
i } ∈ M or if there is

a j ∈ {1, . . . ,m} such that both {t6`−3
1 , c1

j } and {t6`−2
1 , c2

j } are in M.
We call an edge { f 6`−3

i , f 6`−2
i } covered if { f 6`−3

i , f 6`−2
i } ∈ M

or if there is a j ∈ {1, . . . ,m} such that both { f 6`−3
1 , c1

j } and
{ f 6`−2

1 , c2
j } are in M.

Lemma 3.9. For each i ∈ {1, . . . , n}, either all {t6`−3
i , t6`−2

i } are
covered or all { f 6`−3

i , f 6`−2
i } are covered for ` ∈ {1, . . . , µi}.

Proof. For any i ∈ {1, . . . , n} and ` ∈ {1, . . . , µi}, we first show
that exactly one of {t6`−2

i , t6`−3
i } and { f 6`−2

i , f 6`−3
i } is covered.

Note that, by Construction 3.3, at most one of these pairs of ver-
tices is attached to {c1

j , c
2
j } for any j ∈ {1, . . . ,m}. Without loss of

generality, let this be {t6`−2
i , t6`−3

i }. The other case is symmetric.
Denote R := E \ E0. By Lemma 3.7(iii), G〈R ∪ M〉 is

connected. Thus, there is at least one edge of M leaving any
subset of connected components of G〈R〉 and, for each h ∈
{6` − 5, . . . , 6` − 1}, only one of {th

i , t
h+1
i } and { f h

i , f h+1
i } is in M:

otherwise, the matching M could not contain any edge leaving
the set of connected components {{th

i , z
h
i , f h

i }, {t
h+1
i , zh+1

i , f h+1
i }}.

We also exploit that, by Lemma 3.7(i), all vertices in VFT must
be incident to an edge of M.

We now distinguish two cases, illustrated in Figure 3. First,
assume that { f 6`−3

i , f 6`−2
i } is covered, that is, in M. Then all bold

edges shown in Figure 3a are in M. Thus, the edge {t6`−2
i , t6`−3

i } is
not covered. If the edge { f 6`−3

i , f 6`−2
i } is not covered, that is, not

in M, then all bold edges shown in Figure 3b are in M. To match
the vertices t6`−3

i and t6`−2
i , one either has {t6`−3

i , t6`−2
i } ∈ M or

{{t6`−3
i , c1

j }, {t
6`−2
i , c2

j }} ⊆ M. That is, {t6`−3
i , t6`−2

i } is covered.
Finally, towards a contradiction, assume that there are `, `′

such that { f 6`−2
i , f 6`−3

i } and {t6`′−2
i , t6`′−3

i } are covered. Then we
can choose `, `′ so that |` − `′| = 1. Assume `′ = ` + 1, the other
case is symmetric. Then, as illustrated in Figure 3a, vertex t6`

i
has to be matched to t6`′−5

i (there is no edge {t6`
i , f 6`

i } in this case
by Construction 3.3, since ` < µi). However, vertex t6`′−5

i is
already matched to t6`′−4

i , so that this is impossible.

We can now easily prove that, since Iϕ has a tight tour T , the for-
mula ϕ is satisfiable, thus concluding the proof of Proposition 3.6.
By Lemma 3.7(i) and (ii), for each clause C j of ϕ, the vertices c1

j

and c2
j are matched to vertices in VFT by M. By Construction 3.3,

c1
j can only be matched to t6`−3

i or f 6`−3
i for some i ∈ {1, . . . , n}

and ` ∈ {1, . . . , µi}. By Lemma 3.9, if c1
j is matched to t6`−3

i ,
then t6`−2

i is matched to c2
j and the edges {t6`−3

i , t6`−2
i } are cov-

ered for all ` ∈ {1, . . . , µi}, whereas { f 6`−3
i , f 6`−2

i } is not covered
for any ` ∈ {1, . . . , µi}. Thus, clause C j (and all other clauses con-
taining xi) can be satisfied by setting variable xi to “true”. If, on
the other hand, c1

j is matched to f 6`−3
i , then f 6`−2

i is matched to c2
j

and the edges { f 6`−3
i , f 6`−2

i } are covered for all ` ∈ {1, . . . , µi},
whereas {t6`−3

i , t6`−2
i } is not covered for any ` ∈ {1, . . . , µi}. Thus,

clause C j (and all other clauses containing x̄i) can be satisfied
by setting xi to “false”.

