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Online Social Networks (OSN) are a permanent presence in today’s personal and professional lives of a huge segment of the

population, with direct consequences to offline activities. Built on a foundation of trust–users connect to other users with common

interests or overlapping personal trajectories–online social networks and the associated applications extract an unprecedented
volume of personal information. Unsurprisingly, serious privacy and security risks emerged, positioning themselves along two

main types of attacks: attacks that exploit the implicit trust embedded in declared social relationships; and attacks that harvest

user’s personal information for ill-intended use. This article provides an overview of the privacy and security issues that emerged
so far in OSNs. We introduce a taxonomy of privacy and security attacks in OSNs, we overview existing solutions to mitigate

those attacks, and outline challenges still to overcome.

Categories and Subject Descriptors: H.5.2 [Computer-Communication Networks] Distributed Systems, Distributed applica-
tions

General Terms: Privacy and Security

Additional Key Words and Phrases: Privacy, Security, Online social networks

1. INTRODUCTION

Online Social Networks (OSNs) have become a mainstream cultural phenomenon for millions of Inter-
net users. Combining user-constructed profiles with communication mechanisms that enable users to
be pseudo-permanently “in touch”, OSNs leverage users’ real-world social relationships and blend even
more our online and offline lives. As of 2014, Facebook had 1.32 billion monthly active users and it was
the second most visited site on the Internet [Alexa, 2014]. Twitter, a social micro-blogging platform,
claims over 500 million users [Holt, 2013]. According to Nielsen’s 2012 survey, social networking was
the fourth most popular online activity [Nielsen, 2012].

Perhaps more than previous types of online applications, OSNs are blending in real life: companies
are mining trends on Facebook and Twitter to create viral content for shares and likes; employers are
checking Facebook, LinkedIn and Twitter profiles of job candidates1; law enforcement organizations
are gleaning evidence from OSNs to solve crimes2; activities on online social platforms change political
regimes [Lotan et al., 2011] and swing election results3.

Because users in OSNs are typically connected to friends, family, and acquaintances, a common
perception is that OSNs provide a more secure, private and trusted internet-mediated environment for
online interaction [Cutillo et al., 2009b]. In reality, however, OSNs have raised the stakes for privacy
protection because of the availability of an astonishing amount of personal user data which would not
have been exposed otherwise. More importantly, OSNs expose now information from multiple social
spheres – for example, personal information on Facebook and professional activity on LinkedIn – that,
aggregated, leads to uncomfortably detailed profiles [Nissenbaum, 2011].

1http://goo.gl/kHJFI5
2http://www.cnn.com/2012/08/30/tech/social-media/fighting-crime-social-media/
3http://goo.gl/9A6FR
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Unwanted disclosure of user information combined with the OSNs-induced blur between the pro-
fessional and personal aspects of user lives allow for incidents of dire consequences. The news me-
dia covered some of these, such as the case of a teacher suspended for posting gun photos [Dam,
2009] or employee fired for commenting on her salary compared with that of her boss [Mail, 2011]),
both on Facebook. On top of this, social networks themselves intentionally (e.g., Facebook Beacon
controversy [Dwyer, 2011]) or unintentionally (e.g., published anonymized social data used for de-
anonymization and inference attacks [Narayanan et al., 2011]) are contributing to breaches in user
privacy. Moreover, the high volume of personal data, either disclosed by the technologically-challenged
average user or due to OSNs’ failure to provide sophisticated privacy tools, have attracted a variety of
organizations (e.g., GNIP4, 80legs5) that aggregate and sell user’s social network data. In addition, the
trusted nature of OSN relationships has become an effective mechanism for spreading spam, malware
and phishing attacks. Malicious entities are launching a wide range of attacks by creating fake pro-
files, using stolen OSN account credentials sold in the underground market [Staff, 2010] or deploying
automated social robots [Wagner et al., 2012].

This paper provides a comprehensive review of solutions to privacy and security issues in OSNs.
While previous literature reviews on OSN privacy and security are focused on specific topics, such as
privacy preserving social data publishing techniques [Zheleva and Getoor, 2011], social graph-based
techniques for mitigating Sybil attacks [Yu, 2011], or OSN design issues for security and privacy re-
quirements [Zhang et al., 2010], we address a larger spectrum of security and privacy problems and
solutions. First, we introduce a taxonomy of attacks based on OSNs’ stakeholders. We broadly cate-
gorize attacks as attacks on users and attacks on the OSN and then refine our taxonomy based on
entities that perform the attacks. These entities might be human (e.g., other users), computer pro-
grams (e.g., social applications) or organizations (e.g., crawling companies). Second, we present how
various attacks are performed, what counter-measures are available, and what are the challenges still
to overcome.

2. A TAXONOMY OF PRIVACY AND SECURITY ATTACKS IN ONLINE SOCIAL NETWORKS

We propose a taxonomy of privacy and security attacks in online social networks based on the stake-
holders of the OSN and the forms of attack targeted at the stakeholders. We identify two stakeholders
in online social networks: the OSN users and the OSN itself. On one hand, OSN users share an as-
tonishing amount of information ranging from personal to professional; the misuse of this information
can have significant consequences. On the other hand, OSN services handle users’ information and
manage all users’ activities in the network, being responsible for the correct functioning of its services
and maintaining a profitable business model. Indirectly, this translates into ensuring that their users
continue to happily use their services without becoming victims of malicious actions.

The distinction we make between OSN users and the OSN itself as stakeholders is defined by scale:
isolated attacks on users may not affect the wellbeing of the OSN. However, a large attack on user
population may translate into reputation damage, service disruption, or other consequences with direct
effect on the OSN.

We thus classify online social network privacy and security issues into the following attack categories
(summarized in Table I).

(1) Attacks on Users: these attacks are isolated, targeting a small population of random or specific
users. We identify various such attacks based on the attacker:

4http://gnip.com/
5http://80legs.com/
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(a) Attacks from other users: Users might put themselves at risk by interacting with other users,
specially when some of them are strangers or mere acquaintances. Moreover, some of these
users may not even be human (e.g., social robots [Hwang et al., 2012]), or may be crowdsourcing
workers strolling and interacting with users for mischievous purposes [Stringhini et al., 2013].
Therefore, the challenge is to protect users and their information from other users.

(b) Attacks from social applications: For enhanced functionality, users may interact with various
third-party-provided social applications linked to their profiles. To facilitate the interaction
between OSN users and these external applications, the OSN provides application developers
an interface through which to access user information. Unfortunately, OSNs put users at risk
by disclosing more information than necessary to these applications. Malicious applications can
collect and use users’ private data for undesirable purposes [Felt and Evans, 2008].

(c) Attacks from the OSN: Users’ interactions with other users and social applications are fa-
cilitated by the OSN services, in exchange for, typically, full control over user’s information
published on the OSN. While this exchange is explicitly stated in Terms of Service documents
that the user must agree with (and supposedly read first), in reality few users understand the
extent of this exchange [Fiesler and Bruckman, 2014] and most users do not have a real choice
if they don’t agree with the exchange. Consequently, the exploitation by the OSN of user’s per-
sonal information is seen as a breech of trust, and many solutions have been proposed to hide
personal information from the very service that stores it.

(d) De-anonymization and inference attacks: OSN services publish social data for others (e.g., re-
searchers, advertisers) to analyze and use for other purposes. Typically, this data is anonymized
to protect user information. However, an attacker can de-anonymize social data and infer at-
tributes that the user did not even mention in the OSN (such as sexual or political orientation
inferred from the association with other users).

(2) Attacks on the OSN: these attacks are aimed at the service provider itself, by threatening its core
business.
(a) Sybil Attacks: Sybil attacks are characterized by users assuming multiple identities to manip-

ulate the outcome of a service [Douceur, 2002]. Not specific to OSNs, Sybil attacks were used,
for example, to determine the outcome of electronic voting [Riley, 2007], to artificially boost the
popularity of some media [Ratkiewicz et al., 2011], or to manipulate social search results [Ju-
rek, 2011]. However, OSNs have also become vulnerable to Sybil attacks: by controlling many
accounts, Sybil users are illegitimately increasing their influence and power in the OSNs [Yu
et al., 2006].

(b) Crawling attacks: Large-scale distributed data crawlers from professional data aggregators
exploit the OSN-provided APIs or scrape publicly viewable profile pages to build databases
from user profiles and social links. Professional data aggregators sale such databases to in-
surance companies, background-check agencies, credit-ratings agencies, or others [Bonneau
et al., 2009]. Crawling users’ data from multiple sites and multiple domains increases profil-
ing accuracy. This profiling might lead to “public surveillance”, where an overly curious agency
(e.g., government) could monitor individuals in public through a variety of media [Nissenbaum,
2004].

(c) Social Spam: Social spam are contents or profiles that an OSN’s “legitimate” users don’t wish to
receive [Heymann et al., 2007]. Spam undermines resource sharing and hampers interactivity
among users by contributing phishing attacks, unwanted commercial messages, and promoting
websites. Social spam spreads rapidly via OSNs due to the embedded trust relationships among
online friends, which motivates a user to read messages or even click on links shared by her
friends.
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1:4 • Kayes and Iamnitchi

Attacks on Users Attacks on the OSN
Attacks from other users Sybil attacks
Attacks from social applications Crawling attacks
Attacks from the OSN Social spam
De-anonymization and inference attacks Distributed Denial-of-service attacks (DDoS)

MalwareAttacks

Table I. : Categories of attacks.

