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Abstract

I relate bipartite graph matchings to stable matchings. I prove
a necessary and sufficient condition for the existence of a saturating
stable matching, where every agent on one side is matched, for all
possible preferences. I extend my analysis to perfect stable matchings,
where every agent on both sides is matched.

1 Introduction

A bipartite graph is a graph G with two disjoint vertex sets, X and Y , and
an edge set E, such that there is no edge connecting two vertices in the same
set. A common goal in bipartite graphs is to connect these two sets in a
matching, defined as a subset of E such that no two edges share a vertex. If
a vertex is the endpoint of an edge in M , we say it is matched ; otherwise it
is unmatched. [West, 1996]

Hall [1935] gives a necessary and sufficient condition for a bipartite graph
to have an X-saturating matching, where every vertex x ∈ X is matched.

When we imagine vertices as agents and allow them to have preferences
over the other side, we have Gale and Shapley [1962]’s classic stable marriage
problem. A matching is stable if there does not exist a vertex pair (x, y) ∈
X×Y which are not matched together but prefer each other to their partner
(note that their partner may be no one - i.e. they are unmatched) under
that matching; we call this a blocking pair.

Gale and Shapley [1962] prove there always exists a stable matching,
giving a constructive proof by developing their famed deferred acceptance
algorithm. Since their paper, the study of matchings has been taken on by
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economists in a rather different way than they are studied in graph theory,
focusing on stability rather than combinatorics [Roth and Sotomayor, 1992].

So, we have two major classical theorems looking at matchings from
two different perspectives. Hall [1935] gives a theorem for the existence
of a saturating matching (not necessarily stable), while Gale and Shapley
[1962] give a theorem for the existence of a stable matching (not necessarily
saturating).

As matching applications proliferate, it may be desirable from a social
perspective to have every agent matched (e.g., match everyone to a vaccine
or match every medical student to a residency). Hence the question arises:
can we find saturating stable matchings?

2 Main result

Consider a bipartite graph G = (X + Y,E). The neighborhood N(x) of a
vertex x is the set of vertices adjacent to, or sharing an edge with, x, and the
neighborhood of a set of vertices is the union of each vertex’s neighborhood.
The degree deg(x) is the number of adjacent vertices, or |N(x)|.

Define P to be a set of preference relations, the elements of which are
each vertex’s strict preference relation over the vertices in its neighborhood
(it’s acceptable partners). If x1 prefers y1 to y2, we write x1 : y1 ≻ y2. Every
vertex prefers an acceptable vertex to being unmatched, and prefers being
unmatched to an unacceptable vertex. The set of all possible preference
instances is P. SM means stable matching below.

Define the following two conditions for some vertex x:

|N(N(x))| ≤ |N(x)| (1)

∃y ∈ N(x)(deg(y) = 1) (2)

Lemma 1. If some x ∈ X satisfies condition (1) or (2) (or both), then it
is matched in all SMs in all preference instances.

Proof. For contradiction’s sake, assume that this x is unmatched in some
SM. By assumption, this x satisfies |N(N(x))| ≤ |N(x)| or ∃y ∈ N(x)(deg(y) =
1), or both.

Case 1: ∃y ∈ N(x)(deg(y) = 1) Observe that this y is unmatched,
as it only has one acceptable vertex, and that is x, which
is unmatched. This x and y form a blocking pair so this
matching is unstable, hence contradiction.
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Case 2: ∄y ∈ N(x)(deg(y) = 1) xmust satisfy |N(N(x))| ≤ |N(x)|.
Observe that x is only unmatched if all of the vertices
in N(x) are already matched. Since vertices N(x) can
only be matched to vertices in N(N(x)), this means that
|N(N(x))| − 1 (the number of vertices in N(N(x)) exclud-
ing x itself) vertices are matched to |N(x)| vertices. By the
pigeonhole principle, this is a contradiction.

This exhausts all the cases.

Lemma 2. If some x ∈ X does not satisfy condition (1) nor (2), then there
exists some preference instance P ∈ P under which it is unmatched in every
SM.

Proof. Observe that this x is such that |N(N(x))| > |N(x)| and (∀y ∈
N(x))(deg(y) > 1).1

By the assumption, there exists some x ∈ X that satisfies |N(N(x))| >
|N(x)| and ∀y ∈ N(x)(deg(y) > 1). It suffices to show there exists a P

which leaves x unmatched.
Consider the following preference instance P :

• ∀a ∈ N(x) : i ≻ x, where i ∈ N(N(x))− x

• ∀b ∈ N(N(x)) − x : j ≻ k, where j ∈ N(x) and k ∈ N(b)−N(x)

• all other preference relations are allowed to vary

Roughly speaking, P states that all of x’s options prefer all their other
acceptable vertices to x itself, and that all of x’s competitors prefer to be
matched to a vertex in N(x) over any other vertex that they find acceptable.

