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Abstract

The problem of calculating the shortest path that visits a given set of nodes is at least as
difficult as the traveling salesman problem, and it has not received much attention. Never-
theless an efficient integer linear programming (ILP) formulation has been recently proposed
for this problem. That ILP formulation is firstly adapted to include the constraint that the
obtained path can be protected by a node-disjoint path, and secondly to obtain a pair of node
disjoint paths, of minimal total additive cost, each having to visit a given set of specified
nodes. Computational experiments show that these approaches, namely in large networks,
may fail to obtain solutions in a reasonable amount of time. Therefore heuristics are pro-
posed for solving those problems, that may arise due to network management constraints.
Extensive computational results show that they are capable of finding a solution in most
cases, and that the calculated solutions present an acceptable relative error regarding the
cost of the obtained path or pair of paths. Further the CPU time required by the heuristics
is significantly smaller than the required by the used ILP solver.

Keywords: Resilient routing, node-disjoint, visiting a given set of nodes.

1. Introduction

Communication networks are critical infrastructures of nowadays society. One of its
most important features is their ability of providing a “reliable” service, in the sense that
they contain mechanisms which allow to maintain or to restore the service in the case some
failure occurs. This is related with the availability of the service and with the concepts of5
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resilience and survivability of communication networks. A recent systematic architectural
framework that surveys and unifies these concepts was presented in [1]. In [2] the authors
discuss deployment issues of fault recovery mechanisms in commercial optical networks,
namely problem arising from hardware constraints. The existent resilience mechanisms can
lead to several levels of services availability. These levels have been characterized by the10

notion of service Quality of Resilience (QoR), which was formally introduced in [3] and later
explored in [4, 5].

In case of service interruption, different schemes of network recovery can be used: routing
with protection or routing with restoration. In the first case the recovery procedure to
implement is defined a priori, whereas in the second the recovery is sought in real time,15

after the fault has been detected. In the following we will focus on the first case, routing
with protection.

Very often routing with protection is handled by computing in advance a pair of paths
formed by an active, or primary, path (AP), and by a backup path (BP). As the names
suggest, the backup path is to be used as an alternative to the active path, in case of failure20

in the latter. In order to ensure the backup path suits its purposes, usually routing with
path protection is preceded by computing pairs of paths that are node (or arc, depending on
the specific application) disjoint, such that a cost function is minimized. Polynomial time
methods to find the minimum cost pair of disjoint paths, adapted from Dijkstra’s algorithm,
were proposed in [6, 7]. Several variants of these methods have been proposed by Bhandari25

[8].
Communication networks are intrinsically multi-layered. Because protection can be made

at multiple layers, some links at an upper layer may be resilient because they are protected
at a lower layer. In this case, when path diversity is used at an upper layer, it may not
be necessary for the AP and BP to be fully disjoint. Paths that may share resilient arcs30

are said to be failure disjoint. The calculation of shortest pair of failure-disjoint paths is
solved in [9], by a polynomial time algorithm. If a resilient arc is used by both paths, its
cost is counted only once. In [10] the problem of calculating a pair of paths (without loops),
from node s to node t, such that they are node-disjoint, except possibly at the end nodes of
shared resilient arcs, is formalized and two novel algorithms are proposed for solving it.35

For certain types of applications the active path must visit a set of nodes which is
specified in advance. The nodes to be visited can be determined for different reasons. For
instance, due to their characteristics or high reliability, depending on operator preferences
resulting from agreements, or for other network management constraints. Fixed routes
can be implemented in several network technologies, namely as lightpaths in WDM optical40

networks.
In general the problem of finding the shortest path that visits a given set of nodes is more

difficult to solve than the unconstrained version, where no nodes are mandatory besides the
source and the target. The problem was first mentioned by Kalaba [11] and a method for
solving it was introduced by Saksena and Kumar [12]. This method, hereafter designated45

as SK66, is a dynamic programming algorithm, based on Bellman’s optimality principle.
The found solution is allowed to have repeated nodes (and, thus, cycles). However, later
Dreyfus [13] stated that the solution this algorithm outputs is not always optimal. Dreyfus

2



also stated that the unconstrained version of the problem cannot be easier than the traveling
salesman problem of dimension k, where k − 2 nodes have to be visited.50

Different variants of the problem were also studied in [14, 15, 16, 17, 18]. In particular,
Ibaraki [16] addressed separately two versions of the problem of calculating the shortest path
that visits a specified set of nodes, one where the solutions are loopless and another where
solutions are paths (possibly with cycles). For the loopless paths case, two methods were
presented: one based on dynamic programming, as well as a branch and bound algorithm.55

For the reported empirical results, the branch and bound method outperformed by the
dynamic programming method.

More recently, the problem of finding a shortest loopless path that visits exactly once
the nodes of a specified set was addressed by Andrade [14]. An initial linear integer for-
mulation for the problem, with an exponential number of sub-tour elimination constraints,60

was considered. Two further formulations of the problem were also proposed. The first
(Q2) is based on an adapted version of the cycle elimination constraints of the spanning tree
polytope, whereas the second (Q3) is a primal-dual based mixed integer formulation. The
presented computational results, for instances with up to 80 nodes and a set of 25%, 50%,
75% or 100% nodes to be visited, revealed that formulation Q3 was significantly easier to65

solve than formulation Q2. Andrade also pointed out that if all nodes in the graph, except
the source and the target, are to be visited, then this corresponds to the NP-hard problem
of finding a minimum cost Hamiltonian path.

Our contribution focuses on two problems: finding a minimum cost disjoint pair of
loopless paths, the active path of which visits a given set of nodes, and finding a node-70

disjoint path pair of min-sum cost such that each of the paths visits a different given set
of nodes. The integer linear model proposed in [14] is adapted for both these problems.
Empirical tests show that an ILP solver has limitations regarding the size of the problems it
can solve and regarding the demanded running times. Therefore, the purpose of this work is
to present heuristics capable of providing a feasible solution to each of these problems that75

is close to the optimum, within a reasonable running time. To achieve this goal, heuristics
for calculating the shortest loopless path visiting specified nodes had first to be developed.

The rest of the text is organized as follows. The next section is devoted to introducing
notation, formally defining the two problems mentioned above and by adapting the model
in [14] for solving them. In Section 3 the algorithm SK66 is reviewed, a modified version of80

SK66, designated SK [19], and a new heuristic, algorithm VSN, for calculating a shortest
loopless path visiting specified nodes, are presented. In Section 4 heuristics for computing
a protected shortest loopless path visiting a given set of nodes are proposed; two different
approaches using SK as underlying algorithm are presented in Sub-sections 4.1 and 4.2; a new
heuristic, designated VTA based on VSN, is described in Sub-section 4.3. The selection of85

the heuristics considered in the result analysis is given in Sub-section 4.4. Two heuristics for
calculating a pair of node-disjoint loopless paths, each visiting a specified set of nodes, such
that the sum of the cost of the paths is minimum, are presented in Section 5. Extensive
computational results are presented and analyzed in Section 6. Finally, conclusions are
drawn in Section 7.90
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2. Notation and problems formulation

In this work one seeks to solve the following problems:

Problem P1: obtaining the shortest loopless path visiting a specified set of nodes, with the
constraint that it must be protected using a node-disjoint path.

Problem P2: obtaining a pair of node-disjoint loopless paths, each visiting a specified set95

of nodes, such that the sum of the cost of the paths is minimum.

Unless explicitly stated otherwise, all paths are considered to be loopless.

