
ar
X

iv
:2

10
2.

09
43

2v
2

 [
cs

.D
S]

 4
 S

ep
 2

02
1

A Stronger Impossibility for Fully Online Matching∗

Alexander Eckl1, Anja Kirschbaum1, Marilena Leichter1, Kevin Schewior2

1 Advanced Optimization in a Networked Economy (AdONE), Technical University of Munich, Germany
2 Department of Mathematics and Computer Science, University of Cologne, Germany

Abstract

We revisit the fully online matching model (Huang et al., J. ACM, 2020), an extension of
the classic online matching model due to Karp, Vazirani, and Vazirani (STOC 1990), which has
recently received a lot of attention (Huang et al., SODA 2019 and FOCS 2020), partly due to
applications in ride-sharing platforms. It has been shown that the fully online version is harder
than the classic version for which the achievable competitive ratio is at most 0.6317, rather than
precisely 1 − 1/e ≈ 0.6321. We introduce two new ideas to the construction. By optimizing
the parameters of the modified construction numerically, we obtain an improved impossibility
result of 0.6297. Like the previous bound, the new bound even holds for fractional (rather than
randomized) algorithms on bipartite graphs.

1 Introduction

In the fully online matching model due to Huang et al. [2], the vertices of an undirected graph
G = (V,E) arrive over time. Every vertex has a deadline at which it departs. At any time, two
adjacent vertices can be matched if both of them have arrived, neither of them has departed, and
neither of them has been previously matched. An online algorithm may base its decisions only on
the subgraph of G induced by the vertices that have already arrived, the deadlines of these vertices,
and, in the case of a randomized algorithm, random bits.

The classic model due to Karp, Vazirani, and Vazirani [6] is a special case. Here, additionally, G
is bipartite, initially all vertices from one side arrive, and then the vertices from the other side arrive.
The vertices from the former side only depart at the very end. The vertices from the latter side
depart even before the next vertex from that side arrives, or, equivalently, they must be matched
either upon arrival or never. The classic model and its variants have been extensively studied prior
to the work of Huang et al. [2] and have many applications, e.g., in online advertising [7]. However,
a scenario not addressed by these models is, e.g., that of ride-sharing platforms in which customers
and compatible drivers have to be matched, but both customers and drivers enter and leave the
system at arbitrary times. This aspect is addressed by the fully online model.

In both models, the performance of an online algorithm is measured through standard com-
petitive analysis with respect to the total number of matches performed by the algorithm over the
entire time horizon: A randomized online algorithm is called α-competitive if, for all instances,
the expected number of matches it performs is at least an α fraction of the number of matches an
omniscient algorithm could have performed. It is well known [6, 1] that for the classic model the
largest competitive ratio achievable by randomized algorithms is 1 − 1/e ≈ 0.6321, ignoring o(1)
terms as |V | → ∞. It can be obtained through the Ranking algorithm. The same holds true for

∗Funding: This work was supported in part by the Alexander von Humboldt Foundation with funds from the
German Federal Ministry of Education and Research (BMBF) and by the Deutsche Forschungsgemeinschaft (DFG),
GRK 2201.
Email addresses: alexander.eckl@tum.de (Alexander Eckl), anja.kirschbaum@tum.de (Anja Kirschbaum),
marilena.leichter@tum.de (Marilena Leichter), kschewior@gmail.com (Kevin Schewior)

1

http://arxiv.org/abs/2102.09432v2

α

0.5211
gen. int. LB

Huang et al. [2]

0.5690
bip. int. LB

Huang et al. [4]

0.5926
gen. frac. LB

Huang et al. [4]

this work

bip. frac. UB
0.6297

Huang et al. [2]
bip. frac. UB

0.6317

classic [6, 5]
bip. frac. UB

0.6321

Figure 1: Known bounds on the best-possible competitive ratio α for fully online matching. We
distinguish between bipartite and general graphs as well as fractional and integral algorithms.

the fractional relaxation of the model in which a (w.l.o.g. deterministic) algorithm may fractionally
match vertices, thus obtaining a fractional matching [5].

In their seminal work on fully online matching, Huang et al. [2] prove that a generalization of the
Ranking algorithm to general graphs is 0.5211-competitive, beating the trivial baseline of 0.5, and
that no fractional algorithm can achieve a guarantee better than 0.6317 even on bipartite graphs,
also beating the baseline of 1− 1/e. In follow-up work, Huang et al. [3, 4] revisit the fractional and
bipartite cases. The state of the art is a 0.5926-competitive fractional algorithm on general graphs [4]
and a 0.5690-competitive integral (as opposed to fractional) algorithm on bipartite graphs [4]. In
particular, the impossibility of 0.6317 is still the state of the art, even for integral algorithms on
general graphs. For further related work, we refer to the literature review by Huang et al. [2] and
the slightly older (but in-depth) survey by Metha [7].