(d) Distributed Denial-of-service attacks (DDoS). DDoSes are common forms of attacks, where a
service is sent a large amount of seemingly inoffensive service requests that overload the ser-
vice and deny access to it [Mirkovic et al., 2004]. As many popular services, OSNs are also
subjected to such coordinated, distributed attacks.

(e) Malware Attacks: Malware is the collective name for programs that gain access, disrupt com-
puter operation, gather sensitive information, or damage a computer without the knowledge
of the owner. ONSs are being exploited for propagating malware [Facebook, 2012]. Like social
spam, malware propagation is rapid due to the trust relationships in social networks.

The rest of the paper is organized as follows. Mitigating attacks on users (Sections 3 to 6) include
discussions of attacks from other users (Section 3), from social applications (Section 4), from the OSN
itself (Section 5), and de-anonymization and inference attacks (Section 6). Mitigating attacks on the
OSN (Sections 7 to 11) includes a discussion of Sybil attacks (Section 7), crawling attacks (Section 8),
social spam (Section 9), distributed denial-of-service attacks (Section 10) and malware (Section 11).
Finally, we conclude the paper in Section 12.

3. MITIGATING ATTACKS FROM OTHER USERS

Users reveal an astonishing amount of personally identifiable information on OSNs, including physi-
cal, psychological, cultural and preferential attributes. For example, Gross and Acquisti’s study [Gross
and Acquisti, 2005a] shows that 90.8% of Facebook profiles have an image, 87.8% of profiles have
posted their birth date, 39.9% have revealed phone number, and 50.8% profiles show their current res-
idence. The study also shows that the majority of users reveal their political views, dating preferences,
current relationship status, and various interests (including music, books, and movies).

Due to the diversity and specificity of the personal information shared on OSNs, users put them-
selves at risk for a variety of cyber and physical attacks. Stalking, for example, is a common risk asso-
ciated with unprotected location information6. Demographic re-identification was shown to be doable:
87% of the US population can be uniquely identified by gender, ZIP code and full date of birth [Sweeney,
2000]. Moreover, the birth date, hometown, and current residence posted on a user’s profile are enough
to estimate the user’s social security number and thus expose the user to identity theft [Gross and
Acquisti, 2005a]. Unintended revealing of personal information brings other online risks, including
scraping and harvesting [Lindamood et al., 2009; Strufe, 2010], social pushing [Jagatic et al., 2007],
and automated social engineering [Bilge et al., 2009].

Given the amount of sensitive information users expose on OSNs and the different types of relation-
ships in their online social circles, the challenge OSNs face is to provide the correct tools for users to
protect their own information from others while taking full advantage of the benefits of information
sharing. This challenge translates into a need for fine-grained settings, that allow flexibility within a
type of relationships (as not all friends are equal [Banks and Wu, 2009; Cummings et al., 2002]) and

6http://www.theguardian.com/technology/2012/feb/01/social-media-smartphones-stalking
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flexibility with the diversity of personal data. However, this fine granularity in classifying bits of per-
sonal information and social relationships leads to an overwhelmingly complex cognitive task for the
user. Such cognitive challenges worsen an already detrimental user tendency of ignoring settings all
together, and blindly trusting the default privacy configurations that serve the OSN’s interests rather
than the user’s.

Solutions to these three challenges are reviewed in the remainder of this section. Section 3.1 surveys
solutions that allow fine tunings in setting protection of personal data. The complexity challenge is
addressed in the literature on two planes: by providing a visual interface in support of the complex
decision that the user has to make (Section 3.2) and by automating the privacy settings (Section 3.3).
To address the problem of users not changing the platform’s default settings, researchers proposed
various solutions presented in Section 3.4.

3.1 Fine-grained Privacy Settings

Fine-grained privacy advocates [Krishnamurthy and Wills, 2008; Simpson, 2008] argue that fine-
grained privacy controls are crucial features for privacy management. Krishnamurthy et al. [Krish-
namurthy and Wills, 2008] introduce privacy “bits”—pieces of user information grouped together for
setting privacy controls in OSNs. In particular, they categorize a user’s data into multiple pre-defined
bits, namely thumbnail (e.g., user name and photo); greater profile (e.g., interests, relationships and
others); list of friends; user-generated content (such as photos, videos, comments and links) and com-
ments (e.g., status updates, comments, testimonials and tags about the user or user content). Users can
share these bits with a wide range of pre-defined users, including friends, friends of friends, groups,
and all. Current OSN services (e.g., Facebook and Google+) have implemented this idea by allowing
users to create their own social circles and to define which pieces of information can be accessed by
which circle.

To help users navigate the amount of social information necessary for setting correct fine-grained
privacy policies, researchers suggest various ways to model the social graph. One model is based on
ontologies that exploits the inherent level of trust associated with relationship definition to specify
privacy settings. Kruk [Kruk, 2004] proposes Friend-of-a-Friend (FOAF)-Realm, an ontology-based
access control mechanism that uses RDF to describe relations among users. The system uses a generic
definition of relationships (“knows”) as a trust metric and generate rules that control a friend’s access to
resources based on the degree of separation in the social network. Choi et al. [Choi et al., 2006] propose
a more fine-grained approach, which considers named relationships (e.g., “worksWith”, “isFriendOf”,
“knowsOf”) in modeling the social network and the access control. A more nuanced trust-related access
control model is proposed by Carminati et al. [Carminati et al., 2006] based on relationship type,
degree of separation, and a quantification of trust between users in the network.

For more fine-grained ontology-based privacy settings, semantic rules have been used. Rule-based
policies represent the social knowledge base in an ontology and define policies as Semantic Web Rule
Language (SWRL) rules. SWRL7 is a language for the Semantic Web, which can represent rules as
well as logic. Researchers used SWRL to express access control rules that are set by the users. Finally,
access request related authorization is provided by reasoning on the social knowledge base. Systems
that leverage OWL and SWRL to provide rule-based access control framework are [Elahi et al., 2008;
Carminati et al., 2009; Masoumzadeh and Joshi, 2011]. Although conceptually similar, [Carminati
et al., 2009] provides richer OWL ontology and different types of policies; access control policy, admin
policy and filtering policy. A more detailed semantic rule-based model is developed by Masoumzadeh
and Joshi [Masoumzadeh and Joshi, 2011]. Rule-based privacy models have two challenges to over-

7http://www.w3.org/Submission/SWRL/

ACM Computing Surveys Template.



1:6 • Kayes and Iamnitchi

come. First, authorization is provided by forward reasoning on the whole knowledge base, challenging
scalability with the size of the knowledge base. Second, rule management is complex and requires a
team of expert administrators [Engelmore, 1988].

Role and Relationship-Based Access Control (ReBAC) are other types of fine-grained privacy mod-
els that employ roles and relationships in modeling the social graph. The working principle of these
models is two-fold: 1) track roles or relationships between resource (e.g., photos) owner and the re-
source accessor; 2) enforce access control policies in terms of the roles or relationships. Fong [Fong,
2011b] proposes a ReBAC model based on the context-dependent nature of relationships in social net-
works. This model targets social networks that are poly-relational (e.g., teacher-student relationships
are distinct from child-parent relationships), directed (e.g., teacher-student relationships are distinct
from student-teacher relationships) and tracks multiple access contexts that are organized into a tree-
shaped hierarchy. When access is requested in a context, the relationships from all the ancestor con-
texts are combined with the relationships in the target access context to construct a network on which
authorization decisions are made. Giunchiglia et al. [Giunchiglia et al., 2008] propose RelBac, another
relation-based access control model to support sharing of data among large groups of users. The model
defines permissions as relations between users and data, thus separating them from roles. The entity-
relationship model of RelBac enables description logics and as well as the reasoning for access control
policies.

In practice, many online social networks (such as Facebook) have already implemented fine-grained
controls. A study of Bonneau et al. [Bonneau and Preibusch, 2010] on 29 general purpose online social
network sites shows that 13 of them offer a line-item setting where individual data items could be set
with different visibility. These line-item settings are granular (one data item is one ‘bit’) and flexible
(users can change social circles).

3.2 View-centric Privacy Settings

Lack of appropriate visual feedback has been identified as one of the reasons for confusing and time
consuming privacy settings [Strater and Lipford, 2008]. View-centric privacy solutions are built on the
intuition that a better interface for setting privacy controls can impact users’ understanding of privacy
settings and thus their success in correctly exercising privacy controls. These solutions visually inform
the user of the setting choices and consequences of his choices.

In [Lipford et al., 2008], the authors propose an alternative interface for Facebook privacy settings.
This interface is a collection of tabbed pages, where each page shows a different view of the profile as
seen by a particular audience (e.g., friends, friends of friends, etc), along with controls for restricting
the information shared with that group. While this solution provides visual feedback on how other
users will see her profile, it’s management is tedious for users with many groups.

A simpler interface is proposed by C4PS (Colors for Privacy Settings) [Paul et al., 2012], which
applies color coding for different privacy visibilities to minimize the cognitive overhead of the autho-
rization task. This approach applies four color schemes for different groups of users; red–visible to
nobody; blue–visible to selected friends; yellow–visible to all friends; and green–visible to everyone. A
user can change the privacy setting for a specific data item by clicking the buttons on the edge of the
attribute. The color of the buttons shows the visibility of the data. If users click “selected friend” (blue)
button, a window will open in which friends or groups (a pre-defined set of friends) are granted access
to the data item.