2.1. Notation

The heuristics proposed in sections 3 and 4 use the following notation. Let the graph
G = (V,A) be defined by a set of n nodes V = {v1, . . . , vn}, and a set of (directed) m arcs100

A = {a1, . . . , am}. An arc connects two vertices in a given order, and is represented as an
ordered pair of elements belonging to V . If vi, vj ∈ V , with vi 6= vj and ak = (vi, vj) ∈ A, it
is said that the vi is the tail (or source) of the arc and vj is its head (or destination). Arc
(vi, vj) is said to be emergent from node vi and incident on node vj. Arcs (vi, vj) and (vj, vi)
are symmetrical arcs.105

A path is a continuous sequence of distinct nodes from a source node, s, to a destination
node t, (s, t ∈ V ), and is represented by p = 〈s ≡ v1, v2, . . . , vk ≡ t〉, where (vi, vi+1) ∈
A, ∀i ∈ {1, . . . , k − 1}, k being the number of nodes in the path. Let Vp be the set of nodes
in the path p, and Ap be the set of arcs that form the path, Ap = ∪∀i∈{1,...,k−1}{(vi, vi+1)}.
A segment is a continuous sequence of arcs that are part of a path. The cost of using an110

arc (vi, vj) ∈ A in a path is given by w(vi, vj), which is assumed to be strictly positive.
The additive cost of a path p is the sum of the costs of the arcs constituting the path,
Dp =

∑
(vi,vj)∈Ap

w(vi, vj). If a path between a given pair of nodes does not exist, it is

represented by the empty set (∅), and its cost is infinite.
Given a node pair (s, t), a pair of paths from s to t is represented by (p, q). The paths115

are node-disjoint if and only if Vp ∩ Vq = {s, t}.
Let Pst represent the set of all paths from s to t in the network. Let VS1 designate the

set of specified nodes that must be visited by the active path. A path from a node vi to
a node vj is represented by pvivj . The concatenation of paths pvivj and pvjvl is the path,
pvivj � pvjvl , from vi to vl, which coincides with pvivj from vi to vj and with pvjvl from vj to120

vl. The constant τ = dm/ne2|VS1| will be used to limit shortest path enumeration in some
of the proposed heuristics.

2.2. Formulation of problem P1

The problem is to find a shortest loopless path visiting a specified set of nodes, with the
constraint that it must be protected using a node-disjoint path:125

(p∗1, p
∗
2) = arg min

(p1,p2)∈Pst

Dp1 (1)

subject to: Vp1 ∩ VS1 = VS1 ∧ Vp1 ∩ Vp2 = {s, t} (2)
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A path from s to t which visits the nodes in VS1 will also be represented by an s–VS1–t path,
as in [14]. Once a path p∗1 has been found, the backup path p∗2 can be calculated as the
min-cost path in the network where the intermediate nodes of p∗1 have been deleted. This
simple approach ensures that the paths p∗1 and p∗2 are node-disjoint.

The Integer Linear Programming formulation for obtaining (p∗1, p
∗
2) is given here, because

the exact results obtained using this formulation will be used to evaluate the performance
of the heuristics. The formulation requires some additional notation: δ(i)+, the set of arcs
in A emergent from node vi; δ(i)

−, the set of arcs in A incident on node vi; and x(i,j),u is the
binary decision variable of arc (vi, vj) ∈ A associated with path pu (u = 1, 2), where,

x(i,j),u =

{
1 if arc (vi, vj) ∈ Apu ,
0 otherwise;

(3)

Let p = 〈s = v1, v2, . . . , vk = t〉 be a shortest s–VS1–t path, and πvi , vi ∈ Vp, is the cost130

of going from node s to node vi in this path. The ILP formulation which follows is an
adaptation of the formulation Q3 in [14] with the additional constraint that the obtained
path can be protected by a node-disjoint path.

min
∑

(vi,vj)∈A

w(vi, vj)x(i,j),1 (4)

s.t.:
∑

(vi,vj)∈δ(i)+
x(i,j),u −

∑
(vj ,vi)∈δ(i)−

x(j,i),u =


1 : vi = s,
−1 : vi = t,

0 : vi ∈ V \{s, t}
(5)

∀vi ∈ V, u = 1, 2∑
(vi,vj)∈δ(i)+

x(i,j),1 = 1, ∀vi ∈ VS1 , (6)

πvj − πvi ≤ w(vi, vj) +M(1− x(i,j),1), ∀(vi, vj) ∈ A (7)

πvj − πvi ≥ w(vi, vj)−M(1− x(i,j),1), ∀(vi, vj) ∈ A (8)

πs = 0 (9)

πvi ≥ 0,∀vi ∈ V \ {s} (10)∑
(vi,vj)∈δ(i)+

x(i,j),1 + x(i,j),2 ≤ 1, ∀vi ∈ V \ {s} (11)

x are the binary decision variables.

In the optimization problem M is a sufficiently large number and:

• constraint (5) ensures (unrestricted) paths pu (u = 1, 2) from s to t exist;135

• constraint (6) ensures that nodes in VS1 are visited by the active path p1 (u = 1) from
s to t;

• constraints (7) and (8) impose that if an arc (vi, vj) is in the solution then πvj − πvi =
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w(vi, vj) – see [14] for a proof. Otherwise, if xij = 0, then the constraints (7) and (8)
are redundant, for a satisfactory M . Additionally, as all arc costs are strictly positive,140

then feasible solutions for the active path do not contain cycles;

• constraint (9) defines the cost (distance) of the source node s (in the active path);
constraint (10) ensures all costs from s to v ∈ V are positive;

• constraint (11) ensures a pair of node-disjoint paths exists.

Note that the protection path defined by x(i,j),2 may contain cycles, and its cost is not145

minimized. Hence, having calculated p∗1, the min-cost path node-disjoint with p∗1 can be
calculated in a network where all intermediate nodes of p∗1 have been deleted (recall that
p∗1 6= 〈s, t〉, assuming VS1 6= ∅).

2.3. Formulation of problem P2

The problem is to find a pair of node-disjoint loopless paths, each visiting a specified set150

of nodes, such that the sum of the cost of the paths is minimum. This a min-sum problem
with constraints. Let VS2 designate the set of specified nodes that must be visited by the
backup path.

(p∗1, p
∗
2) = arg min

p1,p2∈Pst

{Dp1 +Dp2} (12)

subject to: Vp1 ∩ VS1 = VS1 (13)

Vp2 ∩ VS2 = VS2 (14)

Vp1 ∩ Vp2 = {s, t} (15)

(16)

Whenever possible the notation introduced in the previous subsection will be used. Let
pu = 〈s = v1, v2, . . . , vk = t〉, with u = 1, 2, be a s–VSu–t path, and πvi,u, vi ∈ Vp, be the155

cost of going from node s to node vi in the path pu (u = 1, 2). The ILP formulation which
follows is an extension of the formulation in the previous section.
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min
∑

(vi,vj)∈A

w(vi, vj)[x(i,j),1 + x(i,j),2] (17)

s.t.:
∑

(vi,vj)∈δ(i)+
x(i,j),u −

∑
(vj ,vi)∈δ(i)−

x(j,i),u =


1 : vi = s,
−1 : vi = t,

0 : vi ∈ V \{s, t}
(18)

∀vi ∈ V, u = 1, 2∑
(vi,vj)∈δ(i)+

x(i,j),u = 1, ∀vi ∈ VSu , u = 1, 2 (19)

πvj ,u − πvi,u ≤ w(vi, vj) +M(1− x(i,j),u), ∀(vi, vj) ∈ A, u = 1, 2 (20)

πvj ,u − πvi,u ≥ w(vi, vj)−M(1− x(i,j),u), ∀(vi, vj) ∈ A, u = 1, 2 (21)

πs,u = 0, u = 1, 2 (22)

πvi,u ≥ 0, ∀vi ∈ V \ {s}, u = 1, 2 (23)∑
(vi,vj)∈δ(i)+

x(i,j),1 + x(i,j),2 ≤ 1, ∀vi ∈ V \ {s} (24)

x are the binary decision variables.

