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Abstract

Ego networks models describe the social relationships of an individual (ego) with its social peers (alters). The structural
properties of ego networks are known to determine many aspects of the human social behaviour, such as willingness to
cooperate and share resources. Due to their importance, we have investigated if Online Social Networks fundamentally
change the structures of human ego networks or not. In this paper we provide a comprehensive and concise compilation
of the main results we have obtained through this analysis. Specifically, by analysing several datasets in Facebook and
Twitter, we have shown that OSN ego networks show the same qualitative and quantitative properties of human ego
networks in general, and therefore that, somewhat counter-intuitively, OSNs are just “yet another” social communication
means which does not change the fundamental properties of personal social networks. Moreover, in this paper we also
survey the main results we have obtained studying the impact of ego network structures on information diffusion in OSN.
We show that, by considering the structural properties of ego networks, it is possible to accurately model information
diffusion both over individual social links, as well at the entire network level, i.e., it is possible to accurately model
information “cascades”. Moreover, we have analysed how trusted information diffuses in OSN, assuming that the tie
strength between nodes (which, in turn, determines the structure of ego networks) is a good proxy to measure the
reciprocal trust. Interestingly, we have shown that not using social links over a certain level of trust drastically limits
information spread, up to only 3% of the nodes when only very strong ties are used. However, inserting even a single
social relationship per ego, at a level of trust below the threshold, can drastically increase information diffusion. Finally,
when information diffusion is driven by trust, the average length of shortest paths is more than twice the one obtained
when all social links can be used for dissemination. Other analyses in the latter case have highlighted that also in OSN
users are separated by about 6 (or less) degrees of separation. Our results show that when we need trustworthy “paths”
to communicate in OSN, we are more than twice as far away from each other.
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1. Introduction

Online Social Networks (OSNs) such as Facebook and
Twitter have introduced radically novel means of interac-
tions among people, which quickly became extremely pop-
ular. Complementing more traditional ‘offline’ means of
communication (such as face-to-face communication and
phone calls), ‘online’ social networks are creating a com-
plete virtual social environment, which supports many ac-
tions involving social interaction, from extremely simple
ones such as “liking” other users’ content, up to very com-
plex ones such as looking for a job, advertising products
and organizing events. This is one of the most impres-
sive cases of cyber-physical convergence, i.e., the process
whereby the physical world around us and the virtual
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world of the Internet are deeply interwoven, constantly
interacting with, and dependent upon, each other [1]. In
this context, the analysis of the human social behavior in
online environments is particularly exciting, as it allows
us, on the one hand, to understand features of the human
behavior based on huge amounts of data and, on the other
hand, to design services and applications exploiting this
knowledge. This paper presents a comprehensive overview
of a body of work that we have carried out in this field,
with the objective of highlighting key structural properties
of human personal networks in OSNs, how they are related
to known structures of offline human social networks, and
how they impact on the patterns of information diffusion
that have been observed in these environments.

Undoubtedly, the advent of OSNs also led us to a sig-
nificant advancement in the study of human online behav-
ior. In fact, big data coming from OSNs represent an in-
valuable source of information to describe the dynamics of
complex social phenomena (e.g., the diffusion of informa-
tion in the network, the formation of social relationships
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and communities), which are very difficult to analyze with
traditional research methods typically based on surveys
and interviews. A lot of effort has been put in the last
years to characterize OSNs by studying their graphs, since
this is the natural way to study structural properties of hu-
man social relationships in OSNs. Most of the literature
has focused on macroscopic properties of OSN graphs, i.e.,
the structural characteristics of the global network formed
by all users and their connections. A comparatively less
explored but equally important subject of investigation
are the microscopic properties of OSN, and primarily the
structural characteristics of our personal social networks,
also called ego networks. In the anthropology literature it
is well known (e.g., [2]) that the characteristics of ego net-
works are fundamental to determine key facets of human
behavior, such as trust, sharing of resources, and forma-
tion of communities.

From reference works in psychology and anthropology
(e.g., [3, 4, 5, 6]), we know that the properties of offline ego
networks are constrained by a series of cognitive and time
limits, which bound the amount of relationships that each
individual can actively maintain due to their intrinsic cost
in terms of ‘computational resources’ for the brain. Specif-
ically, cognitive constraints limit the total number of ac-
tive relationships humans can maintain at a non-negligible
level of intimacy. This limit is on average around 150 re-
lationships, which is known as the Dunbar’s number [3].
The same constraints also dictate specific structures ac-
cording to which social relationships are organized inside
the ego network, as explained in detail in Section 2.

Recent analyses of the structural properties of popular
OSNs (i.e., Facebook and Twitter) revealed that online
ego networks have the same properties of offline ego net-
works, with similar size and the same hierarchical struc-
ture [7, 8, 9]. This confirms that ego-network properties
depend primarily on cognitive constraints of the human
brain, and are not influenced by the use of specific com-
munication mechanisms, such as mobile phones [10]and
also Online Social Networks. In this regard, Facebook and
Twitter do not seem to improve human social capacity, but
they simply represent additional social channels we can
use. Moreover, in addition to confirming that well-known
features of human ego networks also manifest in OSNs,
these studies have revealed additional properties [7], which
had been hypothesized [11], but never observed due to lack
of big data sources. This demonstrates that OSNs can be
used also as a ‘social microscope’ to investigate novel key
properties of our social behavior.

Recent results presented, e.g., in [12, 13, 14] show that
the patterns of information diffusion we observe in OSNs
strongly depend on the structure of the users’ ego net-
works. Therefore, by understanding the latter it is also
possible to design OSN services where the features of ego
network structures (and the users’ behavior they deter-
mine) are exploited to optimize data management. For
example, as demonstrated by Lerman [15], models of in-
formation dissemination in OSNs that consider the con-

strained nature of human online social behavior overcome
some intrinsic limitations of previous state-of-the-art mod-
els [16]. Moreover, results presented in [12] have shown
that, under the assumption that the ego network struc-
ture also defines the level of trust between ego and al-
ters, the length of the shortest path along which trusted
information flows between two users in the network can
be significantly longer than the few hops (compatible with
the well-known 6-degrees of separation concept) previously
highlighted in the literature (e.g., in [17]).

In this paper, we first present the main results we have
obtained from the analysis of the effect of human cogni-
tive limits on the structural properties of ego networks
in OSNs. Then, we present results showing the impact
of these ego network structures on macroscopic phenom-
ena, with particular attention to the diffusion of informa-
tion. In addition, we discuss promising directions to the
design of information-centric systems exploiting ego net-
work structures, such as data replication strategies based
on ego-network concepts for Distributed Online Social Net-
works (DOSN), and information dissemination protocols
for opportunistic networks based on ego-network cognitive
heuristics.

This paper starts from the analysis of human cogni-
tive limits in online environments presented in the book
by Arnaboldi et al. [18]. However, while the book focuses
on the structural analysis of ego networks in OSNs, this
paper focuses on the application of models and analyses
based on human cognitive limits to user-centric services
and applications, in particular to the diffusion of informa-
tion.

