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Abstract

We show that there exist k-colorable matroids that are not (b, c)-decomposable when b
and c are constants. A matroid is (b, c)-decomposable, if its ground set of elements can be

partitioned into sets X1,X2, . . . ,Xl with the following two properties. Each set Xi has size at

most ck. Moreover, for all sets Y such that |Y ∩Xi| ≤ 1 it is the case that Y is b-colorable. A

(b, c)-decomposition is a strict generalization of a partition decomposition and, thus, our result

refutes a conjecture from [BSY19].
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1 Introduction

Consider a matroid M = (S,I) where S is the ground set of elements and I is the collection of independent

sets. M is said to be k-colorable if S can be partitioned in k sets C1, C2, . . . , Ck such that Ci ∈ I for all

i ∈ [k]. The smallest k for which M is k-colorable is known as the coloring number of the matroid M . An

optimal coloring of a matroid can be computed in polynomial time [Edm65]. This is not necessarily the case

anymore if we consider, instead of a single matroid, the intersection of h matroids. Consider a collection of

h matroids on the same ground set Mi = (S,Ii) for i ∈ [h]. The intersection of M1,M2, . . . ,Mh is said to

be k-colorable if S can be partitioned in k sets X1,X2, . . . Xk such that Xj ∈
⋂h

i=1
Ii for all j. That is, each

Xj is independent in all of the h matroids. The coloring number of the intersection of M1,M2, . . . ,Mh is

the smallest k for which the given intersection is k-colorable. Matroid intersection coloring is known to be

NP-hard for h ≥ 3 [OBS17].

[IMP20] showed that if each of the k-colorable matroids M1, . . . ,Mh is (b, c)-decomposable, the inter-

section of these matroids can be colored with k · h · c · bh colors.

Definition 1 ((b, c)-decomposable). A k-colorable matroid M = (S,I) is (b, c)-decomposable if there is a

partition X = {X1,X2, . . . ,Xℓ} of S such that:
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• For all i ∈ [ℓ], it is the case that |Xi| ≤ c · k, and

• every set Y = {v1, . . . , vℓ}, such that vi ∈ Xi, is b-colorable.

We refer to X as a (b, c)-decomposition.

If b = 1 then X = {X1,X2, . . . ,Xℓ} represents a partition matroid, and thus [BSY19] called the (1, c)-
decomposition a partition reduction. Furthermore, [IMP20] showed that if the (b, c)-partitions are given for

a collection of matroids on the same ground set, or can be efficiently computed, then the coloring of their

intersection can be efficiently computed. Note that if h, b and c are all O(1) then the resulting coloring

is an O(1)-approximation to an optimal coloring as the coloring number for each individual matroid lower

bounds the coloring number for the intersection.

Furthermore, [BSY19, IMP20, LMP21] showed that many common types of matroids, including transver-

sal matroids, laminar matroids, graphic matroids and gammoids, have (1, 2)-decompositions. Moreover,

they showed that these decompositions can be computed efficiently from the standard representations of

these matroids. Thus [BSY19] reasonably conjectured that every matroid is (1, 2)-decomposable. If this

conjecture held, and such decompositions could be found efficiently, then the result from [IMP20] would

yield an efficient O(1)-approximation algorithm for coloring the intersection of O(1) arbitrary matroids.

This paper’s main result is that there are matroids that are not (O(1), O(1))-decomposable. This refutes

the conjecture from [BSY19]. In particular, we show that the binary matroid, consisting of the 2n − 1
nonzero vectors of dimension n, is not (O(1), O(1))-decomposable.

Before proving our main result in Section 2, we review related work and basic definitions.

1.1 Other Related Work

[AB06] showed that for two matroids M1 and M2, with coloring numbers k1 and k2, the coloring number

k of M1 ∩ M2 is at most 2max(k1, k2). The proof in [AB06] uses topological arguments that do not

directly give an efficient algorithm for finding the coloring. [BSY19] also showed how to use the existence

of (1, c)-decompositions to prove the existence of certain list colorings.

Motivated by applications to the matroid secretary problem, [AKKG21] independently showed that the

same binary matroid that we consider is not (1, O(1))-decomposable.

1.2 Definitions

A hereditary set system is a pair M = (S,I) where S is a universe of n elements and I ⊆ 2S is a

collection of subsets of S with the property that if A ⊆ B ⊆ S and B ∈ I then A ∈ I . The sets in I are

called independent. A subset R of S is k-colorable if R can be partitioned into k independent sets. The

coloring number of M is the smallest k such that S is k-colorable. The rank r(X) of a subset X of S is

the maximum cardinality of an independent subset of X. A matroid is an hereditary set system with the

additional properties that ∅ ∈ I and if A ∈ I , B ∈ I , and |A| < |B| then there exists an s ∈ B \ A such

that A ∪ {s} ∈ I . The intersection of matroids (S,I1), . . . , (S,Ih) is a hereditary set system with universe

S where a set I ⊆ S is independent if and only if for all i ∈ [1, h] it is the case that I ∈ Ii. A flat F of M is

subset of S such that for all elements y ∈ S \ F it is the case that adding y to F strictly increases the rank.

