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On the Complexity of Recognizing Integrality and Total Dual
Integrality of the {0, 1/2}-Closure

Matthias Brugger* Andreas S. Schulz*

Abstract

The {0, 5 }-closure of a rational polyhedron {z: Az < b} is obtained by adding all
Gomory-Chvétal cuts that can be derived from the linear system Az < b using multipliers
in {0, 3}. We show that deciding whether the {0, 3 }-closure coincides with the integer hull
is strongly NP-hard. A direct consequence of our proof is that, testing whether the linear
description of the {0, %}-closure derived from Az < b is totally dual integral, is strongly
NP-hard.

1 Introduction

Let P ={x € R": Ax < b} with A € Z"™*™ and b € Z™ be a rational polyhedron. The integer
hull of P is denoted by P; = conv(P N Z"). Any inequality of the form u” Az < LuTbJ where
u € R7, and uT A € Z" is valid for P;. Inequalities of this kind are called Gomory-Chudtal
cuts for P [5[16]. The intersection of all halfspaces corresponding to Gomory-Chvatal cuts
yields the Gomory-Chudtal closure P’ of P. In fact, [0,1)-valued multipliers u suffice (see,
e.g., [7]), i.e.,

P'={zeP:u Az < |u’b|,ue0,1)", u'A ez}

Caprara and Fischetti [4] introduced the family of Gomory-Chvéatal cuts with multipliers
u € {0,3}™. We refer to them as {0, 1}-cuts. The {0, 3}-closure of P is defined as

Py (A,0) :={z € Prul Az < |[u”b], ue {0,1}™, v A€ Z"}.

Note that P% (A,b) depends on the system Az < b defining the polyhedron P. From the
definition, it follows that P; C P’ C P% (A,b) C P.

{0, %}—cuts are prominent in polyhedral combinatorics; examples of classes of inequalities
that can be derived as {0, %}—cuts include the blossom inequalities for the matching polytope
[511] and the odd-cycle inequalities for the stable set polytope [14]. Both classes of inequalities
can be separated in polynomial time [14,20]. In general, though, separation (and, thus,
optimization) over the {0, %}-closure of polyhedra is NP-hard: Caprara and Fischetti [4] show
that the following membership problem for the {0, %}—CIOSUI‘Q is strongly coNP-complete (see
also [13, Theorem 2]).

Given A € Z™ " b € Z"™ and & € Q" such that & € P := {z € R": Az < b},
decide whether 2 € P% (A, D).
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The membership problem remains strongly coNP-complete even when Ax < b defines a
polytope in the 0/1 cube, as shown by Letchford, Pokutta and Schulz [19]. It is, however,
well known that testing membership in the Gomory-Chvatal closure belongs to NP N coNP if
restricted to polyhedra P with P’ = Py (see, e.g., [1]), which naturally includes all polyhedra P
whose {0, %}—closure coincides with Pj. For instance, the relaxation of the matching polytope
given by nonnegativity and degree constraints has this property: If we add the blossom
inequalities, the resulting linear system is sufficient to describe the integer hull [11], and it
is even totally dual integral (TDI) [10]. This motivates the following research questions that
are the subject of this paper: What is the computational complexity of recognizing rational
polyhedra whose {0, %}—CIOSUI‘G coincides with the integer hull, and of deciding whether adding
all {0, 1}-cuts produces a TDI system?

Related questions for the Gomory-Chvatal closure have been studied by Cornuéjols and
Li [9]. They prove that, given a rational polyhedron P with P; = (), deciding whether P’ = ()
is weakly NP-complete. This immediately implies weak NP-hardness of verifying P’ = P.
Cornuéjols, Lee and Li [8] extend these hardness results to the case when P is contained in the
0/1 cube. Moreover, they show that deciding whether a constant number of Gomory-Chvétal
inequalities is sufficient to obtain the integer hull is weakly NP-hard, even for polytopes in the
0/1 cube. In this paper, we establish analogous hardness results for the {0, %}—closure. Our
main result is the following theorem, where 1 denotes the all-one vector.