The paper is organized as follows. In Section 2, we
provide the main definitions about online social networks
and ego networks, and we present an overview of the most
important results of ego network analysis in OSNs. In
Section 3, we present the background work in the field of
information diffusion modeling, we introduce the most im-
portant information diffusion models in OSNs and we dis-
cuss their limitations. Then, in Section 4, we present anal-
yses and models of information diffusion in OSNs based on
the structural properties of ego networks. In Section 5, we
present some research directions where knowledge about
social network structures is used to design data-centric ser-
vices both for OSNs and mobile networks, and we draw the
main conclusions of the paper.

2. Ego Network Structural Analysis in Online So-
cial Networks

A typical way of representing social networks is through
a graph G(V,E), where V is the set of vertices represent-
ing the users and E is the set of edges connecting pairs
of users, with each edge representing a dyadic social rela-
tionship between the vertices it connects. In OSN graphs,
edges can represent, for example, the ‘following’ relation-
ships of Twitter or ‘friendships’ of Facebook. Edges may
be directed to represent a possible directionality in the
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Figure 1: Ego Network Model.

semantic of the social relationship (e.g., in Twitter the
difference between a ‘follower’ and ‘followee’ relationship).
Or, they can be undirected, if dyadic relationships between
users are completely symmetric.

The analysis of the OSN graph can be carried out on
the unweighted graph, where each relationship is consid-
ered of the same type and quality. Typically, the un-
weighted OSN graph is called the social graph. On the
other hand, other analyses take into consideration that
social relationships are not all equal. To represent this, a
weight is associated to each link, and the resulting weighted
graph is called the interaction graph. For the purpose of
the analyses presented in this paper we consider interac-
tion graphs, and we consider that an edge exists between
two nodes if the strength of their relationship is greater
than zero. To quantify tie strength, we use the frequency
of direct contact between users. Considering frequency of
contact as a proxy for tie strength (which is a complex
concept involving also qualitative aspects) is customary in
the literature, and is backed up by many works starting
from the classical definition of tie strength given by Gra-
novetter [19]. This relation has later been found in several
works on OSNs. See for example the work by Gilbert and
Karahalios on the prediction of tie strength by using vari-
ables from Facebook [20] and the tie strength predictive
models presented by Arnaboldi et al., in which contact
frequency in OSNs is the most correlated variable with tie
strength [8]. We use tie strength in the interaction graph
analysis, as mere ‘following’ or ‘friendship’ relationships
are not sufficient to define an edge between two users (as
it would for the social graph), and at least a minimum fre-
quency of direct communication between them is needed.
In the datasets used in the work, a direct communication
can be a post on the wall of another user or a comment
on a picture for Facebook, or a reply to a tweet created by
another user for Twitter.

In the following we consider only the OSN interaction
graph. We omit the definitions and analysis of the typical
indices used to characterize the macroscopic properties of
OSNs and we directly discuss the main microscopic prop-
erties found on empirical analyses of OSN graphs. For a
discussion on the macroscopic properties of OSNs, we refer
the reader to [18].

2.1. Ego-Network Model

Ego networks are one of the key concepts to study the
microscopic properties of personal social networks. Dif-
ferent definitions of ego network exist in the literature,
corresponding to different approaches in analyzing them.
In this paper, an ego network is formed of a single indi-
vidual (ego) and the other users directly connected to it
(alters) [6]. This model gives particular emphasis to the
impact of the ego cognitive constraints on the personal
social networks and, in the rest of the text, we will re-
fer to it as the ‘Ego-Network Model’. Another possible
definition of ego network also considers the links between
alters [21], possibly even excluding the links between them
and the ego. This is typically used to analyze the topo-
logical features of the local social context in which the
ego is immersed. Techniques that have been used to this
end are based on complex network indices, such as den-
sity, connectivity (e.g., Burt’s ‘Structural Holes’ [21]) or
ego betweenness [22] measures.

Starting from the Ego-Network model, a fundamental
cognitive constraint in the personal social network is the
Dunbar’s Number [23]. This is the number of relationships
that an ego actively maintains in its network over time.
The Dunbar’s Number in offline ego networks is known to
be limited by the cognitive constraints of the human brain
and by the limited time that people can spend in social-
izing. In addition, it is known that cognitive constraints
lead people to unevenly distribute the emotional intensity
on their relationships. This results in a hierarchical struc-
ture of inclusive ‘social circles’ of alters around the ego
(as depicted in Figure 1), with characteristic size and level
of tie strength. Specifically, in the reference ego-network
model [24], there is an inner circle (called support clique) of
5 alters on average, which are considered the best friends
of the ego. These alters are contacted at least once a week,
and are the people from whom the ego seeks help in case
of emotional distress or financial disaster. Then, there is
a second layer of 15 alters called sympathy group (which
includes the support clique) containing close friends of the
ego, those contacted at least once a month. After this
layer, we find a group of 50 alters called affinity group or
band that contains an extended group of friends. The last
circle, called active network, contains on average 150 al-
ters (the Dunbar’s number) contacted at least once a year.
These people represent the social relationships that the ego
maintains actively, spending a non-negligible amount of its
time and resources interacting with them so as to prevent
the corresponding social relationships decaying over time.
The sizes of ego network circles form a typical pattern of
5-15-50-150 alters, with a scaling ratio between adjacent
circles around 3. This pattern is considered one of the
distinctive features of human social networks.

While the focus of this paper is on ego networks in
OSNs, we should briefly mention the vast body of work on
characterizing ego networks in offline environments. Ev-
idence to support the existence of Dunbar’s number and
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Figure 2: Tie strength as a function of ego network size in Twitter.
Points represent the average number of replies made by accounts with
different number of friends; thick lines are their running averages.

the described ego-network structure has come from a num-
ber of ethnographic and sociological sources, e.g. [23, 25,
26, 24, 27, 28, 29]. The existence of the circles described in
the ego-network model has been also explained as an evo-
lutionary strategy that humans adopted to maintain sta-
bility in their increasingly large social groups [30]. More
recently, results have been presented on the presence of
Dunbar’s number [31] and the ego network structure [30]
also in phone-call networks. With respect to Dunbar’s
number, it has been shown that people with a large phone-
call ego network spend more time on the phone than peo-
ple with smaller networks. For phone-call ego network
with sizes around 100-150 connections, the total time de-
voted to phone calls by the egos reaches its maximum.
This indicates that beyond this point a very large number
of contacts does not imply a proportional increase in the
amount of time invested in communication, and this is a
clear evidence of time and cognitive constraints in phone-
call networks resulting in structures compatible with the
general Ego Network Model.