4. Relation between HCPP(l) and the Rural Postman

Dror et al. [8] showed how to reduce HCPP(c,l) to polynomial-
time solvable special cases of the following problem.

Problem 4.1 (s-t-Rural Postman Path Problem, s-t-RPP).
Input: An undirected graph G = (V, E), edge weights ω : E →

N, vertices s, t ∈ V , and a subset R ⊆ E of required edges.
Find: A walk W∗ of minimum total weight ω(W∗), starting in s,

ending in t, and traversing all edges of R.

In general, s-t-RPP is strongly NP-hard, as well as the better
known Rural Postman Problem (RPP), where the goal is to find a
closed walk [25]. Dror et al. [8] reduce HCPP(c,l) to multiple s-
t-RPP instances in which the subgraph G〈R〉 is connected. Since
this case of s-t-RPP is polynomially-time solvable, this yields a
polynomial-time algorithm for HCPP(c,l) [8].

We now show that, while applying the same construction
to HCPP(l) does not yield polynomial-time solvable instances
of s-t-RPP, it allows to transfer running times, approximation
factors, and error probabilities of s-t-RPP algorithms to HCPP(l).
This is in contrast to a construction due to Cabral et al. [5], who
showed a polynomial-time reduction of HCPP(l) to RPP that
does not allow to transfer approximation factors: it introduces
very heavy required edges, which always contribute to the goal
function and thus make bad approximate solutions “look” good.
We now describe the construction of Dror et al. [8].

Definition 4.2. In this section, we denote the edge classes of
HCPP(l) instances (G, ω,P,≺) by E1, . . . , Ek, where Ei ≺ E j if
and only if 1 ≤ i < j ≤ k.

5

e

a b c

d

2 1
3

41
2

E1 : E2 : E3 : E1 ≺ E2 ≺ E3

V1

a1

b1

V2

b2

V3

a3

b3

V4

a4

b4

2

4

10

8
3

5

5

3

Figure 4: Illustration for Construction 4.3: from a graph G with k = 3 edge classes (on the left), Construction 4.3 constructs a graph Γ with k + 1 layers (on the right).
Note that, for example, vertex b ∈ V(G) is the only vertex in V(E2) incident to edges of previous classes, thus, its copy b2 ∈ V(Γ) is the only vertex in layer V2.

By R[u, v, i], we denote the s-t-RPP instance of finding a
minimum-weight walk between the vertices u and v in G〈E1 ∪

· · · ∪ Ei〉 traversing all edges in Ei. By P[u, v, i], we denote an
arbitrary optimal solution to R[u, v, i].

Construction 4.3. From a HCPP(l) instance (G, ω,P,≺), con-
struct a directed arc-weighted graph Γ = (VΓ, AΓ) as illustrated
in Figure 4: The vertex set VΓ =

⋃k+1
i=1 Vi is a union of layers Vi.

For each i ∈ {2, . . . , k}, layer Vi contains a copy of each vertex
in G that is incident to an edge of Ei and of any predecessor
class. Namely,

V1 = {u1 | u ∈ V(E1)}, Vk+1 = {uk+1 | u ∈ V(E1)},

Vi =

{
ui

∣∣∣∣∣ u ∈ V(Ei) ∩
i−1⋃
j=1

V(E j)
}

for i ∈ {2, . . . , k}.

For each pair of vertices ui ∈ Vi and vi+1 ∈ Vi+1, where i ∈
{1, . . . , k}, there is an arc (ui, vi+1) ∈ AΓ of weight ωΓ(ui, vi+1) =

ω(P[u, v, i]). If P[u, v, i] does not exist, there is no arc (ui, vi+1).

Proposition 4.4 (Dror et al. [8]). Let I := (G, ω,P,≺) be an
HCPP(l) instance and Γ be constructed from I by Construc-
tion 4.3. Then, the weight of an optimal solution to I coincides
with the weight of a least-weight layer path in Γ, where a layer
path in Γ is a path from v1 ∈ V1 to vk+1 ∈ Vk+1 such that v1 and
vk+1 are copies of the same vertex v ∈ V(E1).