A similar approach is implemented in today’s most popular OSNs in different ways. For example,
Facebook provides a dropdown of viewers (e.g., only me, friends, and public) with icons as visual feed-
back. In the custom setting, users can set more granular scales, e.g., share the data item with friends
of friends, friends of those tagged and restrict sharing with specific people or lists of people.
ACM Computing Surveys Template.



Privacy and Security in Online Social Networks: A Survey • 1:7

3.3 Automated Privacy Settings

Automated privacy settings methods employ machine learning to automatically configure a user’s pri-
vacy setting with minimal user effort.

Fang and Lefevre’s privacy wizard [Fang and LeFevre, 2010] iteratively asks a user about his privacy
preferences (allow or deny) for specific (data item, friend) pairs. The wizard constructs a classifier from
these preferences, which automatically assigns privileges to the remaining of the user’s friends. The
classifier considers two types of features: community structure (e.g., to which community a friend of the
user belongs) and profile information (such as age, gender, relationship status, education, political and
religion views, work history). The classifiers employed (NaiveBayes, NearestNeighbors and Decision
Tree) use uncertainty sampling [Lewis and Gale, 1994], an active learning paradigm, acknowledging
the fact that users may quit labeling friends at any time.

Social Circles [Adu-Oppong et al., 2008] is an automated grouping technique that analyzes the users’
social graph to identify “social circles”, clusters of densely and closely connected friends. The authors
posit social circles as uniform groups from the perspective of privacy settings. The assumption is that
users will share the same information with all friends in a social circle. Hence, friends are automati-
cally categorized into social circles for different circle-specific privacy policy settings. To find the social
circles, they used a (α, β) clustering algorithm proposed in [Mishra et al., 2007]. While convenient, this
approach limits users’ flexibility in changing the automate settings.

Danezis [Danezis, 2009] aims to infer the context within which user interactions happen, and en-
forces policies to prevent users that are outside that context from seeing the interaction. Conceptually
similar to Social Circles, contexts are defined as cohesive groups of users, e.g., groups that have many
links within the group and fewer links with non-members of the group. The author used a greedy
algorithm to extract the set of groups from a social graph.

An inherent tradeoff for this class of solutions is ease of use vs. flexibility: while the average user
might be satisfied with an automatically-generated privacy policy, the more savy user will want more
transparency and possibly more control. To this end, the privacy wizard [Fang and LeFevre, 2010]
provides for advanced users the visualization of a decision tree model and tools to change it. Another
challenge for some of these solutions is bootstrapping: a newcomer in the online social network has no
history of interactions to inform such approaches.

3.4 Default Privacy Settings

Studies have shown that users on OSNs often do not take advantage of the privacy controls available.
For example, more than 99% Twitter users retained the default privacy setting where their name, list
of followers, location, website, and biographical information are visible [Krishnamurthy et al., 2008].
Similarly, the majority of Facebook users has default settings [Gross and Acquisti, 2005b; Acquisti and
Gross, 2006; Krishnamurthy and Wills, 2008]. Under-utilization of privacy options are mostly due to
poor privacy setting interface [Lipford et al., 2008], intricate privacy settings [Madejski et al., 2011],
and inherent trust in OSNs [Acquisti and Gross, 2006; Boyd, 2004]. The problem with not changing
the default settings is that they almost always tend to be more open that the users would prefer [Liu
et al., 2011]. To overcome this situation, approaches to automatically generate more appropriate de-
fault privacy settings have been proposed.

PriMa [Squicciarini et al., 2010] automatically generates privacy policies, acknowledging the fact
that the average user will find the task of personalizing his access control policies overwhelming, due
to growing complexity of OSNs and the diversity of user content. The policies in PriMa are generated
based on the average privacy preference of similar and related users, the accessibility of similar items
from similar and related users, closeness of owner and accessor (measured by the number of common
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friends), the popularity of the owner (i.e., popular users have sensitive profile items), etc. However,
a large number of factors and their parametrized tuning contribute to longer policy generation and
enforcement time. A related approach, PolicyMgr [Shehab et al., 2010], uses supervised learning of
user-provided example policy settings and builds classifiers that are then used for automatically gen-
erating access control policies.

Aegis [Kayes and Iamnitchi, 2013a; Kayes and Iamnitchi, 2013b] is a privacy framework and imple-
mentation that leverages the ‘Privacy as Contextual Integrity’ theory proposed by Nissenbaum [Nis-
senbaum, 2004] for generating default privacy policies. Unlike the approaches just presented above,
this solution does not need user input or access history. Instead, it aggregates social data from differ-
ent OSNs in an ontology-based data store and then applies the two norms of Nissembaum’s theory
to regulate the flow of information between social spheres and access to information within a social
sphere.

4. MITIGATING ATTACKS FROM SOCIAL APPLICATIONS

Social applications, written by third-party developers and running on OSN platforms, provide en-
hanced functionality linked to a user profile. For example, Candy Crush Saga8 (a social game) and
Horoscopes9 (users can check horoscope) are two popular social applications on Facebook.

The social networking platform works as a proxy between users and applications and mediates the
communication between them. To better understand this proxy, we show data flow between a third-
party social application and the Facebook platform in Figure 1. An application is hosted on a third-
party server and runs on user’s data that are taken from the Facebook platform. When a user installs
the application on Facebook, it takes permission from the user to use some of her profile information.
Application developers write the application pages of an application using Facebook mark-up language
(FBML)—a subset of HTML and CSS extended with proprietary Facebook tags.

When a user interacts with an application, such as clicks an application icon on Facebook to generate
horoscopes (step 1 on Figure 1), Facebook requests the page from the third-party server where the
application is actually hosted (step 2). The application requests the user’s profile information using
secret communication with Facebook (step 3). The application uses the information (e.g., birth date
may be used to create horoscopes) and returns a FBML page to Facebook (step 4). Facebook finally
transforms the application page from the server by replacing the FBML page with standard HTML,
JavaScript (step 5), and transmits the output page to the end user (step 6).

OSN users are facing multiple risks while using social applications. First, an application might be
malicious; it could collect a high volume of user data for unwanted usage. For example, to show this
vulnerability, BBC News developed a malicious application that could collect large amounts of user
data in only three hours [Kelly, 2008].

Second, application developers can violate developer policies to control user data. Application devel-
opers are supposed to abide by a set of rules set by the OSNs, called “developer policies”. Developer
polices are intended to prohibit application developers from misusing personal information or forward-
ing it to other parties. However, reported incidents [Mills, 2008; Steel and Fowler, 2010] show that
applications violate these developer policies. For example, a Facebook application, “Top Friends” en-
abled everyone to view the birthday, gender and relationship status of all Top Friends users, even
though those users kept their privacy for those information to private [Mills, 2008], violating the de-
veloper policies that private information of friends are not accessible. The Wall Street Journal finds

8https://www.facebook.com/candycrushsaga
9https://www.facebook.com/dailyhoroscopes
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Fig. 1: Data flow in a Facebook application.

evidence that Facebook applications transmit identifying information to advertising and tracking com-
panies [Steel and Fowler, 2010].

Finally, third-party social applications can query more data about a user from an OSN, regardless
whether needed or not for proper operation. A study by Felt and Evans [Felt and Evans, 2008] of
150 of the top applications on Facebook shows that most of the applications only needed user name,
friends, and their networks. However, 91% of social networking applications have accessed data that
they do not need for operation. This violates the principle of least privilege [Saltzer and Schroeder,
1975], which states that every user should only get the minimal set of access rights that enables him
to complete his task.

We identified three classes of solutions that attempt to minimize the privacy risks stated above: (i) by
anonymizing social data made available to applications (Section 4.1); (ii) by defining and enforcing
more granular privacy policies that the third-party applications have to respect (Section 4.2); and
(iii) by providing third-party platforms for executing these applications and limiting the transfer of the
social data from applications to other parties (Section 4.3).

4.1 Anonymizing Social Data For Third-party Applications

Privacy-by-proxy [Felt and Evans, 2008] uses special markup tags that abstract user data and han-
dle user input. Third-party applications do not have access to users’ personal data, rather they use
users’ IDs and tags to display data to users. For example, to display a user’s hometown, an application
would use a tag <hometown id=“3125”/>. The social network server would then replace the tag with
real data value (e.g., “New York”) while rendering the corresponding page to the user. However, appli-
cations might rely on private data for operations, for example a horoscope application might require
users’ gender information. A conditional tag handles this dependency (e.g., <if-male> tag can choose
the gender of an avatar). Privacy-by-proxy ensures privacy by limiting what applications can access,
which might also limit the social value and usability of the applications. Data availability through
proxy also means that application developers have to expose the business logic to social network sites
(in a form of Javascript to end users). This might discourage third-party developers in the first place.
Moreover, applications could still develop learning mechanisms to infer attributes of a user. For ex-
ample, developers might include scripting code in the personal data dependent conditional execution
blocks (if-else) that could send information to an external server when the block executes.

Similar to Privacy-by-proxy, PESAP [Reynaert et al., 2012] provides anonymized social data to appli-
cations. However, PESAP secures the information flow inside the browser, so that applications cannot
do information leakage though outgoing communications with other third-parties. The anonymization
is provided by encrypting the IDs of the entities of the social graph with an application-specific sym-
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metric key. Applications use a REST API to get access to the anonymized social graph. PESAP provides
a re-identification end-point in order to enable users to see the personal information of their friends in
the context of social applications. Secure information flow techniques protect the private information
in the browser of a user. This is done by a dynamic, secure multi-execution flow technique [Devriese
and Piessens, 2010], which analyzes information flow inside a browser and ensures that the flow com-
plies with certain policies. The multi-execution flow technique labels the inputs and the outputs of the
system with security labels and runs a separate sub-execution of the program for each security label.
The inputs have designated security labels and can be accessed by a sub-execution having the same or
a higher security label. Figure 2 shows the data flow in a PESAP-aware browser.