1.1 Our Contribution

In this work, we give an improvement of the impossibility from 0.6317 by Huang et al. [2] to
0.6297. Again, this bound also holds for fractional algorithms and on bipartite graphs. While the
construction of Huang et al. is not explicitly analyzed for fractional algorithms, the analysis can be
easily adapted. In contrast, we explicitly analyze fractional algorithms. We do so without using
Yao’s principle, avoiding any difficulties that would arise from an infinite strategy space. We show
the evolution of this impossibility as well as the state-of-the-art competitive ratios in Figure 1.

The construction of Huang et al. [2] starts off with presenting a tree level by level starting from
the root. The root has degree λ+ 1, and exactly one of its children is a leaf. Which of the children
the designated leaf is, however, remains unknown until the root has departed. While the optimum
can match the leaf vertex to the root, the online algorithm cannot do better than matching the
first-level vertices to the root with identical fractional value, leaving some fraction of the leaf vertex
permanently unmatched. The construction is then repeated with the λ non-leaf children playing the
role of the root, for a total of h levels. Finally, level h of the tree is augmented with the later-arriving
side of the “triangle” construction of Karp, Vazirani, and Vazirani [6]. It can be shown that the
extra tree puts the algorithm in a worse position and that choosing λ = 7 and h → ∞ yields the
bound of 0.6317.

The first ingredient to our result is the observation that this result can be reproduced with a
slightly simpler construction: Rather than constructing a tree, one can also construct a sequence
of bicliques. Specifically, we start with k vertices (corresponding to the root) on the first level and
(λ + 1)k vertices on the second level, connected by a biclique. After the vertices on the previous
level depart, it is revealed which of the λk vertices form a biclique with (λ+ 1)λk new vertices on
the next level. Again, this process is repeated for a total of h steps and the “triangle” construction

2

is added at the end. Note that now we are also allowed to choose any rational value for λ as long
as we make k large enough. In fact, choosing λ ≈ 7.2336 already slightly improves the bound by
about 9.5 · 10−7.

The observation leading to our second idea is that not all levels play exchangeable roles in the
construction. This is clear for the last level, which is part of the triangle construction. Further,
we will see the following for an optimal algorithm: Increasing the number of children in any level
i changes the average matching value upon departure in any level j with i < j < h. Indeed, this
matching value decreases if j − i is odd and increases otherwise. This suggests that choosing a
uniform λ for all levels is unlikely to yield a tight impossibility.

In general, we replace λ with different factors γ1, . . . , γℓ for ℓ levels between the first h levels
and the “triangle” construction. After taking the limit h → ∞, we express the precise resulting
competitive ratio as a function of λ, γ1, . . . , γℓ. Unfortunately, this function is already non-convex
for ℓ = 0, and the explicit formula gets quite complicated even for small values of ℓ. We therefore
have to resort to numerical optimization. Specifically, we obtain the bound of 0.6297 through
numerical optimization with Matlab. In this way, although we cannot prove that 0.6297 is the
strongest impossibility achievable with our approach, the results of the numerical optimization do
hint at that, and the claimed impossibility is provably correct.

We note that the numerical values we find for λ, γ1, . . . , γℓ back our intuition that the optimal
value heavily depends on whether the corresponding level is the last one, and otherwise its parity.

2 Description of the Construction

In this section, we formally describe the construction that is used to show the improved impossibility.
The construction is parameterized by integers h, ℓ ≥ 0 and k ≥ 1 as well as fractional numbers λ > 1
and γj > 1 for all j ∈ [ℓ] := {1, . . . , ℓ}. We first define the bipartite graph G, visualized in Figure 2,
underlying the construction and then specify the arrival and departure times of the vertices.

The vertex set of G can be partitioned into 2·(h+ℓ+1) disjoint sets Ui, Vi for all i ∈ {0, . . . , h+ℓ}.
We have |Ui| = |Vi| for each such i. The set U0 consists of k vertices. With increasing index, the
number of vertices increases for the first h steps by a factor of λ and in the j-th subsequent step by
a factor of γj . Formally,

|Ui| = λik ∀i ∈ {0, . . . , h},

|Uh+j| = γj|Uh+j−1| ∀j ∈ {1, . . . , ℓ}.

We note that by the continuous nature of the variables γj and λ, some of the sizes |Ui| = |Vi| might
take non-integer values. We avoid this by choosing the parameter k in dependence of h large enough
such that all of these numbers are integer.

We introduce edges such that (Ui, Vi∪Ui+1) is a complete bipartite graph for all i ∈ {0, . . . , h+ℓ−1}.
The edges between Uh+ℓ and Vh+ℓ form an exception. Due to this exception, we define A := Uh+ℓ and
B := Vh+ℓ. In Section 3, we describe how the adversary chooses an ordering of A = {a1, . . . , a|A|}
and B = {b1, . . . , b|B|}. Then ai and bj are connected by an edge if and only if i ≥ j. The sub-
graph of G induced by A ∪B has been previously used to show impossibilities for online matching
problems [6, 5]. This completes the description of G.