Now we can show that x is unmatched in all SMs. Assume for contradic-
tion’s sake that there is some SM M in which x is matched to some vertex
in N(x). Observe that ∀v ∈ N(N(x))− x are matched to a vertex in N(x).
If some v wasn’t, then, due to the stated preferences, and the fact that all
vertices in N(x) have deg > 1 by the second part of the assumption, said v

would form a blocking pair with some vertex in N(x).
However, this means that |N(N(x))| vertices (all of x’s competitors plus

x itself) are matched to |N(x)| vertices. But, since |N(N(x))| > |N(x)|, by
the pigeonhole principle, this is a contradiction.

Therefore, x is unmatched in all SMs under P .

1Note that the negation of deg(y) = 1 is deg(y) > 1, because it is in some vertex’s
neighborhood, and so deg(y) > 0.
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Now the main result.

Theorem 1. Every SM is X-saturating for all preference instances if and
only if for all x ∈ X, conditions (1) or (2) (or both) hold.

Proof. First, the if direction. For all x ∈ X, conditions (1) or (2) or both
hold. By Lemma 1, the desired statement holds.

Next, the only if direction. The contrapositive, where some x satisfies
neither condition, holds by Lemma 2.

2.1 Equivalent statements

For the market designer, it is not necessarily important if all SMs are satu-
rating, but if at least one exists. Further, in a real-world matching market
that uses the Gale-Shapley algorithm, a very particular SM is yielded, which
is either the X-optimal or Y -optimal SM (depending on the algorithm con-
figuration)2, so the designer may be particularly interested in whether the
outputted SM is saturating.

Interestingly, these are really all the same question, thanks to the fol-
lowing.

Theorem (McVitie and Wilson [1970]). “In a marriage problem of n men
and k women if any person is unmarried in one stable marriage solution he
or she will be unmarried in all the stable solutions.”

So, if a single SM isX-saturating (no one is “unmarried”), then any other
SM is also X-saturating (including the X-optimal one, and the X-pessimal
one), and indeed all of them.

Lemma 3. For a given preference instance P , an arbitrary SM is X-
saturating if and only if all SMs are X-saturating.

Proof. Follows from McVitie and Wilson [1970].

Corollary 1. For a given preference instance P , let the set of all SMs be
M. Then, for all preference instances, an arbitrary M ∈ M is X-saturating
if and only if for all x ∈ X, at least one of conditions (1) and (2) hold.

Proof. Follows from Theorem 1 and Lemma 3.

2The X-optimal SM is such that ∀x ∈ X prefers it to every other SM. The X-pessimal
SM is such that ∀x ∈ X prefers every other SM to it. The X-pessimal SM is also the
Y -optimal SM [Roth and Sotomayor, 1992].
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Figure 1: Examples of bipartite graphs
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Thus, the biconditional in Theorem 1 is the same for the existence of an
X-saturating matching, the X-optimal SM being X-saturating, or for any
arbitrary SM the market designer is interested in. This equivalence holds
for subsequent results in this paper, per Lemma 3.

3 Applications

3.1 Demonstrative examples

Looking at Figure 1a, conditions (1) and (2) are violated for x2, since
|N(N(x2))| = 2 > |N(x2)| = 1, so X-saturating SMs do not exist for all
preference instances.

In Figure 1b, which simply added one vertex to 1a, both conditions now
hold for x2.

Lastly, in Figure 1c, condition (1) holds for x1 and x2. While x3 violates
condition (1), it does satisfy (2), as deg(y3) = 1 and y3 ∈ N(x3).

3.2 Perfect matchings

Gale and Shapley [1962] considered |X| = |Y | = n and every x ∈ X is
acceptable to y ∈ Y (and vice versa) (i.e. preferences are complete). In
graph theory, this is a complete bipartite graph. Gale and Shapley [1962]
say that no vertex is unmatched after the execution of their algorithm. In
graph-theoretic terms, for all preference instances, the SM given by their
algorithm is perfect, meaning that every vertex is matched.

This is actually implied by Theorem 1, as ∀x ∈ X and ∀y ∈ Y satisfy
condition (1): ∀x ∈ X, |N(x)| = n and |N(N(x))| = n (due to being a
complete bipartite graph) so condition (1) is fulfilled, and similarly ∀y ∈
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Figure 2: A connected and a disconnected matching market
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Y . Therefore, by Theorem 1, for all preference instances, every SM is X-
saturating and Y -saturating, and hence perfect.

In fact, if our matching market is in one “piece”, then the only way to
obtain a perfect matching if |X| = |Y | = n is if preferences are complete.
In Figure 2b, we can visually see that there are two different pieces - called
components in graph theory. Even though preferences are incomplete (e.g.,
x3 does not find y1 acceptable), clearly a perfect SM will always exist.

I first consider graphs with only one component, like Figure 2a. A graph
with only one component is called a connected graph, defined by a path
existing between any two vertices [West, 1996].

