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Abstract

The {0, 12}-closure of a rational polyhedron {x : Ax ≤ b} is obtained by adding all
Gomory-Chvátal cuts that can be derived from the linear system Ax ≤ b using multipliers
in {0, 12}. We show that deciding whether the {0, 12}-closure coincides with the integer hull
is strongly NP-hard. A direct consequence of our proof is that, testing whether the linear
description of the {0, 12}-closure derived from Ax ≤ b is totally dual integral, is strongly
NP-hard.

1 Introduction

Let P = {x ∈ Rn : Ax ≤ b} with A ∈ Zm×n and b ∈ Zm be a rational polyhedron. The integer
hull of P is denoted by PI = conv(P ∩ Zn). Any inequality of the form uTAx ≤

⌊
uT b

⌋
where

u ∈ Rm
≥0 and uTA ∈ Zn is valid for PI . Inequalities of this kind are called Gomory-Chvátal

cuts for P [5, 16]. The intersection of all halfspaces corresponding to Gomory-Chvátal cuts
yields the Gomory-Chvátal closure P ′ of P . In fact, [0, 1)-valued multipliers u suffice (see,
e.g., [7]), i.e.,

P ′ = {x ∈ P : uTAx ≤
⌊
uT b

⌋
, u ∈ [0, 1)m, uTA ∈ Zn}.

Caprara and Fischetti [4] introduced the family of Gomory-Chvátal cuts with multipliers
u ∈ {0, 12}

m. We refer to them as {0, 12}-cuts. The {0, 12}-closure of P is defined as

P 1
2
(A, b) :=

{
x ∈ P : uTAx ≤ buT bc, u ∈ {0, 12}

m, uTA ∈ Zn
}
.

Note that P 1
2
(A, b) depends on the system Ax ≤ b defining the polyhedron P . From the

definition, it follows that PI ⊆ P ′ ⊆ P 1
2
(A, b) ⊆ P .

{0, 12}-cuts are prominent in polyhedral combinatorics; examples of classes of inequalities
that can be derived as {0, 12}-cuts include the blossom inequalities for the matching polytope
[5,11] and the odd-cycle inequalities for the stable set polytope [14]. Both classes of inequalities
can be separated in polynomial time [14, 20]. In general, though, separation (and, thus,
optimization) over the {0, 12}-closure of polyhedra is NP-hard: Caprara and Fischetti [4] show
that the following membership problem for the {0, 12}-closure is strongly coNP-complete (see
also [13, Theorem 2]).

Given A ∈ Zm×n, b ∈ Zm and x̂ ∈ Qn such that x̂ ∈ P := {x ∈ Rn : Ax ≤ b},
decide whether x̂ ∈ P 1

2
(A, b).
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The membership problem remains strongly coNP-complete even when Ax ≤ b defines a
polytope in the 0/1 cube, as shown by Letchford, Pokutta and Schulz [19]. It is, however,
well known that testing membership in the Gomory-Chvátal closure belongs to NP ∩ coNP if
restricted to polyhedra P with P ′ = PI (see, e.g., [1]), which naturally includes all polyhedra P
whose {0, 12}-closure coincides with PI . For instance, the relaxation of the matching polytope
given by nonnegativity and degree constraints has this property: If we add the blossom
inequalities, the resulting linear system is sufficient to describe the integer hull [11], and it
is even totally dual integral (TDI) [10]. This motivates the following research questions that
are the subject of this paper: What is the computational complexity of recognizing rational
polyhedra whose {0, 12}-closure coincides with the integer hull, and of deciding whether adding
all {0, 12}-cuts produces a TDI system?

Related questions for the Gomory-Chvátal closure have been studied by Cornuéjols and
Li [9]. They prove that, given a rational polyhedron P with PI = ∅, deciding whether P ′ = ∅
is weakly NP-complete. This immediately implies weak NP-hardness of verifying P ′ = PI .
Cornuéjols, Lee and Li [8] extend these hardness results to the case when P is contained in the
0/1 cube. Moreover, they show that deciding whether a constant number of Gomory-Chvátal
inequalities is sufficient to obtain the integer hull is weakly NP-hard, even for polytopes in the
0/1 cube. In this paper, we establish analogous hardness results for the {0, 12}-closure. Our
main result is the following theorem, where 1 denotes the all-one vector.

Theorem 1. Given A ∈ Zm×n and b ∈ Zm with P := {x ∈ Rn : Ax ≤ b} ⊆ [0, 1]n, deciding
whether P 1

2
(A, b) = PI is strongly NP-hard, even when the inequalities −x ≤ 0 and x ≤ 1 are

part of the system Ax ≤ b.