In particular, each layer path in Γ has the form J = (v1, y2
2, y

3
3,

. . . , yk
k, vk+1), where yi

i ∈ Vi for i ∈ {2, . . . , k} and concatenating
the corresponding walks P[v, y2, 1], P[y2, y3, 2], . . . , P[yk, v, k]
yields a feasible solution WJ of weight ω(WJ) = ωΓ(J) for I.

Construction 4.3 can be used to solve HCPP(c,l) in O(kn5) time:
Γ has at most kn2 arcs, the weight of each is computed by solving
an s-t-RPP instance R[u, v, i], which works in O(n3) time since
the set Ei of required edges is connected [8]. It remains to find
a layer path in Γ. This can be done in O(kn3) time by n times
calling a linear-time single-source shortest-path algorithm for
directed acyclic graphs.

However, when applied to HCPP(l), Construction 4.3 gets
to solve s-t-RPP instances R[u, v, i] where the set of required
edges Ei might be disconnected. Since we do not know how
to solve them in polynomial time, in Sections 5 and 6, we will
solve them using approximation algorithms and randomized
fixed-parameter algorithms. Their performance guarantees carry
over to HCPP(l) as follows.

Lemma 4.5. Let I = (G, ω,P,≺) be an HCPP(l) instance. As-
sume that there is an algorithm running in τ time that, given any
s-t-RPP instance R[u, v, i] (cf. Definition 4.2), outputs an α-ap-
proximate solution for R[u, v, i] with probability at least 1 − p.

Then, there is an algorithm running in O(kn2τ + kn3) time
that returns an α-approximate solution for I with probability at
least 1 − pk.

Proof. Let A denote the assumed randomized approximation
algorithm for solving s-t-RPP instances R[u, v, i]. Since we can
check the feasibility of any solution returned by A in linear
time, we can assume thatA makes only one-sided errors: For an
infeasiable instance R[u, v, i], it returns nothing. For a feasible
instance R[u, v, i], with probability at most p, it may return
nothing or produce a solution that is more expensive than an
α-approximate solution. Moreover, since feasibility of I is easy
to check [8], we will assume that I has a feasible solution. Then
we compute a solution to I as follows.

Construct an arc-weighted directed graph Γ̃ = (ṼΓ, ÃΓ) from G
as described in Construction 4.3, yet for each i ∈ {1, . . . , k}
and every ui ∈ Vi and vi+1 ∈ Vi+1, the weight ω̃Γ(ui, vi+1) =

ω(P̃[u, v, i]), where P̃
[
u, v, i

]
is computed by applyingA to the

s-t-RPP instance R[u, v, i] (ifA fails to produce a solution, then
let there be no arc (ui, vi+1) in Γ̃). Finally, try to compute a least-
weight layer path J in Γ̃. If it exists, then the corresponding
closed walk WJ is a feasible solution of weight ω(WJ) = ω̃Γ(J)
for I. The running time of the whole procedure is O(kn2τ + kn3)
since the graph Γ̃ has O(kn2) arcs, the weight of each can be com-
puted in τ time, and the least-weight layer path in Γ can finally
be found by n times applying a single-source shortest-path algo-
rithm for directed acyclic graphs. It remains to analyze the proba-
bility that the procedure returns an α-approximate solution for I.

To this end, let W∗ be an optimal solution to I, Γ = (VΓ, AΓ) be
constructed by Construction 4.3 from I, and J∗ = (x1, y2

2, y
3
3, . . . ,

yk
k, xk+1) be a least-weight layer path in Γ. First, assume that
A indeed produced an α-approximate solution for each in-
stance R[u, v, i] corresponding to any arc (ui, vi+1) on J∗. Then,
for each arc (ui, vi+1) on J∗,

ω̃Γ(ui, vi+1) = ω(P̃[u, v, i]) ≤ αω(P[u, v, i]) = αωΓ(ui, vi+1)

and J∗ witnesses the existence of the computed least-weight
layer path J in Γ̃. Thus, the weight ω(WJ) = ω̃Γ(J) is at most

ω̃Γ(J∗) = ω̃Γ(x1, y2
2) + ω̃Γ(y2

2, y
3
3) + · · · + ω̃Γ(yk

k, xk+1)

≤ αωΓ(x1, y2
2) + αωΓ(y2

2, y
3
3) + · · · + αωΓ(yk

k, xk+1)
= αωΓ(J∗) = αω(W∗).