To complete the description of our online construction, we specify the arrival and departure
times of the vertices in the graph G. At the beginning, all vertices in U0 arrive simultaneously. Let
i ∈ {0, . . . , h+ℓ−1} and assume all vertices in Uj for j ≤ i and in Vj for j ≤ i − 1 have already
arrived, and all of these vertices not in Ui have departed again. Then, all vertices in Ui+1 and Vi

(by definition, along with their edges to Ui) arrive simultaneously. Next, the vertices in Ui and Vi−1

(if i ≥ 1) depart simultaneously. At this point, it is impossible for an algorithm to differentiate

3

U0

V0

U1

V1

Uh+ℓ−1

Vh+ℓ−1

Uh+ℓ = A

Vh+ℓ = B

Figure 2: Visualization of the bipartite graph G.

between the neighbors of Ui, in particular identifying which of them belong to Ui+1 and which to
Vi. In Section 3, we describe how the adversary can assign these vertices to Ui+1 and Vi based on
the matching decisions of the algorithm. If i ≤ h+ℓ−2, the initial assumption is reestablished for
the next-larger index, and the arrivals and departures happen as described. Otherwise, A = Uh+ℓ

has now arrived, and all other previously arrived vertices have departed. Then the vertices in B
arrive in order of b1, . . . , b|B|, and every vertex departs again immediately after its arrival. Finally,
the vertices A and Vh+ℓ−1 depart simultaneously. Note that all edges of the graph respect release
and departure times in the sense that, for all of them, there is a time when both their endpoints
have arrived but not departed.

The graph has a perfect matching which is the union of the following perfect matchings: From
the complete bipartite subgraphs induced by Ui ∪ Vi we choose an arbitrary perfect matching. For
A and B we choose the perfect matching containing (ai, bi) for all i ∈ [|A|]. We also remark that
U :=

⋃h+ℓ
i=0 Ui and V :=

⋃h+ℓ
i=0 Vi, however, do not correspond to the two sides of the bipartite graph.

3 Derivation of the Upper Bound

Using the construction from the previous section, we show our result in this section.

Theorem 3.1. The competitive ratio of any fractional algorithm for fully online matching is at
most 0.6297, even on bipartite graphs.

To prove this result, we have to bound both the value of the offline optimum and that of any
online algorithm. Clearly, since G has a perfect matching and its vertex set is U∪V where |U | = |V |,
we have OPT = |U | = |V |.

Now let ALG be any fractional online algorithm. For all vertices in our graph, we determine the
fraction to which they are matched. For simplicity, we make two assumptions that are without loss
of generality. First, we assume that the algorithm only performs matches along an edge whenever
one of its endpoints departs. Furthermore, when a vertex departs, we assume that the algorithm
fully matches it unless all of its neighbors are fully matched. It can be seen by a simple exchange
argument that the latter assumption is indeed without loss of generality (see also [2]).

Note that we only need to consider the matching value distributed at the departure times of
vertices in U0 ∪ · · · ∪ Uh+ℓ−1 ∪ B. We do so in order of departure of the respective vertices, so we
start with Ui−1 for i ∈ {1, . . . , h+ℓ}. Recall that, when these vertices reach their deadlines, their not
departed neighbors N+(Ui−1) := Ui∪Vi−1 are indistinguishable for the algorithm. For simplicity, we

4

would like to analyze the water-filling algorithm [5] ALGwf which also treats these vertices equally,
i.e., matches them all to the same fraction. It may, however, conceivably help the algorithm to
match vertices to different fractions. In the following, we first show that this is (essentially) not the
case.

We will define an adversary that assigns the vertices in N+(Ui−1) to Ui and Vi−1 (respecting
|Ui−1| = |Vi−1|) based on the matching decisions of the algorithm. A first approach may be to just
assign those vertices to Vi−1 that have been matched the least. We will, however, later need a lower
and an upper bound on the value to which Ui has been matched. The latter approach only gives
us the lower bound.

We define pi−1 such that the total matching value of the vertices in Ui−1 just after the depar-
ture of Ui−2 is pi−1 · |Ui−1|. In other words, pi−1 is the average matching value across all (again,
conceivably different) matching values of vertices in Ui−1 at that point. We define p0 = 0.

Note that, upon departure of Ui−1, ALGwf would assign a total fractional matching value of

d := (1− pi−1) · |Ui−1|
|Ui|

|N+(Ui−1)|
(1)

to any set of |Ui| vertices in N+(Ui−1). Our adversary simply chooses an assignment of N+(Ui−1)
to Ui and Vi−1 such that pi · |Ui| is as close as possible to d. The following lemma shows that the
error becomes vanishingly small.