Theorem 1. Given A € Z™*" and b € Z™ with P := {x € R": Ax < b} C [0,1]", deciding

whether P1(A,b) = Py is strongly NP-hard, even when the inequalities —x < 0 and x < 1 are
2

part of the system Ax < b.

We give a proof of this theorem in the next section. Our proof implies several further
hardness results, which we explain in Section [3] In particular, deciding whether adding all
{0, %}—cuts to a given linear system Axz < b produces a TDI system, is strongly NP-hard. We
also establish strong NP-hardness of the following problems: deciding whether the {0, %}—
closure coincides with the Gomory-Chvéatal closure; deciding whether a constant number
of {0, %}—cuts suffices to obtain the integer hull. Finally, we give a hardness result for the
membership problem for the {0, %}—closure, which is slightly stronger than the one of Letchford,
Pokutta and Schulz [19].

2 Proof of Theorem 1

Proof of Theorem [1 We reduce from STABLE SET:

Let G = (V, E) be a graph and k € N,k > 2. Does G have a stable set of size at
least k7

It is well known that STABLE SET is strongly NP-hard [1§]. Note that the problem remains
strongly NP-hard if restricted to graphs with minimum degree at least 2: Given an instance of
STABLE SET specified by G and k, we construct a new graph G’ by adding two dummy nodes
to G as well as all edges with at least one endpoint being a dummy node. Every node in G’ has
degree at least 2, and every stable set in G’ of size k > 2 is a stable set in G of the same size.

Consider an instance of STABLE SET given by G = (V, E) and k > 2. By the above
observation, we may assume that every node in V has degree at least 2. Note that |V]| =:n >3
and |E| =: m > 3 in this case. Let A := 2117 — M7 where M € {0,1}™*" denotes the
edge-node incidence matrix of G and 1 is the all-one vector of appropriate dimension. We



define a polytope P C R™ by the following system of inequalities:

0<az<1 (1)
Az < 2.1 (2)
(2k —3)1Tx > 2k —3 (3)

Claim 1. P, ={x € P: 1Tz = 1}.

Proof of Claim[1. If we add all inequalities in , we obtain the valid inequality 2(n—1)17z <
2n. Every integral point x in P therefore satisfies 172 = 1. Since A € {1,2}"*™ it is easy to
check that every unit vector is indeed contained in P. We conclude that

Pr={zc0,1)™: 1Tz =1 D {zeP: 1Tz =1} D P;. O

The {0, 2} -cuts that can be derived from . . are all the inequalities of the following
two types with u € {0,4}" and v € {0, 3 }"™

i (2071 + [v; — (Mu);]) 7 < 2u'1 + [vT1] (4)
i=1

i 20Tl — (k—1)+ L%Jrvif(Mu)iJ)xi§2uTIlf(k:fl)+ L%JrvTILJ (5)

The first type defines all cuts that are derived only from and , whereas the second
type also uses inequality . The vector u is the Vector of multipliers for inequalities
while v collects the multipliers for the upper bounds in

In what follows, P1 denotes the {0, 2} -closure of P deﬁned by together with 1"

and (5) for all u € {0, 2}n and v € {0, 1}™.
Claim 2. P% = Py if and only if there is a {0, %}-cut equivalent to 17z < 1.

Proof of Claim[3 If there is such a cut, then P1 C {x € P: 172 <1} = P; by Claim To
2

see the “only if” part, consider the vector y = ( % + &)1 for some small € > 0. Clearly, y ¢ Py
since 17y > 1. We claim that there is a choice for ¢ such that y € P and y satisfies all
{0, } cuts except those that are equivalent to ]lT:L“ < 1. First observe that every cut (of either
type or . as well as every inequality in and . ) may be written as a’ 2z < « for some
a €™ «a € Z where a; < a for all i € [m ]anda§m+n If a <0, Weclearlyhavea y < a
since y > %]1. If @ > 0 and a”z < o is not equivalent to 172 < 1, then a; < « for at least one
i € [m]. It follows that a’y < o — L + e(ma — 1). For instance, taking ¢ := m yields
a’y < a as desired. O

In particular, the proof of Claim [2| shows that the inequality 17z < 1 is not valid for P.
Claim 3. No cut of type is equivalent to 1Tz < 1.