Application 
Code

User

Secure Multi-Execution

Browser

Reidentification AppPortal 
RESTapi App

Anonymous data

Private data

Fig. 2: Data flow in a PESAP aware browser [Reynaert et al., 2012].

4.2 Enforcing Additional Privacy Policies To Social Applications

Besmer et at. [Besmer et al., 2009] propose an access control framework for applications, which adds
a new user-application policy layer on the top of the user-user policy to restrict the information ap-
plications can access. Upon installing an application, a user can specify which profile information the
application could access. However, the framework still uses user-to-user policy to additionally govern
an application’s access to friends’ information on behalf of the user (Alice’s installed applications will
not get her friend Bob’s private data if user-user policy of Bob denies Alice to do so). An additional
friendship-based protection restricts the information the application can request of a user’s friends.
For example, Alice installs an application which requests her friend Bob’s information and Bob did
not install the application. Consider that Bob’s default privacy policy is very permissive. But Alice is
a privacy conscious and she allows applications to access only the Birth Date attribute. According to
friendship-based protection, when the application will request Bob’s information via Alice, it will only
be able to get Bob’s birth date. So, friendship-based protection enables Alice’s privacy policies to extend
to Bob. The model works well for privacy-savvy concerned users who make informed decisions about
an application’s data usage while installing an application. An additional functionality could be a set
of restrictive default policies for average users.

4.3 Third-party Platforms For Running Social Applications

Egele et al. [Egele et al., 2012] note that, since popular OSN services such as Facebook did not imple-
ment user-defined access control mechanisms to date, pragmatic solutions should not rely on the help
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of OSNs. They introduce PoX, a browser extension for Facebook applications that runs on a client ma-
chine and works as a proxy to provide fine-grained access controls. PoX works as a reference monitor
which sits between applications and the Facebook server and controls an application’s access to users’
data stored on the server. In so doing, an application requests the proxy for users’ profile data. Upon re-
ceiving the request, the proxy performs access control checks based on user-provided privacy settings.
If the request is allowed, the proxy signs the access request with its key, sends the request to the OSN
server, and finally replays the result from the server to the application. This application to server data
flow is shown in Figure 3. An application developer needs to use the PoX server-side library instead
of the Facebook server-side library. One potential challenge is to motivate application developers to
write PoX-aware applications when existing mechanisms (e.g., Facebook application environment) are
perfectly in place.

2. Request user profile data from proxy

5. Transmit allowed data to app server

3. Request data 
allowed by ACL

4. Transmit allowed 
data to proxy

Facebook server

Client
1. Open application without 

sending session secret Facebook
Application

6. Display application page

Client-side
proxy

Fig. 3: A data-flow between applications and server with PoX [Egele et al., 2012].

xBook [Singh et al., 2009] is a restricted ADSafe-based JavaScript framework that provides a server-
side container in which applications are hosted and a client-side environment to render the applica-
tions to users. xBook is different than PoX in that it not only controls third-party applications’ access to
user data (which PoX also does), but also it limits what applications do with the data. Applications are
developed as a set of components; a component is a smallest granular building block of codes monitored
by xBook. A component also reveals the information that the component can access and the external
entity with which it communicates. During the deployment of an application in xBook, an application
developer requires to specify these information. From the specification, xBook generates a manifest for
the application. A manifest is a set of statements that specifies what user data the application will use
and with which external services it will share the data. At the time of installing the application, the
manifest will be presented to the user. In this way, a user will be able to make a more informed decision
before installing an application. Although xBook controls third-party applications’ access to user data
and limits application’s data usage, it has to deal with two challenges. First, the platform itself has
to be trusted by users and by applications, as it is expected to protect users’ personal data and enable
third-party applications to execute. Second, hosting and executing applications in xBook requires re-
sources (storage, computation and maintenance) that may be difficult to provide in the absence of a
business model.

ACM Computing Surveys Template.



1:12 • Kayes and Iamnitchi

5. PROTECTING USER DATA FROM THE OSN

The “notice-and-consent” approach to online privacy is the status-quo for practically all online services,
OSNs included. This approach informs the user of the privacy practices of the service and provides the
user a choice whether to engage in the service or not.

The limitations of this approach have been acknowledged for long. First, the long and abstruse
privacy policies offered for reading are virtually impossible to understand, even if the user is willing
to invest the time for reading them. For example, on August 2014, we found 4389 words on Facebook’s
privacy policies and 3473 words on Twitter’s privacy policies. Second, such policies always leave room
for future modifications; therefore, the user is expected to read them repeatedly in order to practice
informed consent. And third, long as they are, these privacy policies tend to be incomplete10, as they
often cannot include all the parties to which user’s private information will be allowed to flow (such as
advertisers). Consequently, generally people do not read the Terms of Service and when they do, they
do not understand them [Fiesler and Bruckman, 2014].

A second serious deterrent for users protecting their online privacy is the “take-it-or-leave-it” “choice”
the users are offered. While it may seem as a free choice, in reality the cost of not using the online
service (whether email, browsing, shopping, etc) is unacceptably high.

Cornered in this space of falsely informed and lack of choice, users may look for solutions that allow
them to use the online service without paying the information cost associated with it. Researchers
built on this intuition in two directions. The first direction tends to hide the user information from the
very service that stores it (Section 5.1). The second taps into different business models than the ones
that make a living from user’s private information and replaces the centralized service provider with
a fully decentralized solution that is privacy-aware by design (Section 5.2).

5.1 Protection by Information Hiding

This line of work is empirically supported by the Acquisti and Gross’s study [Acquisti and Gross, 2006]
that shows that while 60% of users trust their friends completely with their private and personal
information, only 18% of users trust Facebook to the same degree.

The general approach for hiding information from the OSN is based on the observation that OSNs
can run on fake data. If the operations that OSNs perform on the fake data are mapped back to original
data, users can still use the OSNs without providing them real information. Fake data could be cipher-
text (encrypted) or obtained by substituting the original data with pre-mapped data from a dictionary.
Encrypted data can be stored on a user’s trusted device (including third-party servers or a friend’s
computer). Access controls are provided by allowing authorized users (e.g., friends) to get the original
data from the fake data. Different implementations of this idea are presented next.

flyByNight [Lucas and Borisov, 2008] is a Facebook application that enables users to communicate
on Facebook without storing a recorded trace of their communication in Facebook. The flyByNight
Facebook application generates a public/private key pair and a password during configuration. The
password is used as a key to encrypt the private key and the key is stored on flyByNight server.
When a user installs the application, it downloads a client-side JavaScript from the FlyByNight server.
This JavaScript does key generation and cryptographic operations. The application knows a user’s
friends and their public keys who have also installed the flyByNight application. To send messages to
friends, a user enters the message into the application and selects the recipient friends. The client-
side JavaScript encrypts the content of the message with other users’ public keys, tags the encrypted
message with the Facebook ID numbers of their recipients, and sends them to a flyByNight message
database server. The encrypted messages reside on the flyByNight server. When a user reads a mes-

10http://goo.gl/yXqI1s
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sage, she provides the password to get the private key (stored in the flyByNight key database). The
private key is used to decrypt the message. flyByNight operates under the regulation of Facebook,
as it is a Facebook application. It is possible that the computation load on the Facebook servers due
to encryption, as well as the suspicious lack of communication among users might attract Facebook’s
attention and lead to deactivating the application. In the worst case, users lose their ability of hiding
their communication, but previous messages remain hidden from the OSN.

Persona [Baden et al., 2009] hides user data from the OSN by combining attribute-based encryption
(ABE) and public key cryptography. The core functionalities of current OSNs such as profiles, walls,
notes, etc., are implemented in Persona as applications. Persona uses an application “Storage” to enable
users to store personal information, and share them with others through an API. Persona application
in Facebook is similar to any third-party Facebook application, where users log-in by authenticating
to the browser extension. The browser extension translates Persona’s special markup language. User
information is stored in Persona storage services rather than on Facebook and other Persona users can
access the data given that they have the necessary keys and access rights. Similar to the flyByNight,
Persona’s operation depends on the OSN, as core functionalities are implemented as applications.

NOYB [Guha et al., 2008] distorts user information in an attempt to hide real identities from the
OSN, allowing only trusted users (e.g., friends) to get access to the restored, correct information. To
implement this idea, NOYB splits a user’s information into atoms. For example, Alice’s name, gender
and age (Alice, F, 26) are split into two atoms: (Alice, F) and (26). Instead of encrypting the informa-
tion, NOYB replaces a user’s atom with pseudorandomly picked another user’s atom. So, Alice’s first
atom is substituted with, for example, the atom (Athena, F) from Athena’s profile, and the second
atom with Bob’s atom from the same class (38). All atoms from the same class for all users are stored
in a dictionary. NOYB uses ciphered index of a user’s atom to substitute an atom from this dictionary.
Only an authorized friend knows the encryption key and can reverse the encryption. A proof-of-concept
implementation of NOYB as a Firefox browser plugin adds a button to ego’s Facebook profile that en-
crypts his information and another button on alter’s page that decrypts alter’s profile. The cleverness
of NOYB is that it stores legitimate atoms of information in plain text, thus not raising the suspi-
cions of the OSN. The challenge, however, is the scalability of the dictionaries: the dictionaries are
public, contain atoms from both NOYB users and non-users, and are maintained by a third party with
unspecified business/incentive model.