2.2. Ego-Network Structure in OSNs

2.2.1. Dunbar’s Number in Online Interactions

A series of analyses conducted on different OSNs have
shown that online ego networks have the same structural
properties found in offline social environments. Specifi-
cally, the work by Gonçalves et al. found the first evidence
of the Dunbar’s number in Twitter [32]. The authors stud-
ied how the average tie strength for the ego networks of
Twitter users (calculated as the average number of replies
directly sent by a user to its neighbors) changes with the
size of the ego networks (the total number of accounts
directly contacted with replies by the user). The results
have shown that the average tie strength increases with
ego network size up to a peak around 100-200, which is
compatible with the Dunbar’s number, and then decreases
substantially. Similarly to the results found in phone-call
networks [10], this means that there is a limit on the total
amount of social activity also in Online Social Networks,
and this has been interpreted as evidence of human cogni-
tive limits that shape Twitter ego networks.
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networks found through k−means and AIC.

Arnaboldi et al. [33] further refined these results by
dividing Twitter users into two classes, the first one con-
taining socially relevant users (i.e., people who use Twitter
to communicate with other people and maintain their so-
cial relationships) and the second one formed of accounts
not directly aimed at the management of personal social
relationships (e.g., spammers, bots, companies, public fig-
ures). The classification was performed using a super-
vised learning classifier based on Support Vector Machines
(SVM) trained on a set of manually labeled Twitter ac-
counts. The results on the two classes, depicted in Fig-
ure 2, highlight, also in this case, a peak at a number
of relationships around 100, and show that this peak is
a characteristic of socially relevant users only, and is not
visible for the other types of accounts.

The peak in the curve in Figure 2 (and in similar curves
shown in [32]) highlights the existence of a cognitive con-
straint limiting Twitter users activity. However, the peak
should not necessarily appear at a number of relationships
equal to the Dunbar’s number, as the latter is defined as
the number of relationships that each ego maintains ac-
tively in its network, with a contact frequency of at least
one message per year (a single message per year in OSNs
like Facebook often represents a birthday greeting mes-
sage, which is the minimum level of interaction to define
a meaningful relationship). A series of analyses performed
on Twitter and Facebook [34, 8, 9, 7] indicate that the
Dunbar’s number in OSNs (Facebook and Twitter) is of
the same order of magnitude of the values found offline,
although being somewhat smaller in some cases (e.g., 90
in Twitter [7]). Finding an OSN Dunbar’s number simi-
lar to the one in offline human networks results questions
the conventional wisdom that OSNs are increasing our ca-
pacity to socialize and allow us to maintain an increasing
and virtually unbounded number of relationships [35]. The
maximum number of active social relationships in online
ego networks seems, again, related only to human cognitive
constraints, and largely invariant with the specific means
we use to maintain our social relationships.

There are several reasons behind the presence of some-
what smaller-than-expected ego networks which have been
observed in OSNs, both in Facebook and Twitter. As far
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Table 1: Size and minimum contact frequency for ego-network circles found through k-means on the contact frequency of Twitter and Facebook
users.

Circle 0 1 2 3 4
Offline Networks

Size ? 5 15 50 150
Contact Freq. ? ≥ 48 ≥ 12 ≥ 2 ≥ 1

Twitter

Size 1.55±0.02 4.52±0.06 11.17±0.15 28.28±0.32 88.31±0.87
Contact Freq ≥ 276.63±4.06 ≥ 113.12±1.49 ≥ 49.63±0.66 ≥ 16.89±0.21 ≥ 2.54±0.02

Facebook dataset 1

Size 1.68±0.01 5.28±0.02 14.92±0.06 40.93±0.20 -
Contact Freq ≥ 77.36±0.77 ≥ 30.28±0.24 ≥ 11.15±0.07 ≥ 2.53±0.01 -

Facebook dataset 2

Size 1.53±0.03 4.34±0.09 10.72±0.23 26.99±0.61 -
Contact Freq ≥ 58.54±2.62 ≥ 22.19±0.74 ≥ 7.93±0.23 ≥ 1.37±0.04 -

as the Facebook datasets are concerned, early users (the
datasets used for these analyses were collected in 2009,
when Facebook was still new) may well only have had a
small fraction of their offline friends that were present on
the platform and typically only sought out people they
knew well [7]. In addition, the way datasets were collected
(both in Facebook and Twitter) could result in underesti-
mating the number of weak relationships, and this might
explain the presence of ego networks smaller than what
one might expect from offline analyses [7].

2.2.2. Hierarchical Structure of Ego Networks in OSNs -

Number of Circles

To further characterize the structural properties of ego
networks in OSNs, a series of studies analyzed the distri-
bution of tie strength within the active networks of Face-
book and Twitter users (i.e., considering the people that
these users contacted at least once in a year), looking at
whether the same hierarchical structure found in offline
environments could also be found online. The results have
shown that tie strength of online ego networks is unevenly
distributed, and relationships can be clustered into circles
with level of contact frequency and sizes similar to those
found offline. Specifically, Arnaboldi et al. [7] analyzed a
large-scale Twitter dataset with approximately 300,000 ac-
counts containing the information about the direct tweets
(replies) that each user sent to other social contacts. The
analysis of the distribution of the contact frequency of the
ego networks has shown that contact frequencies follow
a long-tailed distribution within each network, with few
strong relationships and many weak ties. This is compat-
ible with the results found offline, and with those found
in phone-call communication traces [31]. In addition, to
further characterize the distribution of contact frequency
for the ego networks, the authors applied a cluster analysis
to the frequencies in each ego network, using the k−means
and DBSCAN algorithms. The rationale of this approach
was to seek if clusters of alters could be identified in ego
networks, such that contact frequency within clusters is

significantly different from contact frequency within the
other clusters. If that was the case, clusters would rep-
resent the equivalent of layers in the ego network model.
To find the optimal number of clusters for each ego net-
work, authors applied k−means with increasing values for
k and DBSCAN with different possible values for its pa-
rameters, and then selected the configuration that yielded
the highest value of Akaike Information Criterion (AIC).
The goodness of fit obtained for the best configuration has
also been measured using the silhouette index. This anal-
ysis has been replicated also on two reference Facebook
datasets, as explained in [7]. The distribution of the op-
timal number of clusters in the ego networks of Twitter
and the two Facebook datasets, depicted in Figure 3, in-
dicates that social relationships in online ego networks are
naturally grouped, on average, into 4-5 circles. This result
is compatible with the number of circles found in offline
ego networks. It is worth noting that the optimal config-
urations yield, on average, values of the silhouette index
around 0.7, which are high for the type of data analyzed.
This indicates that the presence of the circles is not an ar-
tifact of the clustering algorithms but rather a real feature
of the analyzed data.

2.2.3. Hierarchical Structure of Ego Networks in OSNs -

Sizes and Frequencies of the Circles

Following the results obtained for the optimal number
of circles, Arnaboldi et al. [7] applied k-means forcing the
number of circles to 4 in Facebook and 5 in Twitter for all
the ego networks in the datasets, to be able to compare
the results in terms of the average size of the circles and
their minimum contact frequencies (i.e., the frequencies
that define the edges of the circles, in number of messages
per year) with those obtained in offline environments. The
sizes of the circles, obtained by nesting the clusters found
by k-means (remember that each circle is inclusive of all
their sub-circles and are thus cumulative sets of clusters
obtained by k-means) and the minimum frequencies of con-
tact of the circles are reported in Table 1. For comparison,
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Figure 4: Number of new relationships activated over time in Twit-
ter, on a daily basis and cumulatively.

the table also gives the characteristic size and frequencies
of the circles found in offline ego networks, as determined
by face-to-face contacts [27].