6

If the described procedure fails to produce an α-approximate
solution for I, then, by contraposition,A failed to produce an α-
approximate solution for at least one s-t-RPP instance R[u, v, i]
corresponding to an arc (ui, vi+1) on J∗. Since J∗ has k arcs, this
happens with probability at most kp by the union bound.

5. A 5/3-approximation algorithm for HCPP(l)

We now show a polynomial-time 5/3-approximation algorithm
for s-t-RPP, which, by Lemma 4.5, carries over to HCPP(l).
The algorithm is an adaption of the Christofides-Serdyukov-like
3/2-approximation algorithm from RPP [3, 10] to s-t-RPP. It
closely follows Hoogeveen’s [17] adaption of the Christofides-
Serdyukov 3/2-approximation algorithm from metric TSP [4, 7,
29] to metric s-t-TSP.

Theorem 5.1. The s-t-RPP is 5/3-approximable in O(n3) time.

Proof. We assume s , t (otherwise, one can add a dummy
vertex s , t and an edge {s, t} of zero weight to the initial graph).
We only show the 5/3-approximation algorithm for s-t-RPP
instances I := (G,R, ω, s, t) such that G = (V, E) is a complete
graph on the vertex set V = V(R)∪{s, t} and such that the weight
function ω satisfies the triangle inequality. This is enough, since
the general case reduces to this special case in O(n3) time and any
α-approximation for the special case yields an α-approximation
for the general case [3]. The 5/3-approximation algorithm works
in four steps.

Step 1. Compute a set T ⊆ E of edges of minimum total
weight such that R ∪ T forms a spanning connected subgraph
of G (for example, using Kruskal’s algorithm [22]).

Step 2. Let S ⊆ V be the set of vertices in V \ {s, t} that are
imbalanced in G〈R ∪ T 〉 and of those vertices in {s, t} that are
balanced in G〈R ∪ T 〉. Note that |S | is even: Indeed, consider
the set S ′ ⊆ V of all vertices that are imbalanced in G〈R ∪ T 〉.
Clearly, |S ′| is even. Now, if s, t ∈ S ′, then S = S ′ \ {s, t}. If
s, t < S ′, then S = S ′∪{s, t}. If s ∈ S ′ and t < S ′ (or vice versa),
then S = S ′ ∪ {t} \ {s} (or S = S ′ ∪ {s} \ {t}). Thus, |S | is even.

Step 3. Construct a minimum-weight perfect matching M ⊆
E on the vertices of S in G (for example, using Lawler’s algo-
rithm [24, Section 6.10]).

Step 4. Return an Euler walk P in G〈R] T] M〉. Note
that P exists (and can be computed using Hierholtzer’s algorithm
[11, 16]) since G〈R] T] M〉 is connected and all its vertices
except for s and t are balanced. Thus, the endpoints of P are s
and t and P is a feasible solution to I.

All steps can be carried out in O(n3) time. It remains to
prove that P is a 5/3-approximation. To this end, let P∗ be an
optimal solution for I. Obviously, ω(R ∪ T) ≤ ω(P∗). Thus, it
remains to show ω(M) ≤ 2/3 · ω(P∗). To this end, consider Q =

E(P∗)]R]T . We will construct three perfect matchings M1, M2,
and M3 on S in G such that ω(M1) + ω(M2) + ω(M3) ≤ ω(Q),
and thus ω(M) ≤ 1/3 · ω(Q) ≤ 2/3 · ω(P∗).

Since the imbalanced vertices of G〈P∗〉 are exactly s and t,
the imbalanced vertices in G〈Q〉 are exactly those in the set S .
Let the vertices of S = {v1, v2, . . . , v2`} be numbered in the order

of their first occurrence on P∗ and let P∗i be the subwalk of P∗ be-
tween the vertices v2i−1 ∈ S and v2i ∈ S for all i ∈ {1, . . . , `}. Let

E1 :=
⊎̀
i=1

E(P∗i).

By shortcutting each path P∗i to one edge, one gets a perfect
matching M1 on the vertices of S such that ω(M1) ≤ ω(E1).

The subgraph G〈Q \ E1〉 is Eulerian: it is connected since
R] T ⊆ Q \ E1 and it is balanced since the imbalanced vertices
of G〈E1〉 are exactly those of G〈Q〉, that is, S . Its Euler cycle
can be shortcut to a simple cycle on S , which can be partitioned
into two perfect matchings M2 and M3 on S . Thus,

ω(P) = ω(R ∪ T) + ω(M)
≤ ω(P∗) + (ω(M1) + ω(M2) + ω(M3))/3
≤ ω(P∗) + (ω(E1) + ω(Q \ E1))/3
≤ ω(P∗) + ω(Q)/3 ≤ 5/3 · ω(P∗),

where the second inequality is due to the metric weights ω.