FaceCloak [Luo et al., 2009], implemented as a Firefox browser extension, protects user information
by storing fake data in the OSN. Unlike NOYB, it does not replace a user’s information with another
user’s information, rather it uses dictionaries and random Wikipedia articles as replacements. A user,
say Alice, can protect information from the OSN by using a special marker pre-defined by FaceCloak
(@@ in their implementation). When Alice submits the form to the OSN, FaceCloak intercepts the sub-
mitted information, replaces the fields that start with the special marker by appropriate fake text and
stores the fake data in the OSN. It uses a dictionary (for profile information) and random Wikipedia ar-
ticles (for walls and notes) to provide fake data. Now, using Alice’s master key and personal index key,
FaceCloak does the encryption of the real data, computes MAC keys, computes the index, and sends
them to a third-party server. Now consider one of Alice’s friends Bob, who has installed FaceCloak
in his browser, and Bob wants to see Alice’s information. After downloading Alice’s page (which also
includes fake data from the OSN), FaceCloak computes indexes of relevant fields using master and
personal index key of Alice. Then it downloads the corresponding values from the third-party server.
Upon receiving the value, FaceCloak checks the integrity of the received cipher-text, decrypts it, and
substitutes the real data for the fake data. If the value is not found, then the data is left unchanged.
See the architecture of FaceCloak in Figure 4. FaceCloak depends on a “parallel” centralized infras-
tructure to store the encrypted data, which means that a third-party has to maintain all users’ data,
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probably without getting any benefits from it. And, users have to trust the reliability of the third-party
server, which also represents a single point of failure.

Publisher

1. Keys

2. fake information

3. encrypted real 
information

2. encrypted real 
information

3. fake information

Facebook

Viewer Third 
party

Fig. 4: FaceCloak architecture [Luo et al., 2009].

Virtual Private Social Networks) (VPSN) [Conti et al., 2011], unlike flyByNight, FaceCloak, and
NOYB, does not require third-party services to protect users’ information from an OSN. Instead, they
leverage the computational and storage resources of the OSN users to store real profile data of other
users, while storing fake profile data on Facebook. FaceVPSN is a Firefox browser extension that
implements VPSN for Facebook. In FaceVPSN, user Alice changes her profile information to some
fake information and stores the fake information in Facebook and sends by email her correct and fake
profiles in a prespecified XML format to her friends. In order to access Alice’s real profile, her friends
have to have FaceVPSN installed (as a regular Firefox extension) and use its GUI to add Alice’s XML
file. When Alice’s friend Bob requests Alice’s Facebook page, Facebook sends an HTML response that
has Alice’s fake data from Facebook. FaceVPSN’s JavaScript code is triggered when “page load” event
is fired. The JavaScript code of FaceVPSN searches the profile information of Alice in Bob’s stored XML
file and replaces the fake information with real information.

Unlike other solutions presented above, FaceVPSN does not risk being suspended by the OSN (since
it is not an application running with the OSN’s support). Like FaceCloak, however, FaceVPSN re-
quires a user’s friends to install the FaceVPSN extension in order to see the user’s profile. Moreover,
FaceVPSN demands a high degree of user interaction that might affect usability. In particular, upon
the addition of a new contact to the friend list, the user has to explicitly exchange profile information
with the new friend and upload it into the FaceVPSN application. On top of it, every change of profile
information has to be emailed as an XML file to all friends, and the friends are required to go through
the XML update process in order to see the changes. This entire process affects usability, given the
high number of friends a user might have in OSNs (e.g., half the Facebook users have more than 200
friends, and 15% have more than 500 friends11)

While the various implementations of the idea of hiding the personal information from the OSN
have different tradeoffs, as discussed above, there are also risks associated with the approach itself.
First, because the OSN operates on fake data (whether encrypted or randomized), it will not be able to

11http://www.pewresearch.org/fact-tank/2014/02/03/6-new-facts-about-facebook/
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provide some personalized services such as social search and recommendation. Second, users end up
transferring their trust from the OSN to either a third-party server or friends’ computers for unclear
benefits. The third-party server provides yet another service whose terms of use are probably pre-
sented in yet another incomprehensible Terms of Service document, with an opt-out “choice”. Friends’
computers require extra care for fault tolerance and malicious attacks.

5.2 Protection Via Decentralization

An alternative to obfuscate information from the OSN is to migrate to another service that is especially
designed for user privacy protection. Research in this area explored the design space of decentralized
(peer-to-peer) architectures for managing user information, thus avoiding the centralized service with
a global view of the entire user population. The typical overlay used in most of these solutions is based
on distributed hash tables, preferred over unstructured overlays for their performance guarantees. In
addition, data is encrypted and only authorized users get access to the plain text. In this section, we
discuss decentralized solutions for OSNs. There are three dimensions that differentiate the solutions:
(1) how the distributed hash table has been implemented (e.g., OpenDHT, FreePastry, Likir DHT)? (2)
where to store users’ content (e.g., nodes run by the user, by the friends or cloud infrastructures)? (3)
how to manage encryption keys for access controls (e.g., public-key infrastructure, out-of-band)?

PeerSooN’s [Buchegger et al., 2009] architecture has two-tiers. One tier, implemented using OpenDHT,
serves as a look-up service to find a user. It stores users’ meta-data for example, the IP address, infor-
mation about files, and notifications for users. A peer can connect to another peer asking the look-up
service directly to get all required information. The second tier is formed by peers and it contains users’
data, such as user profiles. Users can exchange information either through the DHT (e.g., a message is
stored within the DHT if receiver of a message is offline) or directly between their devices. The system
assumes a public-key infrastructure (PKI) for privacy protection. A user encrypts data with the public
keys of the intended audience, i.e., the friends of the user.

Safebook [Cutillo et al., 2009b; Cutillo et al., 2009a] is a decentralized OSN, which uses a peer-to-
peer architecture to get rid of a central, omniscient authority. Safebook has three main components:
a trusted identification service for certification of public keys and the assignment of pseudonyms;
matryoshkas, a set of concentric shells around each user, which serve to replicate the profile data
and anonymizes traffic; and a peer to peer substrate (e.g., DHT) for the location of matryoshkas that
enables access to profile data and exchange messages.

LifeSocial.KOM [Graffi et al., 2011] is another P2P-based OSN. It implements common function-
alities in OSNs using OSGi-based12 software components called “plugins”. As a P2P overlay, it uses
FreePastry for interconnecting the participating nodes and PAST for reliable, replicated data storage.
The system uses cryptographic public keys as user ID. To protect privacy, a user encrypts a private
data object (e.g., profile information) with a symmetric cryptographic key. She then encrypts the sym-
metric cryptographic key individually with the public keys of authorized users (e.g., her friends) and
appends to the data object. The object and the list of encrypted symmetric keys are also signed by
the user and they are stored in the P2P overlay. Other users in the system can authenticate the data
object by using the public key of the author. But only authorized users (e.g., friends) can decrypt the
symmetric key and thus, the content of the object.

LotusNet [Aiello and Ruffo, 2012] is a framework for the implementation of a P2P based OSN on a
Likir DHT [Aiello et al., 2008]. It binds a user identity to both overlay nodes and published resources
for robustness of the overlay network and secures identity based resource retrieval. Users’ information
is encrypted and stored in the Likir DHT. Access control responsibility is assigned to overlay index-

12http://www.osgi.org/Specifications/HomePage
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nodes. Users issue signed grants to other users for accessing their data. DHT returns the stored data
to the requestor only if the requestor can provide a proper grant, signed by the data owner.

Vis-a-Vis [Shakimov et al., 2011] targets high content availability. Users store their personal data
in Virtual Individual Servers (VISes), which are kept on the user’s computer. The server data are
also replicated on a cloud infrastructure so that the data is available from the cloud when a user’s
computer is offline. Users can share information with other users using peer-to-peer overlay networks
that connect VISes of the users. The cloud service needs to be rented (considering the high volume of
the data users store in OSNs), which makes the scheme monetary dependent.

Prometheus [Kourtellis et al., 2010] is a peer-to-peer social data management system for socially-
aware applications. It does not implement traditional OSN functionalities (e.g., profile creation, man-
agement, contacts, messaging, etc.), rather it manages users’ social information from various sources
and exposes APIs for social applications. Users’ social data are encrypted and stored in a group of
trusted peers selected by users for high service availability. Prometheus architecture is based on Pas-
try, a DHT-based overlay, and it uses Past to replicate social data. An inference on social data is subject
to user defined access control policy enforced by the trusted peers. Prometheus relies on a public-key
infrastructure (PKI) for user authentication and message confidentiality.

The toughest challenge for decentralized OSNs is to convince traditional OSN users to migrate to
their systems. Centralized social networks have large, established user bases and they are accessi-
ble from anywhere. Moreover, they already have a mature infrastructure, making good revenues from
users’ data and maintaining excellent usability. However, decentralized OSNs are also becoming pop-
ular, specially among privacy-aware users. For example, Diaspora13 is a fully operating open source,
stable and decentralized OSN, which relies on user contributed local servers to provide all the major
centralized OSN functionalities.