In the optimization problem M is, as in the previous problem, a sufficiently large number
and:

• constraints (18) and (24) are similar to (5) and (11), respectively;160

• constraints (19)-(23) extend constraints (6)-(10), for considering node-disjoint paths
pu (u = 1, 2), from node s to node t, where pu must visit the set of specified nodes VSu .

3. Shortest path visiting specified nodes

The algorithm by Ibaraki [16] based on dynamic programming easily requires a huge
amount of memory and CPU time, because it corresponds to an almost exhaustive breadth165

first search of all the paths from source to target. The algorithm SK66, although it does
not ensure an optimal solution, has a number of iterations proportional to the size of the
set of specified nodes to visit (|VS1|); in the initial step it calculates (|VS1 |+ 2)|VS1| shortest
paths; in each step it demands |VS1|2 operations, of which the most time consuming is node
counting, with worst case complexity O(n log n); hence the worst case complexity of SK66 is170

O(|VS1 |2(m+n) log n) if Dijkstra’s algorithm (with a binary heap) is used in the calculation
of the shortest sub-paths.

3.1. Revision of the algorithm by Saksena and Kumar (SK66)

The algorithm SK66, seeks to determine a path from a source node s to a target node t,
visiting a set of specified nodes, by selecting the path (possibly with cycles) with minimum175

cost among the possible concatenation of sub-paths of minimum cost.
The initial steps of the algorithm are:
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1. the calculation of the shortest path (without restrictions) between every node pair
belonging to VS1 , and also between the source node s and every node in VS1 ;

2. the calculation of the shortest path from every node in VS1 to the target node.180

Let D(vi, vl) designate the cost of the shortest path from vi to vl, with vi ∈ VS1 ∪ {s} and
vl ∈ VS1 . Let f 0

vi
designate the cost of the shortest path from node vi ∈ VS1 to t.

The algorithm can now iteratively calculate:

f ηvi = min
vl∈VS1

{D(vi, vl) + f η−1vl
], vl 6= vi} (25)

for η = 1, 2, . . . , |VS1| − 1, intending to add at least one additional specified node in each
iteration to the obtained sub-paths. However a path (possibly with cycles) from vi, via an
additional specified node vl, to t, of cost D(vi, vl) + f η−1vl

is only admissible if it contains at185

least η specified nodes, not counting node vi, nor its repetitions on the path. This must be
verified at every step of the algorithm.

The final step is the calculation of

f
|VS1
|

s = min
vl∈VS1

{D(s, vl) + f
|VS1
|−1

vl } (26)

and of the corresponding path (which may contain cycles).
The shortest paths calculated in the initial steps of the algorithm, will be the building

blocks of the path computed according to equations (25) and (26).190

3.2. Modification of the algorithm by Saksena and Kumar

In this subsection are introduced the proposed modifications of SK66. This new version
of the algorithm ensures the obtained path is loopless and also improves the performance of
the original algorithm, because it keeps more intermediate sub-paths, as will be described
next. This modified and improved version of SK66 will be designated SK.195

In order to obtain loopless paths, the path selected by equation (26) and the sub-paths
selected by equation (25) must satisfy the restriction that they must not contain a cycle.

In each iteration of SK66, according to equation (25), for every vi ∈ VS1 a new via
node vl (vl ∈ VS1) is selected for obtaining a path from vi to t. This procedure may
prematurely eliminate sub-paths (of the final path from s to t) of higher cost that would200

result in admissible solutions, due to selecting lower cost sub-paths that will further on be
abandoned because they lead to an infeasible solution. Let

f 1
vi,v′l

= D(vi, v
′
l) + f 0

v′l
, v′l 6= vi (27)

f ηvi,vl = D(vi, vl) + min
vj

f η−1vl,vj
, (28)

vl 6= vi, vj ∧ vi 6= vj

with η = 2, . . . , |VS1|. Hence the main modification is, in each iteration η, to keep the paths
from node vi to t, via all the possible new intermediate nodes vl, instead of selecting the
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one of minimal cost as in (25). In the original version of the algorithm, at the end of each205

iteration η = 1, . . . , |VS1| − 1 only one path was selected (unless a tie in the minimum cost
occurred) for each source node vi – see (25). In this modified version up to |VS1| − 1 paths
are selected for each source node vi.

Additionally the following modifications were introduced.

1. Seeking to avoid cycles, the initial steps were modified as follows: the shortest path210

from s to vl ∈ VS1 of cost D(s, vl) is calculated in a network where node t was deleted;
similarly the shortest path from vi to vj, with vi, vj ∈ VS1 , is calculated in a network
where nodes s and t were deleted; finally the shortest path from node vi ∈ VS1 to t of
cost f 0

vi
is calculated in a network where node s was deleted.

2. If in iteration η, all the paths from vi to t, using via node vl, of cost D(vi, vl) + f η−1vl,vj
,215

were considered non admissible, and in the previous iteration, a path from node vi
to t, with |VS1 | − 1 specified nodes exists, which had resulted from adding the new
specified via node vl, then the path from the previous iteration is copied, and stored
as if it had been computed in the η-th iteration.

3. If in iteration η, the new path (from vi to t) of cost D(vi, vl) + f η−1vl,vj
, with r∗ (r∗ ≥ η)220

specified nodes was considered admissible, and in the previous iteration, a path from vi
to t, adding via node vl also exists with at least r∗ specified nodes, and has lower cost
than the path computed in the present iteration, the path of the η−1 iteration replaces
the one computed in the η-th iteration (and is stored as if it had been computed in
the η-th iteration).225

The complexity of SK is in the worst case |VS1| − 1 times larger then that of SK66,
because it stores, for each new added specified node, up to |VS1| − 1 solutions, instead of
only the min-cost solutions as SK66.

3.3. A new heuristic for calculating a path visiting specified nodes

In most practical cases within the context of our application, the number of specified230

nodes that a path must visit is relatively small (at most 6). Assuming that the number of
elements of set VS1 is small, the following approach is efficient, as the empirical results will
show.

The main idea is to build an auxiliary graph GS1 , with node set {s, t} ∪ VS1 , where
the shortest paths visiting all nodes in the graph can be obtained using a k-shortest path235

enumeration algorithm like Yen’s [20] or MPS [21].
The computation of the auxiliary graph is explained next. First the shortest path from

s to each node in VS1 , from t to each node in VS1 and between every node pair of nodes
in VS1 is calculated, as described next. The shortest path from s to each node vi ∈ VS1 is
calculated in the network resulting from removing the nodes in set {t} ∪ VS1 \ {vi} – this240

ensures these paths do not contain t or any other specified node. Similarly, the shortest
path from vi (vi ∈ VS1) to t is calculated in the network resulting from removing the nodes
in set {s} ∪ VS1 \ {vi} – this ensures these paths do not contain s or any other specified
node. Finally for every node pair vi, vj ∈ VS1 , the shortest path in the network where the
nodes in set {s, t}∪VS1 \ {vi, vj} have been deleted are calculated – this ensures these paths245
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do not contain s, t or any other specified node. These paths are calculated using a breadth
first search (BFS) [22, 23] algorithm to ensure the shortest path with the minimum number
of arcs is obtained.

Every calculated path (if it exists) will be represented in the auxiliary graph by an arc,
emergent from the source node of the path and incident in the destination node of the path,250

with cost equal to the cost of the path represented by that arc. Now one can calculate
shortest paths from s to t until a shortest path visiting all nodes in this auxiliary graph is
obtained. Every arc of this path is expanded into the path it corresponds to in the original
network. If the resulting expanded path does not contain any cycle it is a feasible solution to
the min-cost loopless path visiting specified nodes, and the algorithm ends. Otherwise the255

path (with cycles) is stored in a first in first out queue (say Q) for possible later processing,
and the k-shortest paths method keeps generating paths as long as they have the same
minimum cost; this last condition has two purposes: avoiding accepting a path that is more
expensive than necessary and preventing (if possible) the generation of all paths in GS1 .
If these actions do not result in finding a loopless path visiting all nodes in VS1 , then the260

strategy is to successively delete one arc (selected using the list Q) from the original network,
and repeat the above procedure (which starts by recomputing the auxiliary graph) until a
solution is found, or n arcs have been deleted, or no paths from s to t can be obtained in
the auxiliary graph.