Proof of Claim[3 Let u € {0,4}" and v € {0, 3}™. If u =0, is dominated by the sum
of the inequalities [v; — (Mwu);] z; < 0 for all 7 € [m]. Note that these are valid for P since
|v; — (Muw);| <0 forallie [m]. If v=0, the cut (4) is a trivial cut which is only derived from
inequalities in the description of P with even right-hand sides. Hence, we may assume that
both u # 0 and v # 0. It suffices to show that [v; — (Mu);| < [v71] for at least one i € [m]. If
vT'1 > 1, there is nothing to show. Now let v7'1 = % and suppose for the sake of contradiction
that |v; — (Mw);] > 0 for all ¢ € [m]. It follows that Mwu < v. Since every column of M has

at least two nonzero entries by assumption, we obtain u = 0, a contradiction. O



Claim 4. A cut of type induced by u € {0, %}" and v € {0, %}m is equivalent to 17z < 1
if and only if v =0, 2Mu < 1, and 2u™1 > k.

Proof of Claim[j, Suppose first that v # 0. Then, for every i € [m], we have |+ +v; — (Mu);| <
1< L% + vT]lJ . This holds with equality for all ¢ € [m] simultaneously only if v; = % and
vT'1 < 1, contradicting m > 3. Thus, no inequality of the form with v # 0 has identical
coeflicients that coincide with the right-hand side. We may therefore assume that v = 0.

If 2u”'1 < k — 1, inequality (5) is redundant: It is the sum of the inequalities (2u”1 — (k —
1))1%72 < 20”1 — (k—1) and |§ — (Muw);| z; <0 for all i € [m], all of which are valid for P.
Assuming that 2u’'1 > k, inequality is equivalent to 172 < 1 if and only if (Mu); < % for
all i € [m]. O

Putting together Claims [2] to [4] we conclude that P1 = P if and only if there exists some
2

u € {0, %}" such that 2u is the incidence vector of a stable set in G of size at least k. O

3 Further hardness results

A careful analysis of the proof of Theorem [1| shows that, if the polytopes P constructed in the
reduction satisfy P1 = Py, there is a single {0, 1}-cut that certifies this (see Claim . This
2

observation immediately implies the following corollary.

Corollary 1. Let k € N be a fized constant. Given A € Z™*™ and b € Z™ with P := {x €
R": Az < b} C [0,1]", deciding whether one can obtain Py by adding at most k {0, 3 }-cuts is
strongly NP-hard, even when k=1, and —x < 0 and z < 1 are part of the system Ax < b.

Moreover, let us remark that P’ = P; for the polytopes P arising from the reduction.
This follows from the fact that for n > 3, the inequality 172 < [2n/2(n—1)] = 1is a
Gomory-Chvatal cut for P, see the proof of Claim

Corollary 2. Given A € Z™*" and b € Z™ with P := {x € R": Az < b} C [0, 1]", deciding

whether Pi(A,b) = P’ is strongly NP-hard, even when —x < 0 and x < 1 are part of the
2

system Ax < b.

The linear systems arising from our reduction have another interesting property. The
inequality description f of P% in the proof of Theorem |1|is a TDI system if and only if
P1 = Pr. This can be seen as follows. Since any polyhedron defined by a TDI system with
itheger right-hand sides is integral [12], it suffices to show the “if” part. Suppose that P% = Pj.