2 Main Result: Binary Matroids are Not Decomposable

This section focuses on showing that binary matroids are not (b, c)-decomposable for constants b and c.
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Definition 2. Let M = (S,I) be the binary matroid where S consists of all n dimensional vectors with

entries that are either 0 or 1, with the exception of the all zero vector. A subset R of S is independent if and

only if the elements of R are linearly independent over the field with the elements 0 and 1 with addition and

multiplication modulo 2.

Note that S contains 2n − 1 elements and has rank n.

Lemma 3. The coloring number of any rank d flat of M is ⌈(2d−1)/d⌉. Thus, by taking d = n, the coloring

number k of M is precisely ⌈2n/n⌉.

Proof. It is well known that a matroid can be colored with k colors if and only if for every subset R of

elements, k · r(R) ≥ |R|, that is, k times the rank of R is at least the cardinality of R [Edm65]. The

maximum value of |R|/r(R) over subsets R of a rank d flat F occurs when R = F . Thus this maximum is

(2d − 1)/d.

Lemma 4. If d ≤ n/2 then the number of distinct rank d flats of M is at least 2dn

2d
2+d

.

Proof. Consider the process of picking one by one a collection of d vectors to form a basis of a rank d flat

F . When considering the ith choice, there are (2n − 1) − (2i−1 − 1) choices of elements of S that are

linearly independent from the previous choices. As the order of the d vectors chosen does not matter, the

number possible collections of elements that form a basis of rank d flat is the following.

∏d
i=1

(

(2n − 1)− (2i−1 − 1)
)

d!

Similarly for a particular rank d flat F there are

∏d
i=1

(

(2d − 1)− (2i−1 − 1)
)

d!

collections of elements from F that form a basis for F . Thus there are

∏d
i=1

(

(2n − 1)− (2i−1 − 1)
)

∏d
i=1

((2d − 1)− (2i−1 − 1))
=

d
∏

i=1

(

2n − 2i−1

2d − 2i−1

)

flats of rank d. Lower bounding each term in the product in the numerator by 2n − 2d, and upper bounding

each term in the product in the denominator by 2d, we can conclude that there are at least

(

2n − 2d

2d

)d

flats of rank d. Then if d ≤ n/2, this is at least 2dn

2d
2+d

.

Theorem 5. If M admits a (b, c)-decomposition then it must be the case that 4c22d
2+d ≥ n, where d

is the minimum integer such that (2d − 1)/d > b. In particular, for sufficiently large n, M admits no

(O(1), O(1))-decomposition.

Proof. Consider an arbitrary (b, c)-decomposition X = {X1,X2, . . . ,Xℓ} of M . As (2d − 1)/d > b, a

flat of rank d is not b-colorable by Lemma 3 . Thus for each rank d flat F , at least two elements of F must

be in the same part in X. Otherwise, we get a contradiction to the definition of (b, c)-decomposability. To

see this, consider setting Y to F in the definition of the (b, c)-decomposition. That is, each element of F is

3



selected to be in Y as this includes at most one element in any part Xi. The resulting representatives would

not be b-colorable by the above characterization of F . If two elements of a rank d flat F are in the same part

Xi ∈ X then we say that F is covered by part Xi.

Since X is a (b, c)-decomposition, the cardinality of each part of X is at most ck. Each pair of elements

x, y in a part Xi ∈ X can be contained in at most
(

2n

d−2

)

rank d flats. To see this note that each rank d flat

F can be represented by d independent basis vectors in F , and since x and y are already specified, there

are at most d − 2 more choices for these basis vectors. There are at most
(

ck
2

)

possible pairs of elements

from a part Xi ∈ X, and Xi can cover at most
(

ck
2

)(

2n

d−2

)

different flats. Thus in aggregate, all the parts

of X can cover at most ℓ
(

ck
2

)(

2n

d−2

)

flats. Then using the fact that ℓ is at most n, k is at most 2 · 2n/n,

and upper bounding
(

x
y

)

by xy , we can conclude that in aggregate all the parts of X can cover at most

ℓ
(

ck
2

)(

2n

d−2

)

≤ n(ck)2(2n)d−2 ≤ 4c22nd/n flats. Since each of the flats must be covered by some part of X,

and since by Lemma 4 the number of rank d flats is at least 2nd

2d
2+d

, it must be the case that

4c22nd/n ≥
2nd

2d
2+d

or equivalently 4c22d
2+d ≥ n.
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