The algorithm VSN contains a detailed description of the this new approach, where the265

function auxGraph corresponds to building the auxiliary graph GS1 , as described above. The
function arcInCycle is described next.

Given the sequence of generated paths stored in Q, the function arcInCycle will identify
among the arcs in cycles the one present (in cycles) in more paths, and in case of a tie it
selects the one with the largest cost. If only nodes are repeated, then function arcInCycle270

will determine the largest number of paths (f) where the same repeated node appears.
Afterwards it will search for the first path inserted in Q containing a node which appears
in f paths, and deletes from the original network the first arc, in the path, incident in that
node.

The problem above boils down to the Hamiltonian path problem, which is a particular275

case of the traveling salesman problem, and both are NP-complete. The applicability of the
strategy of algorithm VSN is limited in practice by |VS1 |, as was already mentioned. Other
exact methods for the Hamiltonian path problem, or for the more general traveling salesman
problem, could be used, for instance [24, 25]. When |VS1| is big an approximate method will
have to be used instead, for instance [26, 27].280

The complexity of VSN is given by the cost of calculating (|VS1| + 2)|VS1 | shortest
paths using BFS and by calculating at most n times the required number of paths in the
auxiliary graph. Let ng = |VS1 | + 2 and mg = |VS1 |2 + |VS1 | be the number of nodes
and maximum number of arcs of the auxiliary sub-graph. Therefore VSN complexity is
O (|VS1|2(m+ n) + nKng(mg + ng log ng)), where K is the number of paths calculated in285

the auxiliary graph using Yen’s algorithm.
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Algorithm VSN: New heuristic for calculating a min-cost path visiting specified
nodes

Input: G = (V,A), s, t, VS1

Output: p

1 begin
2 p← ∅; pathFound← false; ; // No solution yet

3 i← 0; // When equal to n will stop the cycle

4 Ar ← ∅; // set of arcs deleted from G
5 repeat // Generates auxiliary graph in a successively pruned network

6 GS1 ←auxGraph(G, VS1, s, t); // GS1 = (VS1 ∪ {s, t}, AS1)
7 Q← ∅; // resets queue of paths with cycles

8 noPath← true ; // until finding the 1st pS1 ∈ GS1 : |VpS1
| = 2 + |VS1|

9 firstPathCost←∞ ; // cost of the 1st path

10 Starts a k-shortest path enumeration algorithm from s to t in GS1 ;
11 repeat // Until a path is found or cost is too high

12 pS1 ←k-shortest(GS1 , s, t); // next s-t shortest path in GS1

13 if |VpS1
| = 2 + |VS1| then // pS1 visits all nodes of GS1

14 if noPath then // first pS1 with 2 + |VS1| nodes is found

15 noPath← false;
16 firstPathCost← DpS1

; // saves cost of the first path

17 end
18 pG ←expandPath(G, pS1) ; // expands pS1 into a path in G
19 if pG has a cycle then push p into Q; // No solution yet

20 else
21 pathFound← true;
22 p← pG; // a feasible solution

23 end

24 end

25 until pathFound ∨ pS1 = ∅ ∨DpS1
> firstPathCost;

26 if ¬pathFound ∧Q 6= ∅ then
27 i← i+ 1; // arc removal counter is updated

28 a← arcInCycle(Q) ; // selects arc to be deleted

29 A← A \ {a} ; // deletes arc a from G
30 Ar ← Ar ∪ {a} ; // updates set of deleted arcs

31 end

32 until pathFound ∨ i > n ∨Q = ∅;
33 A← A ∪ Ar ; // restores the input graph G = (V,A)
34 return p; // if p is not empty it ends with a feasible solution

35 end

11



4. Protected shortest path visiting specified nodes

Two different approaches for finding a shortest path visiting a specified set of nodes, with
the constraint that it must be protected using a node-disjoint path are proposed in Sub-
sections 4.1 and 4.2, the first modifying algorithm SK for obtaining segments of the AP that290

can be protected, and the second using algorithm SK after having calculated a candidate
BP path. These two approaches are then combined into a third heuristic as explained in
Sub-section 4.4 for improving the number of obtained feasible solutions as was shown in [19].

In Sub-section 4.3 algorithm VTA is developed, which incorporates an approach inspired
by the Trap Avoidance algorithm proposed in [28], for solving the same problem.295

4.1. Active path first

The algorithm described in this Sub-section, designated ASK, tries to generate an active
path, such that a node-disjoint path exists. It is based on SK, but it introduces additional
restrictions in the generation of the sub-paths that are the building blocks of the active path.
These restrictions ensure that each sub-path allows a node-disjoint path to be obtained from300

s to t.
The initial steps of ASK are:

1. A k-shortest path enumeration algorithm [20, 21] is used to generate up to τ (recall
that τ = dm/ne2|VS1 |) paths from (vi, vj), with vi ∈ VS1 ∪ {s} and vj ∈ VS1 ; as soon
as a k-th path from vi to vj, p

k
ij (k = 1, . . . , τ), is found such that removing the set of305

nodes (Vpkij ∪VS1)\{s} a path from node s to node t can be found, the path generation

procedure stops; the path pkij is stored and D(vi, vj) takes the cost of that path. If
none of the generated paths can be protected D(vi, vj) =∞.

2. A k-shortest path enumeration algorithm [20, 21] is used to generate up to τ paths
from (vi, t), with vi ∈ VS1 ; as soon as a k-th path from vi to t, pkit (k = 1, . . . , τ), is310

found such that removing the set of nodes (Vpkit ∪ VS1) \ {t} a path from node s to t

can be found, the path generation procedure stops; the path pkit is stored and f 0
vi

takes
the cost of that path. If none of the generated paths can be protected f 0

vi
=∞.

Using these sub-paths as building blocks, then SK is used with the additional restriction
that at each iteration η, a path from node vi to node t via node vl is only admissible if in the315

network without the nodes in VS1 ∪ Vpvit \ {t} a path from s to t can be found. Similarly, in
the final step, a path from s to t is only admissible if a node-disjoint path exists with each

loopless candidate path of cost D(s, vl) + f
|VS1
|−1

vl,vj
.

The final active path selection in the algorithm is done initially using equation (26),
with the restrictions that the path must be loopless and that it can be protected by a node-320

disjoint path. If a candidate path p, resulting from the concatenation of the sub-path from

s to vl (with cost D(s, vl)) and of the sub-path vl to t (with cost f
|VS1
|−1

vl ) does not contain
a cycle, one must then verify if the resulting path has a node-disjoint backup path from s
to t.

Note that although it is ensured that each of the sub-paths psvl and pvlt, can be protected325

by a node-disjoint path from s to t, this does not ensure that a node-disjoint path exists for
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path p. Hence, the final active path selection sequentially adopts the following approaches,
proceeding into the next one only if no feasible solution could be obtained in the previous
one:

(a) Final selection based on equation (26).330

Build path p1 with cost D(s, vl) + f
|VS1
|−1

vl,vi , resulting from the concatenation of the
shortest path psvl , of cost D(s, vl), obtained in the initial steps, with pvlt the path with

cost f
|VS1
|−1

vl,vi (vl, vi ∈ VS1) obtained in the η = |VS1| − 1 iteration of the algorithm.

If p1 = psvl � pvlt is loopless, then verify if a node-disjoint path can be found with the
path p1.335

(b) Possibly replacing the sub-path of cost D(s, vl), obtained in the initial steps of the
algorithm.