Theorem 2. Given a connected bipartite graph G = (X +Y,E) with |X| =
|Y | = n, all SMs are perfect for all preference instances if and only if G is
a complete bipartite graph.

Proof. First, the if direction. IfG is a complete bipartite graph, then ∀x ∈ X

and ∀y ∈ Y satisfy condition (1), as discussed above, so by Theorem 1, all
SMs in all preference instances are X-saturating and Y -saturating, meaning
perfect.

In the other direction, proceed by induction on n. For the base case
n = 1, there is one vertex each in X and Y , and they have an edge as G is
connected. Clearly, this is a complete bipartite graph.

Next, assume that for some n = k, if all SMs are perfect for all preference
instances, then Gk is a complete bipartite graph.

We wish to show that for n = k + 1, Gk+1 is also a complete bipartite
graph. Gk+1 is formed by adding a vertex to each X and Y , called x and
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y respectively. Because Gk+1 is connected, at least one of x or y must
be connected to a vertex other than y or x respectively. Without loss of
generality, say it is x, which is connected to some not-y vertex v ∈ Y .

Observe that |N(v)| = k + 1, and so |N(N(x))| = k + 1. x must be
matched in all SMs in all preference instances. By the contrapositive of
Lemma 2, x must satisfy k + 1 ≥ |N(x)| ≥ |N(N(x))| = k + 1, and so
|N(x)| = k + 1, which means x is connected to every vertex in Y .

By similar reasoning, y is also connected to every vertex in X, and hence
we have a complete bipartite graph.

Thus, by induction, the “only if” statement holds.

I now extend Theorem 2 for the case of all graphs, not just connected
ones. Looking at Figure 2b, the two components individually exhibit com-
plete preferences over vertices in the same component. There is a special
name for such components: these are called bicliques [West, 1996]. In a
biclique, every vertex is connected to every vertex in the other set (a gener-
alization of cliques to bipartite graphs). A complete bipartite graph is itself
a biclique.

Corollary 2. Given a bipartite graph G = (X + Y,E) with |X| = |Y |, all
SMs are perfect for all preference instances if and only if every component
of G is a biclique.

Proof. Follows by applying Theorem 2 to each component of the graph.

3.3 Matching with compatibility constraints

Maaz and Papanastasiou [2020] developed the matching with compatibility
constraints problem by studying the Canadian medical residency match and
point out that positions are designated as either for English speakers or
French speakers; some students, being bilingual, can apply to either. Theo-
rem 1 allows us to easily generalize their model to n compatibility classes.

The vertex set X is divided into n possibly overlapping sets X = A1 ∪
A2 ∪A3... ∪An. The set Ai −∪j 6=iAj must be nonempty for all i, j ∈ [1, n],
meaning that there must be at least one vertex in each class that is not
in any other class3. The set Y is partitioned into n disjoint subsets Y =
B1∪B2...∪Bn. See Figure 3 for a schematic. A vertex can not find another
vertex acceptable if they do not belong to the same class; otherwise they
may, but not necessarily. In the special case of compatibility-wise complete
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(or CW-complete) preferences that Maaz and Papanastasiou [2020] study,
every vertex finds every vertex in the same class acceptable.

Theorem 3. With n compatibility classes, every SM is X-saturating in
all instances of CW-complete preferences if and only if |Bi| ≥ |Ai| for all
1 ≤ i ≤ n.

Proof. First, the if direction. Take an arbitrary x ∈ X. It belongs to one
or more compatibility classes; let this list of classes be stored in the vector
q. Then |N(x)| =

∑
i∈q |Bi|. Further, observe that N(N(x)) is the set of all

vertices in X that also belong to the same compatibility classes, including x

itself. Thus, |N(N(x))| =
∑

i∈q |Ai|. Because |Bi| ≥ |Ai| for all 1 ≤ i ≤ n,
condition (1) holds for this x, and indeed for all x. By Lemma 1, the result
follows.

Next, the “only if” direction. Assume for contradiction’s sake that there
exists a compatibility class i such that |Bi| < |Ai|. There exists at least one
vertex x ∈ X that is in the ith compatibility class and not in any other class.
Then, |N(x)| = |Bi| < |Ai| = |N(N(x))|, so it does not fulfill condition (1).
And, it does not fulfill condition (2) either because it cannot be connected
to a vertex y with degree of 1, as y would violate CW-complete preferences,
unless x is the only vertex, but that violates |Bi| < |Ai|. By Lemma 2, there
exists a preference instance with a SM that is not X-saturating, which is a
contradiction.

3This is a generalization of Maaz and Papanastasiou [2020]’s restriction that there must
be a non-zero amount of students that speak only English and a non-zero amount that
speak only French.

8



Figure 3: Matching with compatibility constraints with 2 and 3 classes.
Lines indicate compatibility between every vertex in the two subsets touched
by the line’s endpoints; under CW-complete preferences, lines also indicate
acceptability.
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