We give a proof of this theorem in the next section. Our proof implies several further
hardness results, which we explain in Section 3. In particular, deciding whether adding all
{0, 12}-cuts to a given linear system Ax ≤ b produces a TDI system, is strongly NP-hard. We
also establish strong NP-hardness of the following problems: deciding whether the {0, 12}-
closure coincides with the Gomory-Chvátal closure; deciding whether a constant number
of {0, 12}-cuts suffices to obtain the integer hull. Finally, we give a hardness result for the
membership problem for the {0, 12}-closure, which is slightly stronger than the one of Letchford,
Pokutta and Schulz [19].

2 Proof of Theorem 1

Proof of Theorem 1. We reduce from Stable Set:

Let G = (V,E) be a graph and k ∈ N, k ≥ 2. Does G have a stable set of size at
least k?

It is well known that Stable Set is strongly NP-hard [18]. Note that the problem remains
strongly NP-hard if restricted to graphs with minimum degree at least 2: Given an instance of
Stable Set specified by G and k, we construct a new graph G′ by adding two dummy nodes
to G as well as all edges with at least one endpoint being a dummy node. Every node in G′ has
degree at least 2, and every stable set in G′ of size k ≥ 2 is a stable set in G of the same size.

Consider an instance of Stable Set given by G = (V,E) and k ≥ 2. By the above
observation, we may assume that every node in V has degree at least 2. Note that |V | =: n ≥ 3
and |E| =: m ≥ 3 in this case. Let A := 2 · 11T −MT where M ∈ {0, 1}m×n denotes the
edge-node incidence matrix of G and 1 is the all-one vector of appropriate dimension. We

2



define a polytope P ⊆ Rm by the following system of inequalities:

0 ≤ x ≤ 1 (1)

Ax ≤ 2 · 1 (2)

(2k − 3)1Tx ≥ 2k − 3 (3)

Claim 1. PI = {x ∈ P : 1Tx = 1}.

Proof of Claim 1. If we add all inequalities in (2), we obtain the valid inequality 2(n−1)1Tx ≤
2n. Every integral point x in P therefore satisfies 1Tx = 1. Since A ∈ {1, 2}n×m, it is easy to
check that every unit vector is indeed contained in P . We conclude that

PI = {x ∈ [0, 1]m : 1Tx = 1} ⊇ {x ∈ P : 1Tx = 1} ⊇ PI . ♦

The {0, 12}-cuts that can be derived from (1)–(3) are all the inequalities of the following
two types with u ∈ {0, 12}

n and v ∈ {0, 12}
m:

m∑
i=1

(
2uT1 + bvi − (Mu)ic

)
xi ≤ 2uT1 +

⌊
vT1

⌋
(4)

m∑
i=1

(
2uT1− (k − 1) +

⌊
1
2 + vi − (Mu)i

⌋)
xi ≤ 2uT1− (k − 1) +

⌊
1
2 + vT1

⌋
(5)

The first type (4) defines all cuts that are derived only from (1) and (2), whereas the second
type (5) also uses inequality (3). The vector u is the vector of multipliers for inequalities (2)
while v collects the multipliers for the upper bounds in (1).

In what follows, P 1
2

denotes the {0, 12}-closure of P defined by (1)–(3) together with (4)

and (5) for all u ∈ {0, 12}
n and v ∈ {0, 12}

m.

Claim 2. P 1
2

= PI if and only if there is a {0, 12}-cut equivalent to 1
Tx ≤ 1.

Proof of Claim 2. If there is such a cut, then P 1
2
⊆ {x ∈ P : 1Tx ≤ 1} = PI by Claim 1. To

see the “only if” part, consider the vector y = ( 1
n + ε)1 for some small ε > 0. Clearly, y /∈ PI

since 1
T y > 1. We claim that there is a choice for ε such that y ∈ P and y satisfies all

{0, 12}-cuts except those that are equivalent to 1Tx ≤ 1. First observe that every cut (of either
type (4) or (5)) as well as every inequality in (2) and (3) may be written as aTx ≤ α for some
a ∈ Zm, α ∈ Z where ai ≤ α for all i ∈ [m] and α ≤ m+ n. If α ≤ 0, we clearly have aT y ≤ α
since y ≥ 1

m1. If α > 0 and aTx ≤ α is not equivalent to 1Tx ≤ 1, then ai < α for at least one
i ∈ [m]. It follows that aT y ≤ α− 1

m + ε(mα− 1). For instance, taking ε := 1
m2(m+n)

yields

aT y ≤ α as desired. ♦

In particular, the proof of Claim 2 shows that the inequality 1
Tx ≤ 1 is not valid for P .