For every sub-path pvlt, with cost f
|VS1
|−1

vl,vi (vl, vi ∈ VS1), a shortest path psvl in the
network where the nodes Vpvlt \ {vl} have been deleted is calculated; then if a node-
disjoint path can be found with the path psvl � pvlt, a feasible solution has been found.340

(c) Seeking to find a node-disjoint backup with the sub-path pvlt with cost f
|VS1
|−1

vl,vi .

For every sub-path pvlt with cost f
|VS1
|−1

vl,vi (vl, vi ∈ VS1), a backup path p2 is calculated
from s to t in a network where the nodes Vpvlt \ {t} have been deleted. If p2 exists, a
sub-path psvl is then calculated in the network where the nodes in set Vp2∪Vpvlt \{s, vl}
have been deleted. If this sub-path exists then p1 = psvl � pvlt is a feasible solution.345

(d) Seeking to find a node-disjoint backup with the sub-path psvk , where vk is the most

downstream among the specified nodes of the path of cost D(s, vl) + f
|VS1
|−1

vl,vj .

For every sub-path pvlt with cost f
|VS1
|−1

vl,vi (vl, vi ∈ VS1), let psvl be the shortest path
from s to vl of cost D(s, vl), and p′1 = psvl � pvlt a loopless path. Let vk be the most
downstream of the nodes of p′1, such that vk ∈ VS1 ; a backup path p2 is calculated from350

s to t in a network where the nodes in set Vpsvk \ {s} have been deleted. If p2 exists,
a sub-path from vk to t, pvkt, is then calculated in the network where the nodes in set
Vp2 ∪ Vpsvk \ {vk, t} have been deleted.

Note that approaches (b)-(d) are sequentially used, only if the previously used approach –
(a), the first one to be used – resulted in no feasible solution. The solution with minimal cost355

among the obtained feasible solutions is the final selected active path (with the corresponding
node-disjoint protection path).

4.2. Backup path first

In some networks ASK may fail to find a solution, because no protection path could be
found for the calculated shortest paths. Hence another algorithm, which first calculates a360

backup path and then seeks the corresponding active path, was proposed.
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This second algorithm, designated BSK, tries to obtain a possible backup path in a
network where the nodes in VS1 have been deleted. First it generates the largest set of
node-disjoint paths of min-sum cost, according to Bhandari’s algorithm [8]. Then for each
backup path, q in that set, the corresponding active path is calculated using algorithm SK,365

in the network (V \ (Vq \ {s, t}), A), that is where the intermediate nodes of the calculated
backup path have been previously deleted. If more than one solution was found, it selects
the one with smaller cost for the AP.

If the previous procedure was unable to elicit a solution, then a k-shortest path enu-
meration algorithm [20] and [21] is used to calculate up to τ candidate backup paths370

in a network where the nodes in VS1 have been deleted. Then for each backup path, qi
(i = 1, . . . , τ), the corresponding active path is calculated using algorithm SK, in the net-
work (V \ (Vqi \ {s, t}), A). The procedure stops as soon as an admissible solution is found.

4.3. A trap avoidance approach

Algorithm VSN can be used to calculate a path p, from s to t, visiting a set of specified375

nodes; then, in a network where the intermediate nodes of p were deleted it calculates a
shortest path. If this path can be obtained a feasible solution for problem P1 has been
found. However, some times it is not possible to derive this second path, and it can be said
that this procedure has fallen into a trap. The trap can be a real trap if the problem has
no solution or an avoidable trap if a different first path would make it possible to obtain a380

disjoint path [28].
The approach proposed here is based on the idea underlying the Trap Avoidance algo-

rithm proposed in [28] for Shared Risk Link Group protection. Whenever the path obtained
by algorithm VSN, the candidate AP, can not be protected by a node-disjoint BP, there is at
least one node in the AP that prevents a solution from being found. In order to be capable385

of identifying this conflicting node, the arcs adjacent to the intermediate nodes of the AP,
which do not belong to VS1 , are not deleted but have their cost increased by a sufficiently
large value (M). Hence, when the backup path is calculated, if its cost is larger than M ,
then no solution was found for problem P1 but a conflicting node can now be identified. In
the algorithm proposed here, the first common node in the candidate AP is identified as390

being the cause of the algorithm falling into a trap. However, instead of removing the node,
which could drastically limit the possible solutions to the problem, the arc (of the candidate
AP) incident in the conflicting node is selected for removal. This procedure is repeated,
successively removing arcs until a solution is found or a candidate AP can no longer be
obtained. If the candidate AP can not be obtained, the algorithm is allowed to backtrack395

and look for the last deleted incident arc and replace it with the corresponding emergent
arc. The maximum number of allowed backtracking procedures is equal to n.

The corresponding algorithm is VTA. Notice that before attempting to calculate the
candidate AP the arcs in stack Risky (the ones considered, that if used by the AP will not
allow it to have a node-disjoint BP) are deleted in line 7 of VTA. Then, after calculating400

the candidate AP (pc in line 8), it must restore the network – see line 9.
If a candidate AP was found, the unconstrained backup path is calculated in the network

where nodes VS1 have been deleted and the arcs incident in the remaining intermediate nodes
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of the candidate AP have their cost increased of a sufficiently large value (see lines 19-21 of
algorithm VTA). If the backup path (qc in the algorithm) exists and has cost less than M , a405

solution has been found (and the algorithm ends). Otherwise a conflicting node is identified
(see lines 27 and 28). The arc of pc incident in that node is stored both in inRisky and
Risky, and will be deleted before calculating the next candidate AP; the emergent arc of
that node is stored in outRisky (for allowing some backtracking) – see lines 29-31.

If no candidate AP was found and the maximum allowed number of backtracking has410

not been reached, arcs from Risky (and from inRisky and outRisky) are deleted until
an incident arc is found and replaced by the corresponding emergent arc in outRisky (see
lines 12-15). If Risky becomes empty the algorithm will end (due to stop becoming true in
line 16) because no more backtracking is to be considered. Note that, at the start of each
iteration, these three stacks have always the same size, and any element at the top of Risky415

will always be equal to the element at the top of inRisky or (exclusive) outRisky (assuming
the stacks are not empty).

4.4. Considered heuristics

Four versions of the heuristic were implemented: the algorithm ASK, described in Sub-
section 4.1; the algorithm BSK, presented in Sub-section 4.2; the heuristic ABSK, which420

consist in invoking algorithm ASK, and then, if no feasible solution was found, invoking also
algorithm BSK; and finally VTA, the algorithm proposed in Sub-section 4.3

The discussion of the results in [19] justified the proposal of the ABSK version, and in [19]
it was concluded that ABSK, with respect to ASK and BSK, was a good compromise between
accuracy and CPU time. Therefore in the present work only ABSK will be compared with425

VTA, the new proposed heuristic.

5. Min-sum node-disjoint path pair visiting specified nodes

Two different approaches for solving problem P2 are proposed next. Note that, because
VS2 is the set of specified nodes of the BP, the AP or the sub-paths that will be the building
blocks of the AP, are calculated (by the next two algorithms) in a network where the nodes430

in VS2 have been previously deleted.