6. MITIGATING DE-ANONYMIZATION AND INFERENCE ATTACKS

Analysis of social data has become immensely popular in a variety of domains, such as biological sys-
tems, organizational studies, information science, communication studies, economics, political science,
social psychology, development studies, anthropology and sociolinguistics. Researchers and agencies
collect or purchase social data to do the analysis. For example, Kwak et al. [Kwak et al., 2010] collected
the entire Twitter network as of 2010: 41.7 million Twitter profiles, 1.47 billion follower-following re-
lations, and 106 million tweets. In addition, some organizations and OSN service providers publish
social data for others to analyze. For example, the Federal Energy Regulatory Commission published a
repository of approximately 500, 000 email messages of Enron Corporation, which has been frequently
analyzed for research [Klimt and Yang, 2004; Shetty and Adibi, 2005].

However, publishing and allowing the collection of social network data involves privacy disclosure
risks. For example, in 2006 AOL released an anonymized dataset of twenty million search keywords
for over 650,000 users [Arrington, 2006]. The dataset was published for research purpose and novel
findings emerged (e.g., [Nunes et al., 2008; Adar et al., 2007; Jansen and Booth, 2010]). However,
despite the fact that the data released was anonymized, users’ privacy was compromised. To make the
point, the New York Times identified an individual from this dataset by cross referencing users with
phonebook listings.

Privacy attacks in published or collected social network data can be categorized into two cate-
gories: de-anonymization attacks and inference attacks. In the following, we discuss the types of de-
anonymization attacks, how these attacks take place, and what solutions were proposed to combat such

13https://joindiaspora.com/
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attacks. More in-depth discussion on de-anonymization can be found in [Zheleva and Getoor, 2011]. In
this work, we include the latest work on de-anonymization attacks.

6.1 De-anonymization Attacks

In de-anonymization attacks, an attacker uses external background knowledge and published social
data to de-anonymize/identify users in the social graph, and thus learn sensitive user information.

We categorize privacy breaches due to de-anonymization attacks into four classes:

(1) Identity disclosure reveals the identity of a user and makes him vulnerable in the real world. For
example, although a published dataset on the disease-infection network could advance research
on how the disease transmits in communities, an adversary (e.g., an insurance company) that
can identify an individual and his disease could exploit this information in unintended ways (for
example, for denying insurance).

(2) Social attributes disclosure refers to the disclosure of sensitive data associated with a user. For
example, disclosure of a user’s date of birth, gender and home address could allow the inference of
the user’s social security number (SSN) and hence could lead to identity theft [Gross and Acquisti,
2005a].

(3) Relationship disclosure refers to the situation when the relationships of a user are exposed and
this information exploited. For example, two nodes (e.g., companies) in a transaction network are
connected by an edge and a weight (e.g., transaction expense) if they are involved in a financial
transaction. An adversary, for example a competitor company, can detect whether two target com-
panies have done a financial transaction if it can infer whether an edge exists between the two
companies in the network. The adversary can learn the transaction expense from the edge weight
and can exploit that information to get advantages.

(4) Social graph property disclosure refers to the disclosure of various graph metrics, such as degree,
betweenness centrality, closeness centrality, or clustering co-efficient. An attacker can find out
the most central users in the network and can make the network structurally vulnerable. For
example, an attacker can identify and remove the highest betweenness centrality nodes to disrupt
communications between other nodes in the network [Newman, 2010].

6.1.1 De-anonymization Attack Techniques. Anonymization is usually done by substituting person-
ally identifying information associated with each user with a random ID [Wu et al., 2010]. However,
this substitution is not sufficient to preserve users’ privacy. For example, consider a social network in
Figure 5(a) that has been anonymized in Figure 5(b) by replacing user names with random IDs. Now, if
an attacker knows that Alice, David and Asley are friends of Bob and Alice-David and Asley-David are
also friends, a subgraph shown in Figure 5(c), then the attacker can uniquely identify the subgraph in
the anonymized network (shown in Figure 5(d)). So, the attacker will be able to re-identify Bob in the
anonymized and published social network.

Researchers have shown different techniques to perform de-anonymization attacks. Backstorm et
al. [Backstrom et al., 2007] present two types of attacks—active and passive. In active attacks, the
attacker is assumed to be able to modify the network prior to social network data release. The attacker
chooses an arbitrary set of target individuals (whose privacy she wants to compromise), creates a
small number of new user accounts, makes connections with target individuals (thus forms edges),
and establishes a highly distinguishable pattern comprising nodes and edges among the new accounts.
The attacker can then efficiently find the subgraph in the released anonymized network, thus can
expose the identities of the target individuals.

In passive attacks, an attacker does not have to create new accounts or connections. The intuition is
that most nodes in social networks form small uniquely identifiable subgraphs. So, the attacker simply
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Fig. 5: Anonymization and de-anonmymization attacks.

has to form a coalition with other users. The attacker recruits k− 1 number of his neighbors and forms
a coalition of size k. The users in the coalition know names of their neighbors outside of the coalition.
Finally, the attacker tries to identify the subgraph (formed by the coalition) in the published social
network, and compromises the privacy of neighboring nodes.

Narayanan and Shmatikov [Narayanan and Shmatikov, 2009] demonstrate the feasibility of a large-
scale de-anonymization attack under the assumption that the attacker has background knowledge
of a different network whose membership partially overlaps with the target network. Using a de-
anonymization algorithm, the authors show that a third of the common users of both Twitter and
Flickr can be identified in the anonymous Twitter social graph with a low (12%) error rate.

Both attacks [Backstrom et al., 2007; Narayanan and Shmatikov, 2009] presented above use a sub-
graph as background knowledge. However, the way an attacker achieves this knowledge is different.
In [Backstrom et al., 2007], an attacker creates the background knowledge by adding nodes and edges
in the social graphs or forming a coalition among nodes. In [Narayanan and Shmatikov, 2009], the
authors propose to collect network data by crawling OSNs, or deploying third-party malicious applica-
tions.

6.1.2 Privacy Preserving Anonymization Methods. In order to combat de-anonymization attacks, a
social network should be anonymized properly before publishing. We categorize privacy preserving so-
cial network data anonymization methods into two categories: (1) edge modification-based approaches
and (2) clustering-based generalization.

Edge modification-based approaches: Edge modification-based approaches preserve privacy by mod-
ifying the social graph structure via addition, deletion or randomization of the edges. Zhour and
Pei [Zhou and Pei, 2011] consider a de-anonymization attack, where an attacker, equipped with the
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background knowledge about the target’s 1-hop neighbors, attempts to re-identify the target in the
anonymized dataset using neighborhood matching. Their anonymization method is inspired by k-
anonymity model. Although not targeted to social network data publishing, k-anonymity model en-
sures that each user’s information in a released dataset cannot be identified from at least k − 1 other
individuals in the dataset [Sweeney, 2002] .

Zhour and Pei extend k-anonymization to social networks. The goal of the anonymization is to
ensure that even knowing the neighborhood of a node, an attacker will not be able to re-identify
the node in the anonymized dataset with confidence higher than 1

k . Let we have a social network
G = (V,E) and the anonymized network Ĝ = (V̂ , Ê), where there exists a bijection function f : V → V̂
and for each (u, v) ∈ E, (f(u), f(v)) ∈ Ê. The authors assume that an attacker has the knowledge
of the neighborhood subgraph of a node u ∈ V (G), denoted by NeighborG(u). The goal of the k-
anonymization is to ensure that there exist at least k − 1 other nodes v1, v2, v3, . . . , vk−1 ∈ V (G)
such that NeighborĜ(f(v1)), . . . ,NeighborĜ(f(vk−1)) are isomorphic. The anonymization method first
extracts the neighborhoods of all nodes in the network. Then it greedily combines nodes into groups
and anonymizes the neighborhoods of the nodes in the group, until k-anonymity conditions are met.
To anonymize neighborhoods of two nodes such as NeighborG(u) and NeighborG(v), the method first
finds all perfect matches of neighborhood components in NeighborG(u) and NeighborG(v). For those un-
matched components, it tries to pair similar components based on anonymization cost and anonymizes
them (this might involve an addition of an edge between two nodes).

Liu and Terzi [Liu and Terzi, 2008] propose k-degree anonymity to combat de-anonymization at-
tacks. They assume that an attacker has the background knowledge of the degree of a target node.
The attacker could search the degrees of the nodes in the published network and could re-identify a
target node. k-degree anonymity ensures that for every node u in the graph, there exist at least (k− 1)
other nodes having the same degree as u. Similar to the work of Zhour and Pei, even having the degree
background knowledge, an attacker will not be able to re-identify the node in the anonymized dataset
with confidence higher than 1

k . Their anonymization algorithm has two steps. In the first step, it starts
from a degree sequence d of the original network G(V,E) and constructs a new degree sequence d̂ that
is k-degree anonymous, so that degree anonymization cost is minimized. In the second step, the algo-
rithm constructs a graph Ĝ = (V̂ , Ê) such that dĜ = d̂, V̂ = V and Ê = E. To solve the first step, the
authors used a dynamic programming method, while the second step is based on a set of graph con-
struction algorithms given a degree sequence with constraints. To construct the new degree sequence
the algorithm uses a randomized edge swap transformation strategy.

Clustering-based generalizations: Clustering-based generalizations cluster nodes and edges into groups
and anonymize a subgraph into a super-node [Zhou et al., 2008]. So, details about users are hidden.