By the proof of Theorem 1} there exist vectors u’,u” € {0, £}" such that 2Mu’ < 1, 2Mu” < 1,
2(u )11 =k, and 2(u")"1 = k — 2 > 0 (see Claim . The cuts of type derived with v/
and u” (where we take v = 0) are the inequalities 172 < 1 and —172 < —1, respectively. The
system defined by these two inequalities and = > 0 is a subsystem of f that is sufficient
to describe P% (see Claim i and that is readily seen to be TDI: Let ¢ € Z™. We can assume

w.l.o.g. that ¢ is the largest coefficient of c. It follows that max{c’z: x € P%} = c;. It suffices

to show that the inequality ¢’z < ¢ is a nonnegative integer linear combination of the selected
subsystem. Indeed, it is the sum of ¢;172 < ¢; (which is a nonnegative integer multiple of
172 <1or =172 < —1) and —(¢1 — ¢;)z; < 0 for all 4 € [m]. The above argument shows the
following result.

Corollary 3. Let A € Z™*™ and b € Z™. Deciding whether the system given by Az < b and
all {0, %}-cuts derived from it is TDI, is strongly NP-hard, even when —z <0 and x < 1 are
part of the system Ax <b.



Further note that the presence of the constraints z < 1 in is not essential for our
reduction in the proof of Theorem [I} In fact, the upper bounds are redundant: For every
i € [m], consider a row of A such that the entry in column i is equal to 2. Such a row exists
because n > 3. The corresponding inequality in (2 together with the nonnegativity constraints
—xj <0 (possibly twice) for all j # i yields 2z; < 2 for all x € P. As the only relevant cuts
among and are those with v = 0, we conclude that all of the above results still hold
true when the upper bounds z < 1 are not part of the input.

Another byproduct of our proof of Theorem [I| is that the membership problem for the
{0, %}—closure of polytopes in the 0/1 cube is strongly coNP-complete. This has already
been shown by Letchford, Pokutta and Schulz [19]. However, neither of the two different
reductions given in |19] constructs linear systems that include both nonnegativity constraints
and upper bounds on every variable. When these constraints are required to be part of the
input, membership testing remains strongly coNP-complete, as the following result shows.

Corollary 4. The membership problem for the {0, %}-closure of polytopes contained in the
0/1 cube is strongly coNP-complete, even when the inequalities —x < 0 and x < 1 are part of
the input.

Proof. The problem clearly belongs to coNP. To show hardness, we use the same reduction

from STABLE SET as in the proof of Theorem [I} The vector y defined in the proof of Claim

satisfies y ¢ P1 if and only if the instance of STABLE SET is a “yes” instance. The encoding
2

length of y is polynomial in m and n if we choose ¢ as in Claim O

4 Concluding remarks

It is worth pointing out that the problem of recognizing integrality of the {0, %}—closure is
in coNP when the membership problem for the {0, %}—closure can be solved in polynomial
time: If P = {x: Ax < b} is a rational polyhedron with P% (A, b) # Py, it suffices to exhibit
a fractional vertex & of Pi(A,b) along with a corresponding basis. Then one can verify in
polynomial time that & EZP% (A,b) and that z is indeed a vertex. This observation can be

found in |17, Chapter 9] where it is stated in the context of recognizing t-perfect graphs. These
are the graphs whose stable set polytope is determined by nonnegativity and edge constraints
together with the odd-cycle inequalities [6]. In fact, the odd-cycle inequalities can be derived
as {0, 3 }-cuts from the other two classes of inequalities [14]. This means that a graph is
t-perfect if and only if the {0, %}—closure of the relaxation of its stable set polytope given by
nonnegativity and edge constraints is integral. Since a separating odd-cycle inequality can be
found in polynomial time [14], recognizing t-perfection is in coNP. Whether this problem is
in NP or in P is not known (see [17, Chapter 9]). However, some classes of t-perfect graphs
are known to be polynomial-time recognizable, including claw-free ¢t-perfect graphs [2] and
bad-K4-free graphs [15]. Interestingly, for these two classes of graphs, the linear system in [6]
that determines the stable set polytope is TDI [3,21]. It is not known whether this holds true
for t-perfect graphs in general (see [22]).
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