5.1. Min-sum node-disjoint path pair visiting specified nodes based on ASK

The heuristic based on algorithm ASK, designated MSASK, follows the same strategy as
ASK when trying to find an AP visiting nodes VS1 : every time a new specified node is added
to a sub-path, it verifies if this sub-path has a node-disjoint path from s to t. However,435

because in the present problem the BP must visit nodes VS2 , MSASK must replace the use
of Dijkstra or BFS algorithm (used by ASK) by the SK algorithm to check if a BP visiting
nodes VS2 can be obtained. The network where SK tries to obtain the BP, corresponds to
the original network, where the nodes VS1 and the intermediate nodes of the AP (under
construction) have been deleted.440

When MSASK has to select among possible sub-paths of the AP it will select the one
with the smallest cost, just like ASK. However, when MSASK obtains more than one solution
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Algorithm VTA: Tap avoidance and Protected path visiting specified nodes

Input: G = (V,A), s, t, VS1

Output: (p, q)

1 begin
2 (p, q)← (∅, ∅); // No solution yet

3 AS1 ← set of arcs adjacent to the nodes in VS1 ;
4 inRisky, outRisky and Risky are empty stacks of arcs.;
5 stop← false; k ← 0; // for stopping; k counts backtracking

6 repeat
7 Remove from A the set of arcs in Risky ;
8 pc ← VSN(G = (V,A), s, t, VS1) ; // seeks a candidate AP

9 Restore into A the set of arcs in Risky ;
10 if pc = ∅ ∧ k < n then // no candidate AP was found

11 k ← k + 1;
12 while (Risky is not empty) ∧ top(Risky) 6= top(inRisky) do
13 pop(Risky); pop(inRisky); pop(outRisky) ;

14 end
15 if Risky is not empty then pop(Risky); push(Risky, top(outRisky)) ;
16 else stop← true ; // no more backtracking is considered

17 end
18 else // a candidate AP was found

19 A← A \ AS1 ; // deletes arcs adjacent to nodes in VS1

20 Ac ← arcs adjacent to the nodes in Vpc \ (VS1 ∪ {s, t});
21 forall the a ∈ Ac do c(a)← c(a) +M ;// add M to cost of Ac arcs

22 qc ←shortest path from s to t in G; // calculates BP

23 A← A ∪ AS1 ; // restores network topology

24 forall the a ∈ Ac do c(a)← c(a)−M ; // restores costs

25 if qc 6= ∅ then
26 if Dqc > M then // AP and BP are not node-disjoint

27 vi ← first node, from s to t, of pc in Vqc ;
28 vi−1 ← the node before vi in pc; vi+1 ← the node after vi in pc;
29 push(Risky, (vi−1, vi)) ; // incident arc in v
30 push(inRisky, (vi−1, vi)); // incident arc in v
31 push(outRisky, (vi, vi+1)) ; // emergent arc from v

32 end
33 else (p, q)← (pc, qc); stop← true; // AP and BP are node-disjoint

34 end
35 else stop← true ; // No solution was found

36 end

37 until stop;
38 return (p, q); // if (p, q) 6= (∅, ∅) there is a feasible solution

39 end
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(full paths from s to t visiting nodes VS1 , for which a BP visiting nodes VS2 was found), it
will select the path pair of min-sum total cost.

5.2. Min-sum node-disjoint path pair visiting specified nodes based on VTA445

The heuristic based on algorithm VTA, designated MSVTA, follows the same strategy
as VTA when trying to find an AP visiting nodes VS1 , and will be described here pointing
out the differences with respect to that algorithm.

Firstly, in line 7, besides removing the arcs in Risky it must also delete the arcs adjacent
to the nodes in VS2 . Then, after calculating the candidate AP (pc in line 8), it must restore450

the network. Hence, in line 9, it must add back not only the arcs in Risky but also the arcs
adjacent to the nodes in VS2 .

In line 22, instead of calculating an unconstrained shortest path (in the previously mod-
ified network, see lines 19-21), it must invoke algorithm VSN to calculate a path from s to
t visiting the nodes in VS2 . If that path (qc in the algorithm) exists and has cost less than455

M , a feasible solution has been found (and the algorithm ends). Otherwise, a conflicting
node (common to both qc and pc) is identified. The arc of pc incident in that node is stored
both in inRisky and Risky, and will be deleted before calculating the next candidate AP;
the emergent arc of that node is stored in outRisky (for allowing some backtracking).

This approach will minimize the cost of the AP and then will try to obtain a BP of460

minimum cost. As the objective is to minimize the total cost, MSVTA after having tried
(successfully or not) to obtain an AP and a BP visiting node sets VS1 and VS2 , respectively,
it will swap the contents of VS1 and VS2 and try again. Finally it will select the path pair
of min-sum cost, assuming both runs resulted in a solution (having previously swapped the
AP and BP obtained in the second run).465

6. Results

Experimental tests were made considering networks from two different sources. The first
set of networks are from the SNDlib [29], which correspond to real-world reference networks.
The used networks were newyork, norway, india35, pioro40 and germany50; the cost of each
edge was considered to be the first module cost. The second set of networks was generated470

with the Doar-Leslie model [30] using Georgia Tech Internetwork Topology Models software
(GT-ITM) (http://www.cc.gatech.edu/fac/Ellen.Zegura/graphs.html). Five networks with
500 nodes with an average degree around 7 were generated.

The number of specified nodes to be visited1 was considered to be equal to 2, 4 or 6 for
the shortest path with or without protection; for the path pair of min-sum cost the number475

of specified nodes in each path was considered to be 2, 3 and 4, for the networks from the
SNDlib and 2, 3, 4 and 6 for the 500 nodes networks (and for simplicity |VS1| = |VS2|, in
problem P2). For the considered SNDlib instances, problem P2, with |VS1| = |VS2| = 6,
did not have a solution for most origin-destination node pairs, and therefore this value was

1These numbers were suggested by PT Inovação (promoter of PANORAMA-II) based on their field
experience.
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not used. The elements in each set VS1 (and VS2) were randomly generated, considering480

20 different seeds. For each set VS1 (or pair of sets VS1 and VS2) of specified nodes, 100
origin-destination node pairs were randomly generated for each network. Twenty samples
(average values resulting from each set of 100 node-pairs) were obtained for each network
(and number of specified nodes), and 95% confidence intervals around the estimated mean
were calculated, appearing in the graphs as error bars. The results presented here were485

obtained using Yen’s algorithm [20, 21] for the k-shortest path enumeration.
Algorithms SK66 and SK are not compared since the first generates paths with cycles,

and the objective is to calculate loopless paths.
Results are presented regarding the percentage of problems solved (optimally or sub-

optimally) with respect to the (optimal or sub-optimal) solutions obtained by the CPLEX490

solver. The relative error of the cost of the active path or of the path pair (depending on
the problem being solved) for which CPLEX also found a solution, was calculated, in order
to evaluate the quality of the solutions obtained by the heuristics.

In our previous work [19] it was observed that in several problem instances, namely
for node pairs with no solution, CPLEX could take a very long time to conclude that the495

problem was infeasible. In the present work, and to confirm the need for a CPU limit
also for problem P2, a CPU time limit of 8 hours was used in the pioro40 network, with
|VS1 | = |VS2| = 2; it was observed that a few node pairs took several minutes to obtain an
optimal solution, that some other few node pairs took several hours to obtain an optimal
solution, and that for at least five node pairs the ILP solver ended without any solution after500

using the allowed 8 hours of CPU time. Hence, it was decided, in order to obtain solutions
in a reasonable time, to use (as in [19]) the limit of 5 minutes per node pair for the CPLEX
solver.

The computational platform, for collecting the data presented in Figs. 1-18, was a Desk-
top with 16 GB of RAM and an Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz processor,505

with Kubuntu 12.4. The CPLEX solver, version 12.6.1 [31], was used for evaluating the
performance of the heuristics.