Plugging Theorem 5.1 into Lemma 4.5, we immediately get:

Corollary 5.2. HCPP(l) is 5/3-approximable in O(kn5) time.

6. Parameterized algorithms for HCPP(l)

Lemma 4.5 allows us to easily transfer well-known parameter-
ized algorithms from RPP to HCPP(l) to show:

Theorem 6.1. Let ωmax be the maximum edge weight and c be
the maximum number of connected components in any edge
class of an HCPP(l) instance. Then, HCPP(l) is

i) polynomial-time solvable for constant c and
ii) solvable in 2c · poly(ωmax, n) time with exponentially de-

creasing error probability.

Proof. To prove the theorem, it is enough to show that the known
RPP algorithms can also be used for s-t-RPP. To this end, we
reduce s-t-RPP to RPP. We assume that s , t and that s and t
are non-adjacent in s-t-RPP instances (otherwise, we can add a
new source s′ and a required weight-zero edge {s′, s}).

Now, note that an s-t-RPP instance I := (G,R, ω, s, t) can
be reduced to an RPP instance I′ := (G′,R′, ω′) where I′ is
obtained from I by adding an edge {s, t} of weight 2ω(E) to
both E and R. Then, an optimal solution P for I yields a solution
of weight ω(P) + 2ω(E) for I′. Moreover, an optimal solution P
for I′ uses the edge {s, t} exactly once: if P traversed it multiple
times, then it would be cheaper to replace the second traversal
of {s, t} by any other s-t-path in G. Thus, P can be turned into a
solution of weight ω(P)−2ω(E) for I. That is, optimal solutions
translate between I and I′ (yet approximate solutions do not).

Moreover, if the number of connected components in G〈R〉
is c′, then the number of connected components in G′〈R′〉 is at
most c′ + 1. Thus, since RPP is solvable in polynomial time for
constant c′ [3, 12], so is s-t-RPP. And since RPP is solvable in
2c′ · poly(ωmax, n) with exponentially decreasing error probabil-
ity [15], so is s-t-RPP. To conclude the proof of the theorem, it is

7

enough to apply Lemma 4.5 and to observe that, for any s-t-RPP
instance P[u, v, i] solved, the subgraph G〈Ei〉 induced by the
required edges Ei has at most c connected components.

7. Conclusion

Our work leaves open several questions. First, what is the com-
putational complexity of HCPP(c) with a constant number of
edge classes? It has been conjectured to be polynomial-time
solvable [3], yet no polynomial-time algorithm is known even
for the case with three classes.

Second, can one close the gap between our 5/3-approxima-
tion for s-t-RPP and the known 3/2-approximation for RPP [3,
10]? For example, recently, a 3/2-approximation for metric s-t-
TSP has been shown [31], matching the approximation factor of
the Christofides-Serdyukov algorithm for metric TSP [4, 7, 29].
It is not obvious whether the used approaches carry over to s-
t-RPP, yet closing the gap between s-t-RPP and RPP would
immediately give a 3/2-approximation for HCPP(l).

Our fixed-parameter algorithm for HCPP(l) parameterized
by the maximum number c of connected components in any edge
class raises the question whether and how lossy kernelization
results for RPP parameterized by c [2] carry over to HCPP(l).

Funding. This work is funded by Mathematical Center in Aka-
demgorodok, agreement No. 075-15-2019-1675 with the Min-
istry of Science and Higher Education of the Russian Federation.

References

[1] R. van Bevern, R. Bredereck, L. Bulteau, C. Komusiewicz, N. Talmon,
G. J. Woeginger, Precedence-constrained scheduling problems parameter-
ized by partial order width, in: Yu. Kochetov, M. Khachay, V. Beresnev,
E. Nurminski, P. Pardalos (Eds.), DOOR 2016, Springer, 2016, volume
9869 of LNCS, pp. 105–120, doi:10.1007/978-3-319-44914-2_9.