Note that, as explained in the following, the clustering
analysis on OSN datasets has consistently highlighted the
presence of an additional internal layer inside the support
clique, which we denote as layer 0 in Table 1. The contact
frequencies of the circles suggest that, in Facebook, alters
are contacted approximately at least every five days for
layer 0, at least every twelve days for layer 1, at least once
a month for layer 2, and at least once every six months for
layer 3. These values are compatible with those obtained
offline. In the Twitter dataset, the contact frequencies are
higher – i.e., at least once every one/two days in layer 0,
at least every three days in layer 1, at least once a week
in layer 2, at least once a month in layer 3, and at least
two/three times a year in layer 4. This can be attributed
to the specificity of Twitter, which is explicitly designed
for the exchange of short and frequent messages between
users. Bearing in mind this difference between Facebook
and Twitter, Arnaboldi et al. [7] matched (as reported
in Table 1) the layers found in online ego networks with
those in face-to-face networks. This allowed them to con-
clude that the hierarchical structure of ego networks in
OSNs is similar to the structure found in offline ego net-
works. In addition, the new inner circle (Circle 0), with an
average size of 1.5 inside the support clique (thus named
“super support clique”) fits perfectly in the hierarchy of
ego network circles, presenting a scaling ratio for the size
of around 3 with respect to the next circle (i.e., the sup-
port clique). The existence of this structural element of
ego networks was hypothesized since long in the anthropol-
ogy community [11]. However, before [7], no large enough
dataset was available to identify, with sufficient statistical
confidence, a layer composed of such a small number of
social relationships. To the best of the authors knowledge,
therefore, results presented in [7] are the first empirical
evidence confirming this hypothesis.
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2.2.4. Evolution of Online Ego-Network Structural Prop-

erties Over Time

The analyses presented so far evinced that the struc-
tural properties of online ego networks are the product
of a series of time and cognitive constraints on the social
capacity of the users, and that these properties are simi-
lar to those found in offline environments. However, these
analyses built ego networks from a ‘static view’ of the com-
munication activity of the users, and do not account for
possible variations over time of the analyzed structures. In
this section, we present a series of studies on how the struc-
tural properties of ego networks evolve over time. These
analyses further describe the strategies adopted by people
to cope with their limited resources for the management
of social relationships over time.

.

Number of New Relationships Activated Over Time. As
far as complete ego networks and their evolution over time
are concerned, several analyses showed that users add new
social relationships in their ego networks at a higher rate
when they join the platform, and then they tend to main-
tain a constant growth rate over time. This has been found
in phone-call networks [36], as well as in OSNs [37, 38, 39],
and can be seen in Figure 4, which depicts the average
number of new alters added by egos in Twitter over time,
both on a daily basis and cumulatively [38, 18]. This
means that egos constantly add new relationships in their
ego networks, and thus the composition of ego networks
constantly changes over time.

Activation and Deactivation of Relationships - Turnover

Process. Perhaps even more interestingly than the fact
that ego networks show a constant rate of activation of
new relationships over time, several analyses showed that
the total number of active relationships in the ego net-
works remains constant over time, thus showing a bal-
ance between the number of relationships that are acti-
vated/deactivated [38, 36]. This balance creates a ‘turnover’
process – a strategy adopted by the egos to cope with their
limited social resources. It is worth noting that also the
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Table 2: Average Jaccard coefficient of different network layers

layer Occasional Regular Aficionados
active net 0.191 0.190 0.193

sympathy gr. 0.287 0.309 0.362
support cl. 0.346 0.395 0.488

size of each ego network circle remains quite constant over
time (as can be seen in Figure 5, and further described
in [38, 18])1.

As a measure of the turnover in the Twitter ego net-
works analyzed in [38], the authors calculated the Jaccard
coefficient between snapshots of the ego networks (divided
into the different layers) of one year each. To analyse
turnover at each layer, ego networks that always maintain
a non-empty support clique in all the one-year windows
were analysed. The results are reported in Table 2.

We note that the turnover is in general quite high, al-
ways higher than 51.2%. It is about 81% (Jaccard coef-
ficient ∼ 0.19) for the entire ego network. The sympathy
group shows a percentage of turnover between 71.3% and
63.8%, whereas the support clique is between 65.4% and
51.2%. These results denote a behavior similar to ego net-
works in offline social networks, where the inner layers
contain stronger relationships that should be intuitively
less affected by the turnover in the network.

From the results presented so far, it is clear that the
analysis of online ego networks reveal the presence of hu-
man cognitive limits that shape in a similar way the struc-
ture of personal social networks across many social inter-
action means, from online platforms to face-to-face inter-
actions. In the next sections we survey several results
showing that these cognitive limits have a strong effect
on global social processes, and specifically on the diffusion
of information in online networks. With respect to this
aspect, before delving into the details of information diffu-
sion analyses , we give a brief but exhaustive introduction
to the most widely adopted information diffusion models
in OSN analysis.

3. Information diffusion models in OSNs

The study of the process underpinning the diffusion of
information in OSNs is one of the most important research
aspects in the field of social network analysis. Following
the categorization given in [40], there are three main re-
search tasks related to information diffusion in OSNs: (i)
detecting popular contents, which have a high probability
of spreading to a large number of users; (ii) modeling the
diffusion of information by identifying the paths that it

1Note that the particularly small sizes for the inner layers in Fig-
ure 5 (between 0 and 1 for the support clique) are due to the presence
of some ego networks without inner layers. This is a by-product of
the methodology used in [38] for the identification of ego-network cir-
cles, which, for computational reasons, is based on pre-defined levels
of contact frequency and not on cluster analysis.

is likely to follow in the network (i.e., tree-shaped paths
called ‘cascades’ of adoptions); (iii) identifying influential
spreaders, which are nodes from which large cascades can
be generated. In this paper, we focus on the second and
third aspects of information diffusion in OSNs, as they are
directly influenced by the presence of human cognitive lim-
its, whereas the first aspect is more related to the type of
contents circulating in the network, and it should not be
influenced by these constraints, at least not directly.

Information diffusion models are generally divided into
explanatory models and predictive models. The former
models start from the observation of real information cas-
cade traces collected from OSNs and they aim to find a
set of parameters that maximize the likelihood of the ob-
served data. On the other hand, predictive models try
to reproduce human behavior in the diffusion process by
defining a set of ‘rules’ that each single node should follow
when exposed to information, to decide whether to diffuse
it or not. Clearly, the design of predictive models gener-
ally requires a more detailed knowledge of the properties
of human social behavior and it is more directly exposed
to the presence of cognitive constraints than explanatory
models. For this reason, in this paper we will focus on
predictive models. The interested readers can refer to [40]
for an exhaustive discussion of explanatory models.