6.1. Analysis of the performance of SK and VSN

The relative performance of algorithms SK and VSN, which are used as subroutines in
the heuristics proposed for solving problems P1 and P2, is analyzed here.510

In the figures and close to the xx axis is the number of elements in the set VS1 for each
network. The ratio of feasible solutions with respect to CPLEX, presented in Fig. 1, shows
that SK has good performance for newyork network, but for norway, india35 and pioro40 it
only presents around 70% of feasible solutions, and for germany50 its performance is even
poorer. On the other hand VSN finds in average over 97.5% of all feasible solutions for all515

networks, except germany50, where in average it finds over 92.5% solutions. One can verify
in Fig. 2 that the average error of the feasible solutions of VSN is below 3%, and that the
error of the feasible solutions of SK grows with the size of the set of nodes to visit, and is
around 9% for |VS1| = 6 on newyork network. Regarding CPU time, VSN uses slightly more
CPU time than SK, and 10-100 times less than the ILP solver, as can be seen in Fig. 3. It520

should be noted that if a CPU limit of 5 minutes was not in place for the ILP solver the
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Figure 1: Feasible solutions ratio with respect to CPLEX, for five SNDlib [29] networks (shortest path
visiting specified nodes)
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Figure 2: Relative error of the feasible solutions found by the heuristics for five SNDlib [29] networks
(shortest path visiting specified nodes)
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Figure 3: CPU time per node pair for five SNDlib [29] networks (shortest path visiting specified nodes)
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Figure 4: Feasible solutions ratio with respect to CPLEX, in the 500 nodes networks (shortest path visiting
specified nodes)

CPU could be much larger. In fact for the india35 network and germany50 there were a
total of 17 and 27 node pairs, respectively, not solved by CPLEX.

Results regarding the networks with 500 nodes are shown in Figures 4-6 for the five
tested networks (with key 500 0 to 500 4, in the figures). These five networks were randomly525

generated by GT-ITM using the same parameter set.
For these networks the feasible solution ratio of SK is between 50% and 80% (depending

on |VS1| and of the network, and for VSN is very close to 100% (over 99.9%) for all the
networks – see Fig. 4. Due to the CPU time limitation CPLEX found 46 sub-optimal
solutions (in 30000 problems); in two cases the ILP solver was unable to give any result while530

both heuristics found a solution (the one found by VSN had the smaller cost). Regarding
the cost of the paths, SK for |VS1 | = 6 presents up to 10% relative error, but for |VS1 | = 2, 4,
the error is less than 2%, and 6%, respectively, as can be seen in Fig. 5. VSN presents an
error always below 4%, and in general it has a smaller relative error than SK , with the
exception of |VS1 | = 2. Note that when the path obtained in the sub-graph is expanded and535

has a cycle, arcs are successively deleted until a solution can be found. This tends to change
the sub-path close to the source, and keep in the solution the shortest paths between the two
specified nodes, possibly resulting in paths longer than necessary. It should nevertheless be
noted that, albeit this slightly larger error in the cost of the paths for |VS1| = 2, VSN does
have a much larger resolution ratio than SK, and smaller error than SK for |VS1| = 4, 6.540

Regarding the CPU time, which was around 1 second per node pair for CPLEX in the
SNDlib networks, it is now larger than 2 seconds and for larger |VS1| = 6 around 10 seconds
per node pair (see Fig. 6). The CPU time of the heuristics remains smaller by two orders
of magnitude. It should be noted that SK requires less CPU time than VSN, and that in
average VSN requires less than 100 milliseconds per node pair.545
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Figure 5: Relative error of the feasible solutions found by the heuristics, in the 500 nodes networks (shortest
path visiting specified nodes)
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Figure 6: CPU time per node pair, in the 500 nodes networks (shortest path visiting specified nodes)
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Figure 7: Feasible solutions ratio with respect to CPLEX, for five SNDlib [29] networks (problem P1)
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Figure 8: Relative error of the feasible solutions found by the heuristics for five SNDlib [29] networks
(problem P1)
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Figure 9: CPU time per node pair for five SNDlib [29] networks (problem P1)
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6.2. Analysis of the performance of ABSK and VTA

Results obtained using networks from the SNDlib library are illustrated in Figures 7-9.
Regarding the SNDlib tested networks it was observed that the number of feasible solutions
increased with the average node degree of the network nodes (the best results being obtained
for the newyork network). In average VTA finds the largest number of feasible solutions.550

Also the number of feasible solutions found by the heuristics tends to decrease with the
increase of the number of specified nodes. In general, for ABSK results are quite good for
three of the five networks, with values close to 99% and over 90% for newyork and india35
respectively (for |VS1| = 2, 4, 6), over 90% for pioro40 for |VS1| = 2, 4 and close to 90% for
|VS1 | = 6; the performance degrades for norway, and for the germany50 network the result555

regarding the number of feasible solution is rather low, namely for |VS1 | = 6. The relative
error of the cost of the active path also increases with the number of specified nodes to visit,
from less than 1% in average (in the case of newyork network) to close to 13% in average
(in the case of pioro40 network) for ABSK. Regarding the CPU time of the heuristics, the
average was below 40 milliseconds, which is significantly faster than the average CPLEX560

result for the larger networks (india35, pioro40 and germany50). For the other networks the
CPU of the heuristics is only significantly smaller than the CPU time of the ILP solver for
the smaller values of |VS1|. CPLEX execution time varies significantly, from 20 milliseconds
to 5 minutes (for problems without solution) resulting in an average CPU time below 2
seconds per node pair, and larger average CPU time would be observed if the CPU time565

limit of 5 minutes per node pair was not in place. Some optimal solutions can take close to
1.5 minutes to be obtained (as was observed in the case of germany50).

It is worth to point out that while VTA resolution ratio will tend to be smaller than
the resolution ratio of VSN, the same is not observed in the case of ABSK and SK. In fact
the resolution ratio of ABSK is much larger than the resolution ratio of SK. This result can570

be explained as follows. SK is quite greedy, seeking to obtain the shortest path possible,
sometimes discarding sub-paths that would possibly allow it to find a solution. Algorithm
ASK (first heuristic used by ABSK) guides SK calculation of the AP, due to the constraint
that a node disjoint path must exist with each candidate sub-path of the AP, and this limits
the greedy nature of SK, specially for |VS1| = 2. Also note that ASK is followed by BSK575

whenever ASK fails to find a solution thus further improving the resolution ratio of ABSK
with respect to SK.

Results regarding the networks with 500 nodes are shown in Figures 10-12. Algorithm
VTA presents a resolution ratio very close to 100% (over 99.9%). One can observe a high
ratio of feasible solutions, always larger than 95% for ABSK, with two exceptions when580

|VS1 | = 4 (where it is 93% and 94%); in these networks there is not a clear decrease of the
ratio of feasible solutions with the increase of the number of specified nodes to visit – see
Fig. 10.

The relative error of the solutions obtained by VTA is relatively stable and in average
less than 3% for VTA. However, for ABSK, the relative error of the feasible solutions does585

increase with the number of specified nodes to visit, going from up to 5% to up to 12% in
average, as can be seen in Fig. 11. It is interesting to observe that the CPU time per node
pair required by CPLEX in these larger networks (in average between 2 and 5 seconds) is
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Figure 10: Feasible solutions ratio with respect to CPLEX, in the 500 nodes networks (problem P1)
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Figure 11: Relative error of the feasible solutions found by the heuristics, in the 500 nodes networks (problem
P1)
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Figure 12: CPU time per node pair, in the 500 nodes networks (problem P1)

not significantly larger than the average CPU time observed for the SNDlib networks. The
CPU time of ABSK and VTA, although larger than in the case of the SNDlib networks,590

is between 10 to 100 times smaller than the average CPU time required by CPLEX. For
some problems CPLEX requires tens of seconds, and in some other cases (less than 1%) the
allowed 5 minutes per node pair were exhausted and only a sub-optimal solution was found.

The heuristic VTA finds the largest number of feasible solutions, followed closely by
ABSK; moreover the former uses less CPU time than the later in most cases (see Fig. 12).595

Regarding accuracy, VTA presents a smaller relative error. Hence, one may conclude that
VTA outperforms ABSK.