Lemma 3.2. Let i ∈ [h+ℓ] and define ni := |Ui|. For any given distribution of matching value to
N+(Ui−1) by the algorithm, there is an adversary that chooses sets Ui and Vi−1 such that

pi =
1− pi−1

λ+ 1
+ ε1(i), for i ≤ h and

pi =
1− pi−1

γj + 1
+ ε1(h+j), for i = h+j, j ∈ [ℓ],

where the error term ε1(i) fulfills |ε1(i)| ≤
1
ni
.

Proof. For now, let i ∈ [h] and let a distribution of the matching value from Ui−1 to N+(Ui−1) be
given. Let m(Ui) and m(Vi−1) be the total matching value received by Ui and Vi−1, respectively.
The adversary decides on a partition Ui ∪̇ Vi−1 of N+(Ui−1). We let the adversary partition the
vertices such that m(Ui) is as close as possible to d as in Equation (1). Note that here

d = (1− pi−1)|Ui−1|
|Ui|

|N(Ui−1)|
= |Ui|

1− pi−1

λ+ 1
.

Note that this value does not depend on the explicit partition since |Ui| has a prescribed size which
is not chosen by the adversary. It is clear that d corresponds to the total matching value assigned
to Ui if all vertices in N+(Ui−1) have received the same amount of matching value. It turns out
that, independently of the assignment by the algorithm, it is always possible to assign sets Ui and
Vi−1 with the correct cardinalities such that

d− 1 ≤ m(Ui) ≤ d+ 1. (2)

To verify this claim, assume for contradiction that Ûi is the set with minimal distance
∣
∣
∣m(Ûi)− d

∣
∣
∣ >

1. Additionally, let V̂i−1 = N+(Ui−1) \ Ûi be the complementary set in the partition.
Firstly, assume that m(Ûi) is larger than d. Let u ∈ Ûi be the element of Ûi with maximum

matching value and let v ∈ V̂i−1 be the element in V̂i−1 with minimum matching value. It must

5

hold that 1 ≥ m(u) > m(v) ≥ 0, otherwise the matching m(Ûi) cannot exceed the weighted average
d. This implies 0 < m(u)−m(v) ≤ 1. Hence when we exchange u and v in the sets Ûi and V̂i−1, we
have m(Ûi\{u}∪{v})−d = m(Ûi)−m(u)+m(v)−d and 0 ≤ m(Ûi)−d−(m(u)−m(v)) < m(Ûi)−d,

so
∣
∣
∣m(Ûi \ {u} ∪ {v}) − d

∣
∣
∣ <

∣
∣
∣m(Ûi)− d

∣
∣
∣ , a contradiction to the minimality of the distance.

Secondly, when m(Ûi) is smaller than d, let u ∈ Ûi be the element of Ûi with minimum matching
value and let v ∈ V̂i−1 be the element in V̂i−1 with maximum matching value. It holds 0 ≤ m(u) <

m(v) ≤ 1, and hence we can again switch u and v to receive
∣
∣
∣m(Ûi \ {u} ∪ {v}) − d

∣
∣
∣ <

∣
∣
∣m(Ûi)− d

∣
∣
∣.

Therefore, we have proven Equation (2) by contradiction. We divide it by |Ui| to receive

1− pi−1

λ+ 1
−

1

|Ui|
≤

m(Ui)

|Ui|
≤

1− pi−1

λ+ 1
+

1

|Ui|
.

By the definition of pi as m(Ui)/|Ui|, we finally have

pi =
1− pi−1

λ+ 1
+ ε1(i)

for some error term with |ε1(i)| ≤
1
ni
.

We repeat the above arguments for j ∈ [ℓ] with the corresponding growth parameters to obtain

ph+j =
1− ph+j−1

γj + 1
+ ε1(h+j)

with |ε1(h+j)| ≤ 1
nh+j

.

Via induction, we obtain a closed-form description of pi (see appendix):

pi =
1

λ+ 2

(

1−

(
−1

λ+ 1

)i
)

+ ε2(i), ∀i ∈ [h], (3)

with |ε2(i)| ≤
i
ni
. Computing explicit formulas for pj, j > h is quite cumbersome. We detail the

algebraic transformations for ℓ = 3 in the appendix.
We are interested in the matching value the algorithm gives to vertices in V . Let us define qi

as the total matched fraction of the vertices in Vi for all i ∈ {0, . . . , h+ℓ−1}. Note that B = Vh+ℓ

is matched differently, something we will consider at a later point.

Lemma 3.3. Let i ∈ {0, . . . , h+ℓ−1}. Then it holds that

qi = pi+1 + ε3(i),

where pi+1 := pi+1 − ε2(i+1) and |ε3(i)| ≤
i+3
ni

.