Predictive models can be further categorized into two
groups: (i) non graph-based approaches [41, 42, 43], and
(ii) graph-based approaches [44, 45, 46]. The first type of
model does not assume the existence of a specific graph
structure and borrows its main concepts from epidemi-
ology. Non graph-based models split nodes into different
classes (i.e., different states in which the nodes can be dur-
ing the diffusion process). For example, a node that has
obtained the information and is going to share it further
is placed in the class of ‘infected’ nodes, whereas the other
nodes can be ‘susceptible’ if they are not infected but can
be infected in the future, or ‘recovered’ if they were in-
fected in the past, but they “recovered” from the infection
and they cannot be infected anymore. The different mod-
els define a set of rates of transition between the states
for the nodes. For example, SIS and SIR define the possi-
ble transition for the nodes from ‘susceptible’ to ‘infected’
and again to ‘susceptible’ (for SIS) or to ‘recovered’ (SIR).
There exist more refined versions of these models specifi-
cally designed for OSNs, but we will not delve into their
properties in this paper, because they are known to suffer
from severe limitations , as they fail to consider the influ-
ence that social relationships existing between nodes has
on the diffusion. In fact, in OSNs, differently from epi-
demiological processes, the diffusion is highly influenced
by the existence of relationships between people [47, 48],
and indeed the interplay of human cognitive limits and
network structure differentiates the spread of information
from other social contagions [15].

Graph-based models specifically start from the assump-
tion that a node is willing to fetch and further share a con-
tent (i.e., it is infected) if it is exposed to it from one (or
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Table 3: Information diffusion properties of ego network rings in Twitter, where x and y are ts and diff . rxy is the Pearson’s correlation

between x and y and β̂ and α̂ are respectively the estimated intercept and angular coefficient of a linear model that relate tie strength and
the diffusion, fitted through linear regression. Each ring is the exclusive part of each ego network circle that is not included in any internal
circle.

all alters human alters other alters

Ring rxy β̂ α̂ rxy β̂ α̂ rxy β̂ α̂

R1 0.61 0.49 0.03 0.80 0.74 0.03 0.74 0.58 -0.01
R2 0.52 0.62 0.01 0.76 0.76 0.02 0.71 0.59 0.02
R3 0.44 0.74 0.00 0.72 0.80 0.03 0.67 0.64 0.02
R4 0.34 0.97 0.00 0.66 0.85 0.06 0.65 0.72 0.02
R5 0.22 1.58 0.00 0.61 0.99 0.09 0.65 0.93 0.03
Whole net (C5) 0.46 0.57 0.02 0.68 0.83 0.09 0.65 0.78 0.03

more) of its social contacts, and the probability that the
node will be infected is proportional to the importance of
the relationships with the infected neighbors. The simpler
models in this class are the Independent Cascades (IC)
and the Linear Threshold (LT) models. Both IC and LT
proceed at discrete time steps. In IC, at each step n, the
nodes that have been infected at the previous time step
(or the initial spreaders – called seeds – if the time step is
the first one) infect each of their neighbors with a proba-
bility that is proportional to the weight of their links. In
LT, each node is infected at a given time step if the sum
of the weights of its incident edges connected to already
infected neighbors is above a given threshold. IC and LT
diffusion processes stop when no new nodes are infected
during a certain time step. These models, despite being
simple, have been largely used to model information dif-
fusion in OSNs. The weights on the edges of the network
graph, which define the probability that the diffusion will
pass through the links, are generally fixed (equal for all
edges), or, in other cases, they are derived with maximum
likelihood estimation from the observations of real diffu-
sion cascades [49].

As recently discussed by Lerman [15], the diffusion cas-
cades generated by IC and LT models are far from being re-
alistic, as they often largely differ from real cascades origi-
nated within OSNs. In particular, modeled cascades often
reach all the nodes in the network, whereas large diffusions
are extremely rare in reality. As demonstrated in [15], in-
cluding parameters based on human cognitive limits in the
diffusion models is sufficient for achieving higher accuracy,
and to better reproduce human social behavior. This au-
thor, for example, shows that models which include fea-
tures regarding the position of a post received by a user in
its Twitter timeline and the popularity of the post increase
the accuracy of the prediction, as people have limited cog-
nitive resources to spend for the diffusion process and they
generally focus on fresh and popular contents.

Despite this first attempt to improve information dif-
fusion models using concepts related to human cognitive
limits, there is still large room for improvement. Since the
structural properties of ego networks, as we have seen in
Section 2, are directly related to the presence of human

cognitive limits and they can be directly measured from
OSN data, their analysis can help to identify additional
features to improve the existing information diffusion mod-
els.

4. Combining Ego-Network Structural Properties
and Information Diffusion Models

In this section, we present the work we have done to
improve the accuracy of OSN information diffusion mod-
els through information on the structure of ego networks.
Firstly, we present an analysis of single-hop information
diffusion in Twitter and its relation with tie strength be-
tween users. Then, we focus on individual nodes, and anal-
yse how ego-network features of a node are correlated with
the information cascades originating from it. Finally, we
consider information diffusion at the entire network level:
Assuming that the tie strength is correlated with the level
of trust between egos and alters, we analyse how trust be-
tween users impact information diffusion at the level of the
entire OSN.

4.1. Analysis of Information Diffusion at the Ego Network

Level – Single Hop Diffusion

One fundamental reference to understand information
diffusion in human social networks, and how it is cor-
related with tie strength, is the seminal work by Mark
Granovetter [19]. Granovetter hypothesised that weak
ties, although being less frequently activated than strong
ties, provide access to diverse information in the network,
speeding up the diffusion process. In addition, the larger
number of weak ties with respect to strong ones in ego
networks makes the cumulative quantity of information
that passes through them exceed that circulating through
strong ties. It is also worth noting that the presence of
too many strong ties might ‘trap’ information in cliques of
users and could slow down the diffusion. From these ob-
servations Granovetter argued, and proved experimentally,
that weak ties are fundamental for information diffusion,
coining the well-known expression “the strength of weak
ties”.
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Table 4: Correlation analysis between nodes and cascades’ properties

Node Coverage Cascade Depth
α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5

Unweighted Social Graph
Degree 0.15 0.14 0.17 0.20 0.23 0.26 0.25 0.27 0.28 0.29
Clust. Coef. 0.05 0.03 0.01 −0.02 −0.05 −0.05 −0.05 −0.07 −0.08 −0.11
PageRank −0.09 −0.08 −0.06 −0.05 −0.03 −0.13 −0.11 −0.10 −0.08 −0.07
Eigenv. Cent. 0.32 0.27 0.29 0.30 0.29 0.35 0.34 0.34 0.34 0.33
Weighted Social Graph
Activity 0.68 0.71 0.77 0.83 0.87 0.72 0.75 0.77 0.78 0.79
Clust. Coef. 0.16 0.14 0.11 0.09 0.06 0.09 0.10 0.08 0.06 0.04
PageRank 0.27 0.31 0.37 0.43 0.49 0.32 0.34 0.36 0.39 0.41
Eigenv. Cent. 0.48 0.57 0.55 0.54 0.51 0.20 0.28 0.29 0.30 0.30
Burt Constr. −0.20 −0.18 −0.21 −0.22 −0.25 −0.35 −0.34 −0.36 −0.37 −0.38