Hay et al. [Hay et al., 2008] propose a vertex clustering-based generalization approach to combat de-
anonymization attacks. They model an attacker’s background knowledge as the access to an entity that
answers a restricted knowledge query about a target node in the network. They assume three types of
queries: vertex refinement queries return the local structure of a node in an iterative refined way (e.g.,
degree of a node, the set of neighbors degrees of a node); subgraph queries confirm a subgraph around
a target node; hub fingerprint queries for a target node returns the vectors of distances between the
node and a set of hubs (note that in social networks a hub is defined as a node with high betweenness
and degree centrality [Newman, 2010]). The anonymity method is based on structural similarity. The
intuition is that structurally similar nodes may be indistinguishable to an attacker. The anonymity
method generalizes a social graph by grouping nodes into partitions and publishes the number of
nodes in each partition including the densities of edges across and within the partitions. The size of
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the partition is at least k (a positive integer), which is similar to k-anonymity in relational data. The
method used a simulated annealing algorithm for partitioning [Russell et al., 1995].

Zheleva and Getoor [Zheleva and Getoor, 2008] consider a link re-identification attack, where nodes
have multiple types of edges and an attacker attempts to re-identify sensitive edges. As a background
knowledge, they assume that an attacker can predict a sensitive edge based on other non-sensitive
edges. They describe five anonymization techniques: i) remove all sensitive edges; (ii) remove some
non-sensitive edges which significantly contribute to the prediction of a sensitive edge; (iii) collapse
the anonymized nodes into a single node for each equivalence class (they assume that nodes are clus-
tered into equivalence classes) and publish the count of same types of edges between two equivalence
class nodes; (iv) similar technique as (iii), but it needs the equivalence class nodes to have the same
constraints as any two nodes in the social network; (v) remove all edges.

Campan and Truta [Campan and Truta, 2009] propose an edge generalization technique, leveraging
the k-anonymity model. In their model, each node is similar to at least other (k − 1) nodes considering
attributes and associated structured information (e.g., neighborhood structure of nodes). Nodes are
partitioned into clusters and nodes from a cluster are combined into one single node. Edges between
two clusters are collapsed into a single edge. An edge between two clusters are labeled with the number
of edges between them. While this approach is similar to [Zheleva and Getoor, 2008], two major differ-
ences are: (i) [Campan and Truta, 2009] considers all relationships are the same type, but in [Zheleva
and Getoor, 2008] there are different types of relations; (ii) [Campan and Truta, 2009] considers both
generalization and structural information loss while clustering.

The main challenge for anonymization methods is providing sufficient anonymity while preserving
(all) the relevant structural properties of the network. Without preserving enough of the structural
properties of the original network, publishing anonymized social network datasets loses its value.

6.2 Mitigating Inference Attacks

The goal of an inference attack is to infer undisclosed private information about a user using other
published details of that user. For example, a person might not want to state her political affiliation
in Facebook because of privacy concerns. But if he is a member of “ban the same sex marriage” group,
then from this group membership an inference may be possible regarding his political affiliation.

Zheleva and Getoor [Zheleva and Getoor, 2009] study four social networks (Facebook, Flickr, Dogster
and BibSonomy) and show how an attacker can exploit public and private user profiles to learn private
attributes such as user location and gender. They show that declared social relationships and inferred
group memberships are enough to predict undisclosed private information. Using the classification
model LINK-GROUP, a combination of link and group-based classification models, they were able to
accurately discover the information of private-profile users.

Heatherly et al. [Heatherly et al., 2013] describe three sanitization techniques to prevent undisclosed
private information inference from a released social network dataset. First, they build classification
models to accurately predict private data from the available details (attributes) of a user. Then they
apply the sanitization techniques to reduce the accuracy of the models. In brief, the techniques are
as follows: (i) remove some details (e.g., attributes) to decrease the classification accuracy of sensitive
attributes; (ii) alter the link structure of the social graph by adding and removing links and (iii) provide
a generalization of details. For example, if a user inputs a favorite activity as “Boston Celtics”, the name
will be replaced by a more generalized term “Basketball”. Experimenting on a Facebook dataset, the
authors conclude that removal of attributes and friendship links together in the published data is the
best way to reduce classifier accuracy.

Dey et al. [Dey et al., 2012] attempt to infer the age of over one million Facebook users in New
York city. Exploiting the Facebook social graph, they design an iterative algorithm which estimates a
ACM Computing Surveys Template.



Privacy and Security in Online Social Networks: A Survey • 1:21

user’s age based on her friends’ ages (e.g., from inferred high school graduation year), friends of friends’
edges and so on. They find that for most users, including users who take maximal measures to prevent
privacy leakage by hiding their friend lists, it is possible to estimate ages with an error of only a few
years. The authors recommend to hide high school graduation year and friend lists to other users who
are not friends from users’ profiles as a solution.

7. MITIGATING SYBIL ATTACKS

The Sybil attack is a fundamental problem in distributed systems. The term Sybil was first introduced
by Douceur [Douceur, 2002], inspired from a 1973 book after the same name about the treatment
of a person Sybil Dorsett, who manifests sixteen personalities. In Sybil attacks, an attacker creates
multiple identities and influence the working of the system.

OSNs including Digg, YouTube, Facebook and BitTorrent have become vulnerable to Sybil attacks.
For example, Facebook anticipates that up to 83 million of its users may be illegitimate [BBC, 2012],
which is far more than what it anticipates (54 million) earlier [Cellan-Jones, 2012]. The high number
of Sybils in the OSN is due to the fact that users can create accounts on OSNs quickly and freely;
typically only an email address is enough for an account opening.

Sybil users affect the correct functioning of the system by contributing malicious contents. By con-
trolling a lot of identities, Sybil users increase their influence and power in the OSNs [Nazir et al.,
2010; Ratkiewicz et al., 2011]. For example, Sybil users can outvote real users on YouTube and can
promote clients’ content to the top position by giving more up votes [Riley, 2007]. In Facebook, users
control Sybil identities to gain higher status in social games [Nazir et al., 2010]. In Twitter, paid or-
ganizations conduct political campaigns disguising themselves as mass population [Ratkiewicz et al.,
2011]. Researchers find that Sybils forward malware and spam on social media [Gao et al., 2010; Grier
et al., 2010; Irani et al., 2010; Stringhini et al., 2010; Thomas et al., 2011]. Sybil identities are used
to acquire users’ private contact lists [Bilge et al., 2009; Fong, 2011a]. Moreover, Sybils manipulate
Google social search results [Jurek, 2011] and location crowdsourcing results [Marinando, 2010].

Malicious activities from Sybil users are posing serious threats to OSN users, who trust the service
and depend on it for online interactions. In future the threat will be aggravated as nowadays more
people are relying on OSNs for primary online communications [Lenhart et al., 2010; Murphy, 2010]
and ready-to-get news [Kwak et al., 2010]. Sybils cost OSN providers, too, in terms of monetary losses
and time. OSN providers spend significant resources and times to detect, verify, and shut down Sybil
identities. For example, Tuenti, the largest OSN in Spain, dedicates 14 full-time employees to manually
verify user reported Sybil identities [Cao et al., 2012].

However, mitigation of the Sybil attack is not easy. Some open systems employ CAPTCHA [von
Ahn et al., 2004], IP address filtering, and computational puzzles to mitigate Sybil attacks [Walsh
and Sirer, 2006; Peterson and Sirer, 2009; Piatek et al., 2008]. Unfortunately, none of the solutions
worked well in a real-world system. Crowdsource CAPTHA cracking businesses [Acohido, 2009] employ
cheap laborers from the undeveloped countries to break codes. The IP address filtering allows only one
account/identity per IP address, which causes serious problems for users behind NATs, and yet fails
against the attackers controlling a subnet [Yu et al., 2006]. And finally, computational puzzles require a
potential OSN registration to solve a computational problem with some controlled difficulty. Although
it requires human efforts, an attacker might be equipped with more resources and could solve the
problem. Moreover, all of these solutions cannot reduce the number of Sybil identities in the system,
at best they can limit the rate of Sybils’ intrusion in the system.

Two categories of solutions are available to defend Sybils: Sybil detection and Sybil resistance. Sybil
detection schemes [Yu et al., 2006; Cao et al., 2012; Wang et al., 2013; Yang et al., 2011] leverage the
social graph structure to identify whether a given user is Sybil or non-Sybil (Section 7.1). On the other
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hand, Sybil resistance schemes do not explicitly label users’ as Sybils or non-Sybils, rather they use
application-specific knowledge to mitigate the influence of the Sybils in the network [Post et al., 2011;
Post et al., 2011; Viswanath et al., 2012b] (Section 7.2). In a tutorial and survey Haifeng Yu [Yu, 2011]
compiles social graph-based Sybil detection techniques. In this paper, we report latest works on that
category, as well as Sybil resistance schemes.

7.1 Sybil detection

Sybil detection techniques model an online social network (OSN) as an undirected graph G = (V,E),
where a node v ∈ V is a user in the network and an edge e ∈ E between two nodes corresponds to a
social connection between the users. This connection could be a friendship relationship on Facebook or
a colleague relationship on LinkedIn, and is assumed to be trusted.