Proof. Again, we only prove the cases i ∈ {0, . . . , h−1}; the cases of larger i are analogous with
adapted growth parameters. Let a distribution of the matching value from Ui to their neighbors be
given. Since the total matching value in Ui is (1− pi)ni, it holds that

(1− pi)ni = pi+1ni+1 + qini.

Rearranging this equation, we use the formula from Lemma 3.2 to write

qini = (1− pi)ni − pi+1ni+1

= (1− pi)ni −

(
1− pi
λ+ 1

+ ε1(i+1)

)

λni

= ni

(
1− pi
λ+ 1

− λε1(i+1)

)

.

6

With ni = |Ui| = |Vi| we can simplify to qi =
1−pi
λ+1 − λε1(i+1). Inserting Lemma 3.2 gives

qi = pi+1 − (λ+ 1)ε1(i+1)

= (pi+1 − ε2(i+1)) + (ε2(i+1)− (λ+ 1)ε1(i+1))

= pi+1 + ε3(i),

where it is easy to see that |ε3(i)| ≤
i+3
ni

.

In other words, we express the qi in terms of pi+1 without the error terms ε2(i+1) for all
i ∈ {0, . . . , h+ℓ−1}.

We can write the amount of matching value the vertex sets Vi (except B) contribute to the
algorithmic value as

h+ℓ−1∑

i=0

qi|Vi|.

Finally, we consider the vertices in A. Recall that their total matching value is ph+ℓ · |A| before
any vertex in B has arrived. For simplicity, we define pA := ph+ℓ. We also define ρ such that the
additional matching value that A receives (that is, at the departure times of vertices in B) is ρ · |A|.
In the following, we will give an upper bound on ρ.

Again, an analysis of ALGwf would be simpler but some carefulness is required because the
matching value pA · |A| is not necessarily distributed uniformly across A. Fortunately, a simple
adversary for choosing the ordering of A and B suffices here.

Lemma 3.4. The adversary can choose the ordering of A and B such that

ρ ≤ 1− exp(−(1− pA)) +
2

|A|
.

Proof. As described in Section 2, the vertices in B arrive, and immediately depart again, sequen-
tially. The vertices are labeled b1, . . . , b|B| in this order, and any vertex bi is adjacent to the vertices
ai, . . . , a|A|. Note that the algorithm only learns about the identity of vertex ai after the departure
of bi. Here, the adversary simply chooses ai in every round such that it has the minimum current
matching value out of all remaining unlabeled vertices in A.

We now bound ρ · |A|, the fractional matching value placed by the algorithm on edges between
A and B, by the matching value ω · |A| placed by ALGwf on the same instance: Assuming that
the matching value in A is equally distributed before B arrives, i.e., all vertices have exactly pA
matching value, this algorithm simply matches bi equally among all vertices ai, . . . , a|A|. We claim
that ρ ≤ ω. In the following, we denote the matching value placed on a ∈ A by our algorithm and
ALGwf at the time of the departure of bi by mi(a) and ωi(a), respectively. We omit the index i if
we refer to the final value.

Let η ∈ [|B|] the final index for which ALGwf is able to assign matching value to A. Note that
every time i appears before bη, ωi(A) ≥ mi(A), as ALGwf always matches the current vertex bi fully
if possible. Also, for i ≥ η it holds that 1 = ω(ai) ≥ m(ai), so ω({ai : i ≥ η}) ≥ m({ai : i ≥ η}).
Now let i′ < η be the maximal index i so that ω(ai) < m(ai). By the adversary’s choice of ai′ , it
holds that

mi′({ai : i > i′}) ≥ m(ai′)|{ai : i > i′}|

> ω(ai′)|{ai : i > i′}| = ωi′({ai : i > i′}).

7

Using

ω({ai : i ≤ i′}) + ωi′({ai : i > i′}) = ωi′(A)

≥ mi′(A) = m({ai : i ≤ i′}) +mi′({ai : i > i′}),

we have ω({ai : i ≤ i′}) ≥ m({ai : i ≤ i′}) and as i′ < η is the last vertex with ω(ai) < m(ai), we
know that for all remaining vertices ALGwf assigns more matching value. Therefore, ω({ai : i

′ <
i < η}) ≥ m({ai : i

′ < i < η}) and thus ω(A) ≥ m(A). Finally, we note that if i′ does not exist,
ω({ai : i < η}) ≥ m({ai : i < η}) holds trivially.

All that remains to prove the lemma is to show that ω ≤ 1−exp(−(1− pA)). Let again η ∈ [|B|]
be the final index for which ALGwf is able to assign value to A. At the departure of all vertices
bi, i < η in B, ALGwf assigns 1/(|A|−i+1) of matching value each to ai, . . . , a|A|, while at the departure
of bi, i > η no value is assigned. So the average fractional matching value ω fulfills ω|A| ≤ η, which
holds with equality exactly if the last active vertex bη is fully matched.