[2] R. van Bevern, T. Fluschnik, O. Yu. Tsidulko, On approximate data reduc-
tion for the Rural Postman Problem: Theory and experiments, Networks
76 (2020) 485–508, doi:10.1002/net.21985.

[3] R. van Bevern, R. Niedermeier, M. Sorge, M. Weller, Complexity of arc
routing problems, in: Á. Corberán, G. Laporte (Eds.), Arc Routing, SIAM,
volume 20 of MOS-SIAM Series on Optimization, chapter 2, 2015, pp.
19–52, doi:10.1137/1.9781611973679.ch2.

[4] R. van Bevern, V. A. Slugina, A historical note on the 3/2-approximation
algorithm for the metric traveling salesman problem, Historia Mathematica
53 (2020) 118–127, doi:10.1016/j.hm.2020.04.003.

[5] E. A. Cabral, M. Gendreau, G. Ghiani, G. Laporte, Solving the hierar-
chical Chinese postman problem as a rural postman problem, European
Journal of Operational Research 155 (2004) 44–50, doi:10.1016/s0377-
2217(02)00813-5.

[6] N. Christofides, The optimum traversal of a graph, Omega 1 (1973) 719–
732, doi:10.1016/0305-0483(73)90089-3.

[7] N. Christofides, Worst-case analysis of a new heuristic for the traveling
salesman problem, Management Science Research Report 388, Carnegie-
Mellon University, Pittsburgh, Pennsylvania, USA, 1976.

[8] M. Dror, H. Stern, P. Trudeau, Postman tour on a graph with precedence re-
lation on arcs, Networks 17 (1987) 283–294, doi:10.1002/net.3230170304.

[9] J. Edmonds, E. L. Johnson, Matching, Euler tours and the Chinese postman,
Mathematical Programming 5 (1973) 88–124, doi:10.1007/BF01580113.

[10] H. A. Eiselt, M. Gendreau, G. Laporte, Arc routing problems, part II:
The Rural Postman Problem, Operations Research 43 (1995) 399–414,
doi:10.1287/opre.43.3.399.

[11] H. Fleischner, Eulerian Graphs and Related Topics: Part 1, Volume 2,
North-Holland, Amsterdam, The Netherlands, volume 50 of Annals of
Discrete Mathematics, chapter X, 1991, pp. X.1–X.14.

[12] G. N. Frederickson, Approximation Algorithms for NP-hard Routing
Problems, Ph.D. thesis, University of Maryland Graduate School, College
Park, Maryland, USA, 1977.

[13] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, Freeman, New York, USA, 1979.

[14] G. Ghiani, G. Improta, An algorithm for the hierarchical Chinese
postman problem, Operations Research Letters 26 (2000) 27–32,
doi:10.1016/S0167-6377(99)00046-2.

[15] G. Gutin, M. Wahlström, A. Yeo, Rural Postman parameterized by the
number of components of required edges, Journal of Computer and System
Sciences 83 (2017) 121–131, doi:10.1016/j.jcss.2016.06.001.

[16] C. Hierholzer, C. Wiener, Ueber die Möglichkeit, einen Linienzug ohne
Wiederholung und ohne Unterbrechung zu umfahren, Mathematische An-
nalen 6 (1873) 30–32, doi:10.1007/BF01442866.

[17] J. Hoogeveen, Analysis of Christofides’ heuristic: Some paths are more
difficult than cycles, Operations Research Letters 10 (1991) 291–295,
doi:10.1016/0167-6377(91)90016-I.

[18] T. C. Hu, Parallel sequencing and assembly line problems, Operations
Research 9 (1961) 841–848, doi:10.1287/opre.9.6.841.

[19] R. Impagliazzo, R. Paturi, F. Zane, Which problems have strongly expo-
nential complexity?, Journal of Computer and System Sciences 63 (2001)
512–530, doi:10.1006/jcss.2001.1774.

[20] R. M. Karp, Reducibility among combinatorial problems, in: R. E. Miller,
J. W. Thatcher, J. D. Bohlinger (Eds.), Complexity of Computer Computa-
tions, The IBM Research Symposia Series, Springer, 1972, pp. 85–103,
doi:10.1007/978-1-4684-2001-2_9.

[21] P. Korteweg, T. Volgenant, On the hierarchical Chinese postman problem
with linear ordered classes, European Journal of Operational Research 169
(2006) 41–52, doi:10.1016/j.ejor.2004.06.003.