Regarding the cost of the resulting BP obtained by the heuristics, with respect to the
cost of the BP associated with the AP calculated by CPLEX, the error is less than 5% and
15% in the case of the SNDlib networks for VSN and ABSK, respectively; for the 500 node600

networks the error is smaller, less than 2% and 10% for VSN and ABSK, respectively.

6.3. Analysis of the performance of MSASK and MSVTA

As already mentioned, for problem P2, it was considered that |VS1| = |VS2 |, and in this
Sub-section VSi

(i = 1, 2) will be used omitting the value of i.
Obtaining a pair of node-disjoint loopless paths, each visiting a specified set of nodes,605

such that the sum of the cost of the paths is minimum, is a more challenging problem than
the ones previously considered. The CPU time required by CPLEX for solving problem P2

is around 10 times larger than the one required for solving problem P1, for |VSi
| = 4, as can

be seen comparing Figs. 9 and 12 with Figs. 15 and 18, respectively.
In the case of the SNDlib networks, it can be observed in Fig. 13 that the resolution610

ratio of MSVTA (based on VSN and using the same strategy as VTA) is above 95% for
newyork network above 80% for norway and india35, over 70% for pioro40, and close to 70%
for germany50. The second proposed heuristic, MSASK (based on SK and using the same
approach as ASK) presents a much lower resolution ratio: less than 50% for germany50 and
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Figure 13: Feasible solutions ratio with respect to CPLEX, for five SNDlib [29] networks (problem P2)
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Figure 14: Relative error of the feasible solutions found by the heuristics for five SNDlib [29] networks
(problem P2)
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Figure 15: CPU time per node pair for five SNDlib [29] networks (problem P2)
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Figure 16: Feasible solutions ratio with respect to CPLEX, in the 500 nodes networks (problem P2)
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Figure 17: Relative error of the feasible solutions found by the heuristics, in the 500 nodes networks (problem
P2)

also for pioro40 with |VSi
| = 3, 4. The best result of MSASK is for newyork, with 90% and615

80% of solutions for |VSi
| = 2 and |VSi

| = 3, 4, respectively. The error of the path pair cost is
in general less than 5% for MSASK, but it presents large confidence intervals. For MSVTA
the error is less than 4% and presents rather small confidence intervals – see Fig. 14 For these
networks the CPU of both heuristics is rather similar, as can be seen in Fig. 15. However
the CPU time of CPLEX for the smaller networks and |VSi

| = 3, 4 is not significantly larger620

than the used by the heuristics. Nevertheless for india35, pioro40 and germany50, CPLEX
requires one, two or more orders of magnitude with respect to both heuristics. Note that
there are 13, 29 and 5 node pairs for which a solution was not found by the ILP solver, in
india35, pioro40 and germany50, respectively, and most of those cases occur when |VSi

| = 2,
due to the CPU time limitation. Moreover for pioro40 sub-optimal solutions were obtained625

for 31 node pairs, due to the same CPU time limitation.
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Figure 18: CPU time per node pair, in the 500 nodes networks (problem P2)

In contrast with what was observed in the SNDlib networks, the resolution ratio of
MSVTA was 100% for the 500 nodes networks (see Fig. 16) – in fact it was slightly over
100% because the reference is the number of solutions found by CPLEX. Algorithm MSASK
presents a resolution ratio between 65% and 90% (which is also a significant improvement630

when compared with the results obtained in the SNDlib networks). The relative error of the
path pair cost was less than 3% for MSVTA, but MSASK presents a relative error between 6%
and 12% and with some variability, as indicated by the relatively large confidence intervals
around the average values, as can be seen in Fig.17.

CPLEX requires in average between 10 and 20 seconds of CPU per node pair, while635

MSTVA requires 0.02 to 0.2 seconds in average – see Fig. 18, for |VS1| = |VS2| = 2, 3, 4. In
these networks (and for |VS1| = |VS2| = 2, 3, 4) MSASK requires significantly more CPU time
than MSVTA, but still much less than CPLEX. Note that if the CPU time limitation was not
active, the CPU time of the ILP solver would be much higher because, in this problem and
for these networks, a total of 322 pairs had sub-optimal solutions. Additionally, in a total640

of 35 node pairs CPLEX was unable to give any answer within the time limit of 5 minutes,
and the heuristics managed to find an admissible solution to most of those problems.

It can be seen in Figures 16-18, that for |VS1 | = |VS2| = 6, MSVTA is still an effective
heuristic, solving almost all problems, with an average relative error below 4% and using
a CPU time which is almost two orders of magnitude smaller than the CPU time required645

by CPLEX. For |VS1| = |VS2 | = 6 it was verified that MSASK used too much CPU time
(similar to CPLEX) and therefore those results were not included in the figures, because
the heuristic becomes useless. For this number of specified nodes to visit, CPLEX obtained
a total of 200 sub-optimal solutions.

It can be concluded that MSVTA presents overall a better performance than MSASK.650

MSVTA can successfully be used in large networks, as long as |VS1| is small, it requires
significantly less CPU time than CPLEX, and obtains solutions with small relative error.
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7. Conclusions

The need for the calculation of a path, from a source node to a target node, which
must visit a given set of nodes may arise due to network management constraints. An ILP655

formulation [14] for solving this problem was adapted to include the restriction that the
obtained solution must have a node-disjoint backup path (problem P1), and then extended
to solve the min-sum problem with constraints (problem P2). This type of fixed route can be
implemented in a number of network technologies and protocol layers such as, Internet Pro-
tocol (IP) networks with MPLS MultiProtocol Label Switching (MPLS) [32] (using explicit660

routing) and lightpaths in WDM optical networks.
SK, a modified and improved version of the algorithm proposed by Saksena and Kumar

in [12], for calculating a shortest loopless path visiting specified nodes was developed. Three
heuristics, based on SK, are put forward for obtaining feasible solutions for problem P1:
ASK, BSK and ABSK [19]. Then heuristic MSASK, which uses SK and an approach based665

on ASK, was proposed for solving problem P1.
Additionally, an alternative approach was proposed for solving these problems. Firstly,

heuristic VSN was proposed which uses an auxiliary graph to solve the shortest loopless path
visiting specified nodes; secondly, heuristics VTA and MSVTA were proposed for problems
P1 and P2, respectively. Both VTA and MSVTA use VSN together with an approach inspired670

by the Trap Avoidance algorithm [28].
The performance of the proposed heuristics was evaluated using CPLEX to solve the

ILP formulations (given in [14] and extended by equations (4)-(11) and (17)-(24)) of the
corresponding problems. It was verified that although CPLEX may solve some problems in
a short time it may also take many hours solving some problems in a 40 node network, namely675

in pioro40 [29]. Therefore, in the results presented here, CPLEX was used considering a
maximum of 5 minutes CPU time per node pair.

Results show that the heuristics based on VSN present the best relative performance.
They were capable of finding a solution in a significant number of cases, and such that the
calculated solutions presented an acceptable relative error regarding the relevant cost in each680

problem. The CPU time used by the heuristics is significantly smaller than the required by
the used ILP solver, namely for networks with 500 nodes.

The heuristics VTA and MSVTA were capable of finding feasible solutions in a very short
time, and in the case of Problem P2 they were even capable of finding feasible solutions for
several node pairs where after 5 minutes the ILP solver was not capable of finding a solution685

(optimal or sub-optimal).
The applicability of the proposed heuristics is limited by the number of specified nodes to

visit. Other approaches may be considered in future work, namely regarding the methods for
calculating Hamiltonian paths. When few nodes must be visited, alternative exact method
can be used [24, 25]. If there are many of those nodes, then an approximate method will690

be more convenient [26, 27]. It should be noticed, however, that a loopless path is sought
and the solution output by these methods, in the present context of application, does not
necessarily meet this constraint. Therefore, their utilization cannot be straightforward.
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