Let us again refer to the matching value placed by ALGwf on a vertex ai by ω(ai). After bη has
departed, all remaining vertices aη, . . . , a|A| are already fully matched. Hence, for all i ≥ η, we have
ω(ai) = 1. At the same time, ω(ai), i ≥ η is composed of the initial value pA plus the entire value
assigned by the vertices b1, . . . , bη. For all i ≥ η we can obtain:

1 = ω(ai) ≥ pA +

η−1
∑

j=1

1

(|A| − j + 1)

= pA +H|A| −H|A|−η+1,

where Hn is the n-th harmonic number which we estimate by ln(n) ≤ Hn ≤ ln(n + 1). Hence, we
have

1 ≥ pA + ln(|A|) − ln(|A| − η + 2) ≥ pA + ln

(
|A|

|A|(1− ω) + 2

)

,

where we used ω|A| ≤ η. By further rearranging,

exp(−(1− pA)) ≤ 1− exp(−(1− pA)) +
2

|A|
.

This completes the proof.

We have now computed all necessary values for our formula. We double-count the matching
value by counting the fractional value to which each vertex is matched and establish for the entire
value of ALG:

2ALG =

h+2∑

i=0

qi|Vi|+ |U \ A|+ pA|A|+ 2ρ|A|.

For ℓ = 0, by inserting our formulas into ALG/OPT and taking the limit h → ∞, we obtain in
congruence with Huang et al. [2]

λ− 1

λ
·

(

1− exp

(

−
λ+ 1

λ+ 2

))

+
λ+ 1

λ · (λ+ 2)

as an upper bound on the competitive ratio. Interestingly, this function is non-convex as its deriva-
tive has a local maximum at λ ≈ 10.0266.

8

ℓ λ · · · γℓ−4 γℓ−3 γℓ−2 γℓ−1 γℓ impossibility

0 7.233629 · · · – – – – – 0.631744
1 2.581174 · · · – – – – 8.053197 0.629748
2 3.148324 · · · – – – 2.390115 7.874599 0.629678
3 2.875859 · · · – – 3.249854 2.403421 7.864072 0.629674
...

...
. . .

...
...

...
...

...
...

10 2.94419 · · · 2.986001 2.843101 3.241640 2.404098 7.863523 0.629674

Table 1: The results of the numerical optimization. All numbers are rounded to the sixth decimal
digit.

Computing explicit formulas for all qj when j > h is quite cumbersome, and the same holds for
the explicit formula of the resulting lower bound on the competitive ratio. We showcase the result
of this computation for ℓ = 3. We refer to the appendix for all details on the computation. The
error terms in the formula vanish as we take the limit h → ∞. The final formula for our upper
bound on the competitive ratio depends only on γ1, γ2, γ3 and λ:

λ+ γ1(γ2 + 1)(λ − 1)

2(λ+ γ̄(λ− 1))

+
λ2 + γ1

2(λ+ 2)(γ1 + 1)(λ + γ̄(λ− 1))

+
γ1(λ− 1)

2(λ+ γ̄(λ− 1))
·

γ1(λ+ 2) + 1

(γ2 + 1)(γ1 + 1)(λ+ 2)

+
γ1γ2(λ− 1)

2(λ+ γ̄(λ− 1))
·
γ2(γ1 + 1)(λ + 2) + (λ+ 1)

(γ2 + 1)(γ1 + 1)(λ+ 2)

+
γ1γ2γ3(λ− 1)

(λ+ γ̄(λ− 1))
·

[

1− exp

(

−
1

γ3 + 1

(

γ3+
γ1(λ+ 2) + 1

(γ2 + 1)(γ1 + 1)(λ+ 2)

))]

,

using the abbreviation γ̄ :=
∑3

i=1

∏i
j=1 γj.

We use the numerical computing software Matlab for the numerical optimization. Using a trusted-
region algorithm for unconstrained multivariate minimization we receive the values shown in Ta-
ble 3. In particular, we obtain an upper bound smaller than 0.6297. This completes the proof of
Theorem 3.1.

References

[1] B. E. Birnbaum and C. Mathieu. On-line bipartite matching made simple. SIGACT News,
39(1):80–87, 2008.

[2] Z. Huang, N. Kang, Z. G. Tang, X. Wu, Y. Zhang, and X. Zhu. Fully online matching. J. ACM,
67(3):17:1–17:25, 2020.

9

[3] Z. Huang, B. Peng, Z. G. Tang, R. Tao, X. Wu, and Y. Zhang. Tight competitive ratios of
classic matching algorithms in the fully online model. In ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2875–2886, 2019.

[4] Z. Huang, Z. G. Tang, X. Wu, and Y. Zhang. Fully online matching II: Beating ranking and
water-filling. In IEEE Symposium on Foundations of Computer Science (FOCS), pages 1380–
1391, 2020.