Claim 3. No cut of type (4) is equivalent to 1
Tx ≤ 1.

Proof of Claim 3. Let u ∈ {0, 12}
n and v ∈ {0, 12}

m. If u = 0, (4) is dominated by the sum
of the inequalities bvi − (Mu)icxi ≤ 0 for all i ∈ [m]. Note that these are valid for P since
bvi − (Mu)ic ≤ 0 for all i ∈ [m]. If v = 0, the cut (4) is a trivial cut which is only derived from
inequalities in the description of P with even right-hand sides. Hence, we may assume that
both u 6= 0 and v 6= 0. It suffices to show that bvi − (Mu)ic <

⌊
vT1

⌋
for at least one i ∈ [m]. If

vT1 ≥ 1, there is nothing to show. Now let vT1 = 1
2 and suppose for the sake of contradiction

that bvi − (Mu)ic ≥ 0 for all i ∈ [m]. It follows that Mu ≤ v. Since every column of M has
at least two nonzero entries by assumption, we obtain u = 0, a contradiction. ♦
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Claim 4. A cut of type (5) induced by u ∈ {0, 12}
n and v ∈ {0, 12}

m is equivalent to 1
Tx ≤ 1

if and only if v = 0, 2Mu ≤ 1, and 2uT1 ≥ k.

Proof of Claim 4. Suppose first that v 6= 0. Then, for every i ∈ [m], we have
⌊
1
2 + vi − (Mu)i

⌋
≤

1 ≤
⌊
1
2 + vT1

⌋
. This holds with equality for all i ∈ [m] simultaneously only if vi = 1

2 and
vT1 ≤ 1, contradicting m ≥ 3. Thus, no inequality of the form (5) with v 6= 0 has identical
coefficients that coincide with the right-hand side. We may therefore assume that v = 0.

If 2uT1 ≤ k− 1, inequality (5) is redundant: It is the sum of the inequalities (2uT1− (k−
1))1Tx ≤ 2uT1− (k − 1) and

⌊
1
2 − (Mu)i

⌋
xi ≤ 0 for all i ∈ [m], all of which are valid for P .

Assuming that 2uT1 ≥ k, inequality (5) is equivalent to 1
Tx ≤ 1 if and only if (Mu)i ≤ 1

2 for
all i ∈ [m]. ♦

Putting together Claims 2 to 4, we conclude that P 1
2

= PI if and only if there exists some

u ∈ {0, 12}
n such that 2u is the incidence vector of a stable set in G of size at least k.

3 Further hardness results

A careful analysis of the proof of Theorem 1 shows that, if the polytopes P constructed in the
reduction satisfy P 1

2
= PI , there is a single {0, 12}-cut that certifies this (see Claim 2). This

observation immediately implies the following corollary.

Corollary 1. Let k ∈ N be a fixed constant. Given A ∈ Zm×n and b ∈ Zm with P := {x ∈
Rn : Ax ≤ b} ⊆ [0, 1]n, deciding whether one can obtain PI by adding at most k {0, 12}-cuts is
strongly NP-hard, even when k = 1, and −x ≤ 0 and x ≤ 1 are part of the system Ax ≤ b.

Moreover, let us remark that P ′ = PI for the polytopes P arising from the reduction.
This follows from the fact that for n ≥ 3, the inequality 1

Tx ≤ b2n/2(n− 1)c = 1 is a
Gomory-Chvátal cut for P , see the proof of Claim 1.

Corollary 2. Given A ∈ Zm×n and b ∈ Zm with P := {x ∈ Rn : Ax ≤ b} ⊆ [0, 1]n, deciding
whether P 1

2
(A, b) = P ′ is strongly NP-hard, even when −x ≤ 0 and x ≤ 1 are part of the

system Ax ≤ b.

The linear systems arising from our reduction have another interesting property. The
inequality description (1)–(5) of P 1

2
in the proof of Theorem 1 is a TDI system if and only if

P 1
2

= PI . This can be seen as follows. Since any polyhedron defined by a TDI system with

integer right-hand sides is integral [12], it suffices to show the “if” part. Suppose that P 1
2

= PI .