Starting from the hypotheses of Granovetter, several
research studies confirmed the importance of weak ties,
but also highlighted that strong ties typically “carry” a
very significant flow of information between egos and al-
ters. Specifically, it has been shown that there is a positive
correlation between the tie strength of a OSN social rela-
tionship and the amount of information diffused over that
relationship. This has been observed, for example, in the
diffusion of posts containing URLs in Facebook [47], where
tie strength has been measured as the frequency of direct
Facebook posts between users. In Twitter, the work re-
cently presented in [13], based on the same dataset of the
work presented in Section 2, showed that there is a signif-
icant positive correlation between the volume of retweets
on Twitter social relationships (i.e., the volume of informa-
tion diffused through the link) and the frequency of direct
contact (i.e., the frequency of Twitter replies exchanged
between the involved users – a measure of tie strength).
Specifically, the authors considered the tie strength as the
contact frequency between users normalized by the total
contact frequency of each user. This ensures a homoge-
neous analysis, eliminating differences between ego net-
works due to their different duration or the different fre-
quency of Twitter use of the users. As a measure of infor-
mation diffusion, the authors used the volume of retweets
passing through a social link. Therefore, the tie strength
between an ego e and one of its alters a has been calcu-
lated as the percentage of frequency of replies sent by e to
a with respect to the total frequency of replies of e. This
measure is expressed by the following equation:

tse,a =
reply frequency from e to a

total reply frequency of e
. (1)

Similarly, given a link between the ego e and alter a,
the frequency of retweets done by e of a’s tweets has been
normalized by the total retweet frequency of e, as follows:

diff
e,a

=
link retweet frequency

ego total retweet frequency
. (2)

The results of the analysis, reported in Table 3, in-
dicate that the correlation between tse,a and diff

e,a
has

medium/high values, and it increases from the outer to
the inner parts of ego networks (from weak to strong ties),
with values greater than 0.6 for the innermost layer. This
confirms the significant level of positive correlation be-
tween tie strength and information diffusion at the level
of individual social relationships. Very interestingly, when
alters in each ego network are divided into human and
non-human users (according to the same classification ex-
plained in Section 2), correlations are significantly higher
(close to 0.8 for human alters in the innermost layer and
always higher than 0.6 for the other layers). This indi-
cates a significantly different diffusion process for human
and non-human alters.

To better investigate the possibility of predicting the
rate of information diffusion on social relationships from
tie strength, the authors also performed a regression anal-
ysis on the two measures, by studying the relation between
tie strength and information diffusion variables, expressed
by the following equation.

diff = α+ β ∗ ts (3)

The estimated parameters found through linear regres-
sion for the equation are reported in Table 3. It is worth
noting that the values of β, when human and non-human
alters are analyzed separately, increase from inner to outer
layers. This means that, although tie strength decreases
when moving from inner to outer layers, the diffusion rate
does not decrease at the same pace. This confirms the im-
portance of weak ties for information diffusion: all in all, a
strong tie carries a higher flow of information than a weak
tie (this is shown by the positive correlation and by the
high values of β also in inner layers). However, the rate
of diffusion “per unit of tie strength”, i.e., β (since α is
always close to 0), is higher for weak ties. This is a strong
indication that information over weak ties is very precious
for the ego, and diffuses less dependently on the level of
tie strength. Moreover, this also explains the lower values
of correlation between tie strength and the diffusion rate
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Table 5: Percentage of nodes of the original graph covered by the largest component for the different graphs created by considering only the
specified circles of the ego networks of the users.

Ego Network Cir-
cle remaining in
the network

Percentage of nodes (and links) in the original graph present in the reduced graphs

No reinsertion Highest Fre-
quency

Lowest Fre-
quency

Probabilistic Inverse Proba-
bilistic

Random

Active network 0.966 (0.219) 0.994 (0.222) 0.994 (0.222) 0.994 (0.222) 0.994 (0.222) 0.994 (0.222)
Affinity group 0.297 (0.046) 0.714 (0.094) 0.705 (0.093) 0.726 (0.095) 0.722 (0.095) 0.725 (0.095)
Sympathy Group 0.191 (0.028) 0.642 (0.081) 0.634 (0.079) 0.661 (0.082) 0.657 (0.081) 0.661 (0.082)
Support Clique 0.028 (0.004) 0.386 (0.065) 0.385 (0.063) 0.453 (0.066) 0.444 (0.065) 0.456 (0.065)

in outer layers. Note that, when human and non-human
alters are mixed together, this process is less visible.

4.2. Diffusion models based on Ego Network Structure –

Multi-Hop Diffusion

To extend the results previously presented to complete
information diffusion models, Arnaboldi et al. [50] intro-
duced a novel information diffusion model based on the
basic mechanism of the IC model, but with features specif-
ically defined to consider human cognitive limits on the be-
havior of single nodes . The model is built starting from
an OSN graph extracted from a large-scale Facebook com-
munication dataset (Facebook dataset 1), and the proba-
bility of diffusion on each relationship is calculated as the
frequency of contact between the involved users, normal-
ized with respect to the maximum value in the network,
multiplied by an aging factor equal to (1 − α)n−1, where
n is the time step of the diffusion process (as in the orig-
inal IC model – see Section 3), and α controls the speed
of aging of information. The model considers, on the one
hand, that the diffusion rate is proportional to tie strength
on the edges between users, which is directly derived from
the communication traces in the dataset. In this way, the
probability of diffusion for the relationships of each ego
network follows the same distribution of the tie strength
in the ego network, which, as we have seen in the previous
section, is shaped by cognitive constraints. On the other
hand, the model considers higher probabilities of diffu-
sion for fresh information, and all the probabilities are de-
creased exponentially as time passes and information gets
old. This behavior is in line with the idea that the cogni-
tive constraints of the human brain make users prefer to
diffuse fresh information and discard older messages [15].
Information cascades generated by the proposed model are
more similar to real cascades (i.e., they show a similar
distribution of depth, with long-tailed shape and a very
low probability to produce extremely large cascades) than
those generated without considering the aging factor (i.e.,
setting α = 0, and thus using the standard IC model) [50].