[5] B. Kalyanasundaram and K. Pruhs. An optimal deterministic algorithm for online b-matching.
Theor. Comput. Sci., 233(1-2):319–325, 2000.

[6] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite
matching. In ACM Symposium on Theory of Computing (STOC), pages 352–358, 1990.

[7] A. Mehta. Online matching and ad allocation. Foundations and Trends® in Theoretical Com-
puter Science, 8(4):265–368, 2013.

A Computing closed forms for pi

We use induction to obtain the closed form

pi =
1

λ+ 2

(

1−

(
−1

λ+ 1

)i
)

+ ε2(i), ∀i ∈ [h],

with an error term fulfilling |ε2(i)| ≤
i
ni
. Since we set p0 = 0 = 1

λ+2

(
1− (−1/λ+1)0

)
, the induction

base holds. For the induction hypothesis we use Lemma 3.2.

pi =
1− pi−1

λ+ 1
+ ε1(i)

=
1

λ+ 1
−

1

λ+ 1

(

1

λ+ 2

(

1−

(
−1

λ+ 1

)i−1
)

+ ε2(i−1)

)

+ ε1(i)

=
1

λ+ 1
−

1

λ+ 2

(

1

λ+ 1
+

(
−1

λ+ 1

)i
)

+
ε2(i−1)

λ+ 1
+ ε1(i)

=
1

λ+ 1
−

1

(λ+ 2)(λ+ 1)
−

1

λ+ 2

(
−1

λ+ 1

)i

+
ε2(i−1)

λ+ 1
+ ε1(i)

︸ ︷︷ ︸

=:ε2(i)

=
1

λ+ 2

(

1−

(
−1

λ+ 1

)i
)

+ ε2(i),

with

|ε2(i)| ≤
|ε2(i−1)|

λ+ 1
+ |ε1(i)| ≤

i−1

λni−1
+

1

ni
=

i

ni
,

10

where we used ni = λni−1. Analogously, applying Lemma 3.2 to the closed-form of ph, we obtain

ph+1 =
1

γ1 + 1

(

λ+ 1

λ+ 2

(

1−

(
−1

λ+ 1

)h+1
))

+ ε2(h+1), (4)

ph+2 =
1

(γ2 + 1)(γ1 + 1)(λ+ 2)

(

γ1(λ+ 2) + 1−

(
−1

λ+ 1

)h
)

+ ε2(h+2), (5)

ph+3 =
(γ2γ1 + γ2 + 1)(λ + 2)− 1 +

(
−1
λ+1

)h

(γ3 + 1)(γ2 + 1)(γ1 + 1)(λ + 2)

+ ε2(h+3). (6)

B Detailed algebraic computations

In this section, we present the detailed computations to receive our upper bound formula which is
optimized at the end of Section 3. We recall the value of the optimal solution of our instance:

2OPT = |U |+ |V | = 2|U | = 2
h+3∑

i=0

|Ui|

= 2

(

k

(
λh+1 − 1

λ− 1

)

+ kλh (γ1 + γ1γ2 + γ1γ2γ3)
︸ ︷︷ ︸

=:γ̄

)

=
2kλh

λ− 1
(λ− 1/λh + γ̄(λ− 1)) . (7)

The algorithmic solution value is given by

2ALG =
h+2∑

i=0

qi|Vi|+ |U \A|+ pA|A|+ 2ρ|A|

= 2ρ|A|+

h+2∑

i=0

|Ui|+

h−1∑

i=0

qi|Vi|

+ qh|Vh|+ qh+1|Vh+1|+ qh+2|Vh+2|+ pA|A|.

We insert the values of pi, qi and the cardinalities ni:

2ALG = 2ρ|A| (8)

+
kλh

λ− 1
(λ− 1/λh + γ1(γ2 + 1)(λ − 1)) (9)

+

h−1∑

i=0

ni(pi+1 − ε2(i+ 1)) +

h−1∑

i=0

niε3(i) (10)

+ nh(ph+1 − ε2(h+1)) + nhε3(h) (11)

+ nh+1(ph+2 − ε2(h+2)) + nh+1ε3(h+1) (12)

+ nh+2(pA − ε2(h+3)) + nh+2ε3(h+2) (13)

+ nA(pA − ε2(h+3)) + nAε2(h+3). (14)

11

By equations (3), (4)-(6), the terms pi − ε2(i) do not contain any error terms (they are directly
subtracted). Hence all remaining error terms in the above formula sum up to:

ε :=

∣
∣
∣
∣
∣

h+2∑

i=0

niε3(i) + nAε2(h+3)

∣
∣
∣
∣
∣

≤

h+2∑

i=0

(i+3) + (h+3) ≤
(h+5)2 + h+5

2
+ h+3 ∈ Ω(h2).