[22] J. B. Kruskal, On the shortest spanning subtree of a graph and the traveling
salesman problem, Proceedings of the American Mathematical Society 7
(1956) 48–48, doi:10.1090/s0002-9939-1956-0078686-7.

[23] G. Laporte, The undirected Chinese postman problem, in: Á. Cor-
berán, G. Laporte (Eds.), Arc Routing, SIAM, volume 20 of
MOS-SIAM Series on Optimization, chapter 2, 2015, pp. 53–64,
doi:10.1137/1.9781611973679.ch3.

[24] E. Lawler, Combinatorial Optimization—Networks and Matroids, Holt,
Rinehart and Winston, New York, 1976.

[25] J. K. Lenstra, A. H. G. Rinnooy Kan, On general routing problems, Net-
works 6 (1976) 273–280, doi:10.1002/net.3230060305.

[26] O. Michail, P. G. Spirakis, Traveling salesman problems in tem-
poral graphs, Theoretical Computer Science 634 (2016) 1–23,
doi:10.1016/j.tcs.2016.04.006.

[27] C. Papadimitriou, M. Yannakakis, Scheduling interval-ordered tasks,
SIAM Journal on Computing 8 (1979) 405–409, doi:10.1137/0208031.

[28] A. I. Serdyukov, O zadache nakhozhdeniya minimal’nogo Eilerova
mul’tigrafa dlya svyaznogo grafa so vzveshennymi rebrami, Upravlyae-
mye sistemy 12 (1974) 61–67, URL http://nas1.math.nsc.ru/aim/
journals/us/us12/us12_008.pdf.

[29] A. I. Serdyukov, O nekotorykh ekstremal’nykh obkhodakh v grafakh,
Upravlyaemye sistemy 17 (1978) 76–79, URL http://nas1.math.nsc.
ru/aim/journals/us/us17/us17_007.pdf.

[30] V. V. Servakh, Effektivno razreshimyi sluchai zadachi kalendarnogo
planirovaniya s vozobnovimymi resursami, Diskretnyj Analiz i Issle-
dovaniye Operatsij 7 (2000) 75–82, URL http://mi.mathnet.ru/
da294.

[31] R. Zenklusen, A 1.5-approximation for path TSP, in: T. M.
Chan (Ed.), Proc. SODA 2019, SIAM, 2019, pp. 1539–1549,
doi:10.1137/1.9781611975482.93.

8

https://doi.org/10.1007/978-3-319-44914-2_9
https://doi.org/10.1002/net.21985
https://doi.org/10.1137/1.9781611973679.ch2
https://doi.org/10.1016/j.hm.2020.04.003
https://doi.org/10.1016/s0377-2217(02)00813-5
https://doi.org/10.1016/s0377-2217(02)00813-5
https://doi.org/10.1016/0305-0483(73)90089-3
https://doi.org/10.1002/net.3230170304
https://doi.org/10.1007/BF01580113
https://doi.org/10.1287/opre.43.3.399
https://doi.org/10.1016/S0167-6377(99)00046-2
https://doi.org/10.1016/j.jcss.2016.06.001
https://doi.org/10.1007/BF01442866
https://doi.org/10.1016/0167-6377(91)90016-I
https://doi.org/10.1287/opre.9.6.841
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1016/j.ejor.2004.06.003
https://doi.org/10.1090/s0002-9939-1956-0078686-7
https://doi.org/10.1137/1.9781611973679.ch3
https://doi.org/10.1002/net.3230060305
https://doi.org/10.1016/j.tcs.2016.04.006
https://doi.org/10.1137/0208031
http://nas1.math.nsc.ru/aim/journals/us/us12/us12_008.pdf
http://nas1.math.nsc.ru/aim/journals/us/us12/us12_008.pdf
http://nas1.math.nsc.ru/aim/journals/us/us17/us17_007.pdf
http://nas1.math.nsc.ru/aim/journals/us/us17/us17_007.pdf
http://mi.mathnet.ru/da294
http://mi.mathnet.ru/da294
https://doi.org/10.1137/1.9781611975482.93

	1 Introduction
	2 Preliminaries
	3 NP-hardness for HCPP(c) with one incomparable class
	4 Relation between HCPP(l) and the Rural Postman
	5 A 5/3-approximation algorithm for HCPP(l)
	6 Parameterized algorithms for HCPP(l)
	7 Conclusion