By the proof of Theorem 1, there exist vectors u′, u′′ ∈ {0, 12}
n such that 2Mu′ ≤ 1, 2Mu′′ ≤ 1,

2(u′)T1 = k, and 2(u′′)T1 = k − 2 ≥ 0 (see Claim 4). The cuts of type (5) derived with u′

and u′′ (where we take v = 0) are the inequalities 1Tx ≤ 1 and −1Tx ≤ −1, respectively. The
system defined by these two inequalities and x ≥ 0 is a subsystem of (1)–(5) that is sufficient
to describe P 1

2
(see Claim 1) and that is readily seen to be TDI: Let c ∈ Zm. We can assume

w.l.o.g. that c1 is the largest coefficient of c. It follows that max{cTx : x ∈ P 1
2
} = c1. It suffices

to show that the inequality cTx ≤ c1 is a nonnegative integer linear combination of the selected
subsystem. Indeed, it is the sum of c11

Tx ≤ c1 (which is a nonnegative integer multiple of
1
Tx ≤ 1 or −1Tx ≤ −1) and −(c1 − ci)xi ≤ 0 for all i ∈ [m]. The above argument shows the

following result.

Corollary 3. Let A ∈ Zm×n and b ∈ Zm. Deciding whether the system given by Ax ≤ b and
all {0, 12}-cuts derived from it is TDI, is strongly NP-hard, even when −x ≤ 0 and x ≤ 1 are
part of the system Ax ≤ b.
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Further note that the presence of the constraints x ≤ 1 in (1) is not essential for our
reduction in the proof of Theorem 1. In fact, the upper bounds are redundant: For every
i ∈ [m], consider a row of A such that the entry in column i is equal to 2. Such a row exists
because n ≥ 3. The corresponding inequality in (2) together with the nonnegativity constraints
−xj ≤ 0 (possibly twice) for all j 6= i yields 2xi ≤ 2 for all x ∈ P . As the only relevant cuts
among (4) and (5) are those with v = 0, we conclude that all of the above results still hold
true when the upper bounds x ≤ 1 are not part of the input.

Another byproduct of our proof of Theorem 1 is that the membership problem for the
{0, 12}-closure of polytopes in the 0/1 cube is strongly coNP-complete. This has already
been shown by Letchford, Pokutta and Schulz [19]. However, neither of the two different
reductions given in [19] constructs linear systems that include both nonnegativity constraints
and upper bounds on every variable. When these constraints are required to be part of the
input, membership testing remains strongly coNP-complete, as the following result shows.

Corollary 4. The membership problem for the {0, 12}-closure of polytopes contained in the
0/1 cube is strongly coNP-complete, even when the inequalities −x ≤ 0 and x ≤ 1 are part of
the input.

Proof. The problem clearly belongs to coNP. To show hardness, we use the same reduction
from Stable Set as in the proof of Theorem 1. The vector y defined in the proof of Claim 2
satisfies y /∈ P 1

2
if and only if the instance of Stable Set is a “yes” instance. The encoding

length of y is polynomial in m and n if we choose ε as in Claim 2.

4 Concluding remarks

It is worth pointing out that the problem of recognizing integrality of the {0, 12}-closure is
in coNP when the membership problem for the {0, 12}-closure can be solved in polynomial
time: If P = {x : Ax ≤ b} is a rational polyhedron with P 1

2
(A, b) 6= PI , it suffices to exhibit

a fractional vertex x̂ of P 1
2
(A, b) along with a corresponding basis. Then one can verify in

polynomial time that x̂ ∈ P 1
2
(A, b) and that x̂ is indeed a vertex. This observation can be

found in [17, Chapter 9] where it is stated in the context of recognizing t-perfect graphs. These
are the graphs whose stable set polytope is determined by nonnegativity and edge constraints
together with the odd-cycle inequalities [6]. In fact, the odd-cycle inequalities can be derived
as {0, 12}-cuts from the other two classes of inequalities [14]. This means that a graph is
t-perfect if and only if the {0, 12}-closure of the relaxation of its stable set polytope given by
nonnegativity and edge constraints is integral. Since a separating odd-cycle inequality can be
found in polynomial time [14], recognizing t-perfection is in coNP. Whether this problem is
in NP or in P is not known (see [17, Chapter 9]). However, some classes of t-perfect graphs
are known to be polynomial-time recognizable, including claw-free t-perfect graphs [2] and
bad-K4-free graphs [15]. Interestingly, for these two classes of graphs, the linear system in [6]
that determines the stable set polytope is TDI [3, 21]. It is not known whether this holds true
for t-perfect graphs in general (see [22]).
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