As 2OPT is dominated by λh and λ > 1, ε
2OPT vanishes for h → ∞. We insert (4)-(6) into lines

(11)-(14). Then, we divide all lines (8)-(14) without error terms by 2OPT and take limits h → ∞:

(9)

2OPT
=

kλh

λ− 1

λ− 1

kλh

(λ− 1/λh + γ1(γ2 + 1)(λ− 1))

2 (λ− 1/λh + γ̄(λ− 1))

→
(λ+ γ1(γ2 + 1)(λ− 1))

2 (λ+ γ̄(λ− 1))
= (15),

(10)

2OPT
=

kλh

λ+ 2

λ− 1

kλh

(
1−1/λh

λ−1 − (−1/λ+1)h−1/λh

2λ+1

)

2 (λ− 1/λh + γ̄(λ− 1))

→
λ− 1

λ+ 2

(
1

λ−1

)

2 (λ+ γ̄(λ− 1))

=
1

2(λ + 2) (λ+ γ̄(λ− 1))
= part of (16),

(11)

2OPT
=

(λ+ 1)
(
1− (−1/λ+1)h+1

)

(λ+ 2)(γ1 + 1)
· λhk

(λ− 1)

2λhk (λ− 1/λh + γ̄(λ− 1))

→
(λ+ 1)(λ − 1)

2(λ+ 2)(γ1 + 1)λ+ γ̄(λ− 1)
= part of (16),

(12)

2OPT
=

γ1(λ+ 2) + 1− (−1/λ+1)h

(γ2 + 1)(γ1 + 1)(λ+ 2)
· γ1λ

hk
(λ− 1)

2λhk (λ− 1/λh + γ̄(λ− 1))

→
γ1(λ+ 2) + 1

(γ2 + 1)(γ1 + 1)(λ+ 2)

γ1(λ− 1)

2 (λ+ γ̄(λ− 1))
= (17),

(13) + (14)

2OPT
=

(λ− 1)(λhkγ1γ2 + λhkγ1γ2γ3)

2λhk (λ− 1/λh + γ̄(λ− 1))
·

(γ2γ1 + γ2 + 1)(λ + 2)− 1 + (−1/λ+1)h

(γ3 + 1)(γ2 + 1)(γ1 + 1)(λ + 1)

=
(λ− 1)γ1γ2

2 (λ− 1/λh + γ̄(λ− 1))
·

γ2(γ1 + 1)(λ+ 2) + (λ+ 1) + (−1/λ+1)h

(γ2 + 1)(γ1 + 1)(λ + 1)

→
γ1γ2(λ− 1)

2(λ+ γ̄(λ− 1))
·
γ2(γ1 + 1)(λ + 2) + (λ+ 1)

(γ2 + 1)(γ1 + 1)(λ+ 2)

= (18),

12

(8)

2OPT
≤

|A|(1− exp(−(1− pA)) + 2/|A|)

OPT

=
2

OPT
+

kλhγ1γ2γ3(λ− 1)

kλh (λ− 1/λh + γ̄(λ− 1))
·

[

1− exp

(

− 1+

γ2(γ1 + 1)(λ+ 2) + (λ+ 1) + (−1/λ+1)h

(γ3 + 1)(γ2 + 1)(γ1 + 1)(λ + 2)
+ ε2(h+ 3)

)]

→
γ1γ2γ3(λ− 1)

(λ+ γ̄(λ− 1))
·

[

1− exp

(

−1 +
γ2(γ1 + 1)(λ + 2) + (λ+ 1)

(γ3 + 1)(γ2 + 1)(γ1 + 1)(λ + 2)

)]

= (19).

As h → ∞, our upper bound on the competitive ratio of ALG therefore approaches

λ+ γ1(γ2 + 1)(λ− 1)

2(λ+ γ̄(λ− 1))
(15)

+
λ2 + γ1

2(λ+ 2)(γ1 + 1)(λ+ γ̄(λ− 1))
(16)

+
γ1(λ− 1)

2(λ+ γ̄(λ− 1))
·

γ1(λ+ 2) + 1

(γ2 + 1)(γ1 + 1)(λ + 2)
(17)

+
γ1γ2(λ− 1)

2(λ+ γ̄(λ− 1))
·
γ2(γ1 + 1)(λ+ 2) + (λ+ 1)

(γ2 + 1)(γ1 + 1)(λ + 2)
(18)

+
γ1γ2γ3(λ− 1)

(λ+ γ̄(λ− 1))
·

[

1− exp

(

−
1

γ3 + 1
·

(

γ3 +
γ1(λ+ 2) + 1

(γ2 + 1)(γ1 + 1)(λ + 2)

))]

. (19)

13

	1 Introduction
	2 Description of the Construction
	3 Derivation of the Upper Bound
	References
	A Computing closed forms for pi
	B Detailed algebraic computations