Since the diffusion cascades generated by the model
presented in [50] are generally short, in particular for val-
ues of α greater than 0.1, the authors performed also a
detailed correlation analysis between several centrality in-
dices of the nodes from which these limited diffusion starts
and the size and depth of the resulting diffusion cascade

trees. As cascades are short, intuitively the length of the
cascades might significantly depend on the local structure
of the ego networks of their seeds. The results, reported
in Table 4, show that classical centrality indices of the un-
weighted network graph (e.g., node’s degree, local cluster-
ing coefficient, PageRank – considering only the existence
of social relationships in the network and not their weight)
have very low values of correlation with the size and depth
of cascades, but when these indices are calculated on the
weighted network graph, thus taking tie strength into ac-
count, the correlation values are much higher and sufficient
to identify influential spreaders (at least for the short diffu-
sions analyzed in the aforementioned work) only using the
properties of their ego networks. It is worth noting that
the network index with the highest correlation values is the
total activity of the user with respect to its ego network,
i.e., the total contact frequency of the ego, calculated as
the sum of the frequencies on its links.

4.3. Impact of Trusted Relationships and Ego Network Lay-

ers on Information Diffusion in Complete OSNs

4.3.1. Network Coverage

Another important aspect we have analyzed on the in-
terplay between ego networks and information diffusion
is the impact of each single layer of the ego network on
the diffusion of information over the entire OSN. In this
case, the basic assumption is that tie strength is positively
correlated with trust between the users having a social re-
lationship. Therefore, layers in an ego network can be seen
as a way to group alters with a similar trust level for the
ego. Exploiting this concept, the authors of [12] performed
a study on a large-scale Facebook graph (Facebook dataset
1), where they incrementally removed edges from the net-
work according to their membership with respect to the
circles of the ego network of each user. For example, as
a first step of the analysis, they removed all the relation-
ships outside the active network of each user, keeping in
the graph only the relationships with a contact frequency
higher than one contact per year. Then, the authors stud-
ied the structural properties of the resulting global network
graph to see whether this had the same properties of the
original graph in terms of its information diffusion capac-
ity. Specifically, they considered the percentage of nodes
that remain in the giant component of the network, and are
thus reachable by information propagating in such com-
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Table 6: Average shortest path length of graphs created by considering only the specified circles of the ego networks of the users with respect
to the original Facebook graph.

Ego Network Circle remaining in the network
Re-insertion Strategy Active network Affinity group Sympathy Group Support Clique

No Reinsertion 11.67 10.81 10.51 11.07
Highest Frequency 11.72 11.75 11.95 13.74
Lowest Frequency 11.68 11.93 12.19 16.11
Probabilistic 11.71 11.95 12.21 16.16
Inverse Probabilistic 11.71 11.97 12.30 17.42
Random 11.74 11.95 12.28 17.15

ponent, with respect to the total number of nodes in the
original graph. Note that this analysis is equivalent to hy-
pothesizing that relationships above a certain level of trust
(identified by the tie strength of the selected ego network
circle) diffuse information with probability 1, and those be-
low this threshold never diffuse information. If, after filter-
ing out relationships that are below the selected threshold,
a large number of nodes with respect to the original graph
remain inside the giant component of the network, they
will eventually be reached by information. On the other
hand, nodes which end up disconnected from the giant
component are not reachable by information. The results,
reported in Table 5 under the column “No reinsertion”,
show that the graph obtained by removing edges outside
the active networks of the users has a very high percent-
age of nodes inside its giant component with respect to the
number of nodes in the original graph (approximately 97%
of the original network - against a deletion of about 78%
of the links in the original network). However, when the
next layer of the ego networks is removed, the size of the
giant component in the resulting graph drops to a value
under 30% of the size of the original graph. Note that
this is obtained after removing only an additional 15% of
links. This means that limiting the diffusion to the active
network of the users does not excessively restrict the dif-
fusion, even though a lot of links are not used anymore.
But a comparatively much milder reduction of weak ties
inside the active networks of the users significantly limits
the diffusion capacity of the network. This indicates that,
while very weak ties are not too important for support-
ing information diffusion, those within the active circle of
the users are fundamental for making all nodes reachable
from each other. Finally, removing additional layers fur-
ther limits information diffusion, reaching less than 3%
of the network when only alters in the support clique are
used.

Arnaboldi et al. also proposed a strategy for improv-
ing network connectivity for the graphs obtained by using
only relationships at a certain level of trust (i.e., inside
a given ego network circle). The rationale of the study
was as follows. Limiting diffusion at a certain layer means
that information propagation can occur only over links
with a certain level of trust. However, based on the re-
sults in Table 5, this may result in very limited diffu-

sion. Therefore, it is interesting to understand whether
a higher diffusion can be achieved only by including all

relationships with lower levels of trust, or it is sufficient
to include only a few of them and, in this case, using
which criterion. The results suggest that even re-inserting
in the network graph a single relationship for each ego
network is sufficient for obtaining significantly larger con-
nected components, even when only the innermost circles
are kept from the original graph. They tested several pos-
sible strategies to choose the relationship to re-insert in
each ego network, from a completely random choice (“Ran-
dom” in Table 5) to taking the relationship with higher (or
lower) contact frequency (“Highest Frequency” and “Low-
est Frequency”), or according to a probability proportional
(or inversely proportional) to the contact frequency of the
relationship (“Probabilistic” and “Inverse Probabilistic”).
The strategies that provided the greatest increase of infor-
mation diffusion, as reported in Table 5, are the “Proba-
bilistic” and the “Random” ones. Considering the cost for
the users, i.e., the risk it takes by including less trustwor-
thy alters in the diffusion process, “Probabilistic” is better
than “Random” since it guarantees that, on average, the
re-inserted nodes have higher trust level than randomly
selected nodes.

4.3.2. Average Path Length

The analysis presented in [12] considered also a dif-
ferent possible aspect of the network graphs (obtained by
deleting relationships outside a specific ego-network circle)
to quantify their capacity of diffusing information. Specif-
ically, the authors took into account the average weighted
path length of the giant components of the resulting graphs
as a measure of how easily information can circulate inside
them. To this end, the inverse of tie strength is considered
as the cost associated to each link, or, in other words, the
cost for a user to share a message over that link. The cost
of a path is therefore a measure of the “lack of trust” or of
the amount of resources to be spent to guarantee trusted
communications between users, considering the type of so-
cial relationship between them. For each pair of nodes in
the network, the best path between the nodes is selected
as the path with lowest total cost with respect to all the
other possible paths. The average path lengths (thus the
number of relationships in the least cost paths) for the
different graphs are reported in Table 6. For comparison,
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the average path length of the original unweighted graph
is around 5, as reported, e.g., in [51, 17]. Moreover, the
average path length on the entire weighted graph (i.e., in-
cluding weak ties outside of the active networks) is about
10. When removing parts of the active network, the av-
erage path length only slightly increases with respect to
the entire weighted networks. Specifically, it is always ap-
proximately equal to the one over the unweighted graph.
Interestingly, the length of the shortest path does not de-
pend much on the set of layers excluded from the diffusion
process, or on the re-insertion policy. Note, however, that
when only more internal layers are used, the coverage is
significantly lower (see Table 5). Thus, although informa-
tion “travels” approximately the same number of hops, it
remains “trapped” close to where it originated.

One of the most interesting results from Table 6 is that
the path length is much higher than what one would ex-
pect on the unweighted graph, showing that, when con-
sidering trusted paths, users are significantly farther away
from each other than the well-known anecdotal six degrees
of separation, a conclusion that has been confirmed by re-
cent analyses of the Facebook unweighted graph [17]. This
is because, when one considers a cost associated with infor-
mation propagation, which is determined by the strength
of social ties, weak ties become much less used than strong
ties. Therefore, instead of using weak ties to bridge across
distant areas of the social network, information is dif-
fused through a higher number of stronger relationships
(through which there is a higher probability of diffusion),
which however are not able to propagate information across
the network as quickly as weak ties would do.

5. Conclusion and Future Research Directions

In this paper we have presented our most recent work
on the characterization of the structural properties of so-
cial relationships in OSNs, and how they depend on hu-
man cognitive and time constraints. From our analyses,
we have seen that the properties of ego networks in OSNs
are compatible with those found in offline environments.
This indicates that the hierarchical structure of concentric
layers of alters around the ego is consistent among differ-
ent social environments, and is not influenced by the use
of a particular communication medium. This is a clear in-
dication that human cognitive and time constraints shape
social relationships not only in offline environments, but
also in OSNs, in contrast to the conventional wisdom that
OSNs are able to improve our social capacity and allow us
to maintain a much larger number of relationships than is
possible “offline”.

In addition, we have shown that the structural prop-
erties of online ego networks can be used to understand
in detail the process of information diffusion in OSNs,
and to create more accurate predictive diffusion models.
Tie strength is highly correlated with the amount of in-
formation that flows through each link, even though the
correlation is higher for inner layers. This is consistent

with the well-known Granovetter’s results, that showed
that strong ties can carry a significant amount of infor-
mation, although weak ties are also important for acquir-
ing diversity of information (confirmed in our findings by
the comparatively lower correlation between tie strength
and amount of information). Moreover, properties of ego
networks are highly correlated with the depth and size of
information cascades originated from the ego. Finally, we
have assessed the impact of tie strength on the diffusion of
trusted information, showing that the well-known result
about six (or fewer) degrees of separation does not hold
when information can flow only over social relationships
above a certain level of trust.

The relevance of ego-network structure in the study of
OSN properties, opens several research directions. An as-
pect that has not been discussed in this paper, but that
can be important for further improving information diffu-
sion models, is the creation of generative models of social
networks (i.e., models able to generate synthetic social net-
work graphs) with properties similar to those of real social
networks. Adding features related to the structural prop-
erties of ego networks in the models can lead to social net-
work graphs with structures that reproduce those found in
real (online) social networks in a more accurate way. For
example, [52, 53] propose a new generative model of social
network graphs able to create a synthetic weighted network
with a set of microscopic (ego network) and macroscopic
(complete network) properties given as input. According
to the model, an ego network for each user is built itera-
tively following a set of distributions for the sizes of the ego
networks and of their circles, and for tie strength. While
they are being generated, ego networks are also combined
together, forming a complete social network graph. To do
so, each ego is associated with an agent, that, at discrete
steps, adds a new alter into its ego network, placing it
in one of its circles according to the defined distributions.
Each agent stops when its ego network reaches the size
that has been assigned to it. At each step, the agents that
have not yet completed their ego network select a new node
to connect to. As reported in [52, 53], this model is able
to reproduce both macroscopic and microscopic properties
of reference networks on which it has been validated. In
particular, as demonstrated through a detailed validation
performed on a large-scale Facebook dataset (Facebook
dataset 1), the model preserves the nodes’ degree distribu-
tion, the average shortest path length, and the clustering
coefficient of the reference networks. The graph generated
by the model also preserves the fundamental properties of
the ego network model and the size and tie strength distri-
bution of the layers compatible with those of the reference
network. The synthetic social network graphs generated
by this method are very versatile tools to analyze in silico

the information diffusion process in social network graphs
with different possible structures, and to find a possible re-
lation between these structures and the intrinsic capacity
of the network to diffuse contents.

The dependence of information diffusion on the trust
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of social relationships discussed in Section 4 can have also
a significant impact on the design of novel social network-
ing platforms such as Distributed Online Social Networks
(DOSN), as discussed in [12]. Examples of DOSN include
Diaspora [54], Peerson [55] and Safebook [56]. DOSN im-
plement the functionalities of OSN platforms, but in a
completely decentralized way. In fact, personal data of
the users and the content they exchange is stored directly
on their devices, without the need of any third party server
to operate the social networking platform. This provides
much more control to the user over their personal infor-
mation, but requires caching and replication techniques to
guarantee data availability. In fact, nodes can suffer dis-
connections from the network or may be switched off for
long periods. A typical solution to achieve data availabil-
ity in DOSN is to replicate data on ‘trusted’ peers – i.e.,
each user gives a copy of its data to one or more nodes in
the network with which it has a level of trust higher than a
certain threshold, so as to avoid sending personal informa-
tion to untrustworthy and potentially fraudulent nodes.
The results of the analysis previously presented indicate
that, with an appropriate design, by choosing these nodes
within the active network of each user, and even by using
only some of the ego network layers (plus a few additional
selected relationships outside them), does not significantly
prevent information from being reachable from any other
parts of the network. This is the concept at the basis of the
work presented in [57], where the authors implemented a
DOSN with a replication strategy based on the structural
properties of the ego networks of the users. Nodes chosen
for hosting data replicas can change dynamically accord-
ing to users’ churn, but are always picked among the active
network of each user. The results of the work showed that
with a maximum of 2 replicas for each user with at least
40 social relationships, data availability is always higher
than 90%.

As another promising future research direction, the
structural ego network indices presented in this paper can
be used to improve data availability also in other types
of social-oriented networking systems, such as Mobile So-
cial Networks (MSN). In MSN, users directly generate and
share contents with nearby users in real time by exploiting
the physical interactions of their personal mobile devices
such as smartphones by exploiting opportunistic network-
ing techniques [58]. Knowledge about the structural prop-
erties of ego networks could both improve the accuracy of
data dissemination in MSN, and can make it more easily
adaptable to different social contexts. For example, the ex-
change of information between users in proximity through
opportunistic networks can be optimized by relying on so-
cial circle cognitive heuristics applied to information dif-
fusion policies [59]. Social circle heuristics are models of
human cognitive functions developed in the cognitive psy-
chology research community, to describe the mental mech-
anisms that induce an individual to acquire information
as an effect of the availability of the same information on
its social neighbors. Relationships in the ‘social circles’

of each individual have different influence on its informa-
tion acquisition actions. In [59], the authors implement
a completely decentralized and self-organizing algorithm
whereby nodes, upon encountering with each other, decide
which information to exchange based on a decision process
determined by the social circle cognitive heuristics. Per-
formance results show that this approach, compared to
algorithms that do not exploit knowledge about the social
structures of users relationships, is able to obtain a simi-
lar level of efficiency in terms of information diffusion, but
with a drastic reduction in terms of nodes’ and network
resources, i.e., generated traffic and storage space used at
each node.
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