The social graph has n = |V | nodes and m = |E| edges. By definition, if all nodes correspond to
different persons, then the system should have n users. But, some persons have multiple identities.
These users are Sybil users and all the identities created by a Sybil user are called Sybil identities. An
edge between a Sybil user and a non-Sybil user may exist if a Sybil user is able to create a relationship
(e.g., friend, colleague) with a non-Sybil user. These types of edges are called attack edges (see Figure 6).

Attackers can launch Sybil attacks by creating many Sybil identities and creating attack edges
with non-Sybil users. Detection systems against Sybil attacks provide mechanisms to detect whether
a user (node) v ∈ V is Sybil or non-Sybil. Those mechanisms are based on the authority (e.g., the
OSN provider) knows the topology of the network (a centralized solution), or a node only knows its
social connections (a decentralized solution). Some common assumptions of Sybil detection schemes
are below.

Assumption 1: Attackers can create a large number of Sybil identities in OSNs and can create con-
nections among those Sybil identities, but they lack trust relationships because of their inability to
create an arbitrary number of social relationships to non-Sybil users. Intuitively, a social relationship
reflects trust and an out-of-band social interaction. So, it requires significant human efforts to estab-
lish such a relationship. The limited number of attack edges differentiates Sybil and non-Sybil regions
in a social graph as shown in Figure 6.

Assumption 2: The non-Sybil region of a social graph is fast-mixing. Mixing time determines how
fast a random walk’s probability of landing at each node reaches the stationary distribution [Boyd
et al., 2005; Flaxman, 2008]. A limited number of the attack edges causes sparse cut between Sybil
and non-Sybil regions. Non-Sybil regions do not show sparse cut as non-Sybils are well connected. As
such, there should be a difference in terms of mixing time of the non-Sybil regions compare to the
entire social graph.

Assumption 3: The defense mechanism knows at least one non-Sybil. This assumption is essential in
a sense that without this knowledge the Sybil and non-Sybil regions become identical to the system.

Most of the Sybil detection techniques are based on social graphs. Social graph-based approaches
leverage random walks [Yu et al., 2006; Danezis and Mittal., 2009; Cao et al., 2012; Wei et al., arch],
social community [Viswanath et al., 2010], and network centrality [Xu et al., 2010a] to detect Sybils
in the network. SybilGuard [Yu et al., 2006] is a decentralized Sybil detection scheme, which uses
Assumption 1, Assumption 2 and Assumption 3. A social graph with a small quotient cut has a large
mixing time, which implies that a random walk should be long in order to converge to the stationary
distribution. So, the presence of too many Sybil nodes in the network disrupts the fast mixing property,
in a sense that they increase social network mixing time by contributing small quotient cuts. Thus, a
verifier, which is itself a non-Sybil node, can break this symmetry by examining the anomaly of the
mixing time in the network. In order to detect Sybils, a non-Sybil node (say a verifier) can perform a
random route starting from itself and of a certain length w (a theoretically identifiable quantity, but
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Fig. 6: The system model for Sybil detection.

the paper experimentally shows that this is 2000 for a topology of one-million nodes). A suspect (a node
that is in question) is identified as non-Sybil if it’s random route intersects with the verifier’s random
route. As the underlying assumption is that the number of attack edges should be limited, the verifier’s
route should remain within the non-Sybil region with high probability, given the appropriate choice of
w.

SybilInfer’s [Danezis and Mittal., 2009] assumptions are also Assumption1, Assumption 2 and As-
sumption 3. Moreover, it assumes that a modified random walk over a social network, that yields a
uniform distribution over all nodes, is also fast mixing. The core of SybilInfer is a Bayesian inference
that detects approximate cuts between non-Sybil and Sybil regions in social networks. These identified
cuts are used to infer the labels (Sybil or non-Sybil) of the nodes, with an associated probability.

SybilRank [Cao et al., 2012] is also a random walk-based Sybil detection scheme, which uses all three
assumptions and ranks user according to their perceived likelihood of being Sybils. Using early termi-
nated power iteration, SybilRank computes landing probability of random short walks and from that
it ranks users, so that substantial portion of the Sybil users have low rank. The design of SybilRank
is influenced by an observation on early terminated random walks in social graphs—if a walk of this
kind starts from a non-Sybil node, then it has a high degree-normalized landing probability to land at
non-Sybil node than a Sybil node. SybilRank terms the probability of a random walk to land on a node
as the node’s trust, ranks nodes based on that and filters lower ranked nodes as potential Sybil users.
Rather than keeping computationally intensive a large number of random walk traces used in other
graph-based Sybil defense schemes [Yu et al., 2006; Yu et al., 2010], it uses power iteration [Langville
and Meyer, 2004] in calculating the landing probability of random walks.

Operations performed by SybilRank are shown in Figure 7.
Viswanath et al. [Viswanath et al., 2010] suggest to use community detection algorithms for Sybils’

detection. They show that although other graph property based Sybil defense schemes have differ-
ent working principles, the core of those works revolves around detecting local communities around a
trusted node. So, existing community detection algorithms could be used to defend the Sybils also. Al-
though, not explicitly mentioned, their approach is centralized, because community detection requires
a central authority to have the knowledge of the entire topology.

Xu et al. [Xu et al., 2010a] propose Sybil detection based on the betweenness rank of the edges. The
betweenness of an edge is defined as the number of shortest paths in the social graph passing the
edge [Brandes, 2001]. The scheme assumes that the number of attack edges is limited and Sybil and
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Propagating trust via 
O(log n) power iterationsStage I

Ranking nodes based on 
degree-normalized trustStage II

Annotating the ranked list 
with the portion of fakesStage III

fake users. A further novelty of our approach is that
we use power iteration [34], a standard technique to effi-
ciently calculate the landing probability of randomwalks
in large graphs. This is in contrast to prior work that used
a large number of randomwalk traces [23,40,56–58] ob-
tained at a high computational cost. For ease of exposi-
tion, we refer to the probability of the random walk to
land on a node as the node’s trust.
As shown in Figure 3, SybilRank unveils users that

are suspected to be Sybils after three stages. In Stage
I, through w = O(log n) power iterations (§4.2), trust
flows from known non-Sybil nodes (trust seeds) and
spreads over the entire network with a bias towards the
non-Sybil region. In Stage II, SybilRank ranks nodes
based on their degree-normalized trust. In the final stage,
SybilRank assigns portions of fake nodes in the intervals
of the ranked list. This enables OSNs to focus their man-
ual inspection efforts or to regulate the frequency with
which they send CAPTCHAs to suspected users.
We next describe each stage in detail.

Figure 3: SybilRank detects Sybils in three stages. Black users
are Sybils. Darker nodes obtain less trust after trust propagation.

4.2 Propagating trust
Power iteration involves successive matrix multiplica-
tions where each element of the matrix represents the
random walk transition probability from one node to
a neighbor node. Each iteration computes the land-
ing probability distribution over all nodes as the random
walk proceeds by one step.

4.2.1 Early-terminated random walks
We terminate the power iterations after O(log n) steps.
The number of iterations needed to reach the stationary
distribution is equal to the graph’s mixing time. In an
undirected graph, if a random walk’s transition proba-
bility to a neighbor node is uniformly distributed, the
landing probability on each node remains proportional
to its degree after reaching the stationary distribution.
SybilRank exploits the mixing time difference between
the non-Sybil region GH and the entire graph G to dis-

tinguish Sybils from non-Sybils. The intuition is that
if we seed all trust in the non-Sybil region, then trust
can flow into the Sybil region only via the limited num-
ber of attack edges. If we terminate the power iteration
early before it converges globally, non-Sybil users will
obtain higher trust than that in the stationary distribution,
whereas the reverse holds for Sybils.
Trust propagation via power iteration. We define
T (i)(v) as the trust value on node v after i iterations. Ini-
tially, the total trust, denoted as TG (TG > 0), is evenly
distributed onK (K > 0) trust seeds ṽ1, ṽ2, . . . , ṽK :

T (0)(v) =

{
TG

K if node v is one of theK trust seeds
0 else

Seeding trust on multiple nodes makes SybilRank ro-
bust to seed selection errors, as incorrectly designating a
node that is Sybil or close to Sybils as a seed causes only
a small fraction of the total trust to be initialized in the
Sybil region.
During each power iteration, a node first evenly dis-

tributes its trust to its neighbors. It then collects trust
distributed by its neighbors and updates its own trust ac-
cordingly. The process is shown below. Note that the
total amount of trust TG remains unchanged.

T (i)(v) =
∑

(u,v)∈E

T (i−1)(u)

deg(u)

Early termination. With sufficiently many power it-
erations, the trust vector converges to the stationary dis-
tribution: limi→∞ T (i)(v) = deg(v)

2m × TG [16]. How-
ever, SybilRank terminates the power iteration after w =
O(log n) steps, thus before convergence. This num-
ber of iterations is sufficient to reach an approximately
uniform distribution of degree-normalized trust over the
fast-mixing non-Sybil region, but limits the trust escap-
ing to the Sybil region.
Alternative use of power iteration. We note that
power iteration is also used by the trust inference
mechanisms PageRank, EigenTrust, and TrustRank [22,
30, 33, 45], where it is executed until convergence to
the stationary distribution of the complete graph [34].
At each step and with a constant probability, PageR-
ank’s random walks jump to random users, and Eigen-
Trust/TrustRank’s walks jump to trust seeds. Eigen-
Trust/TrustRank is personalized PageRank with a cus-
tomized reset distribution over a particular set of seeds.
SybilRank’s random walks do not jump to random

users, because this would allow Sybils to receive trust
in each iteration. Besides, SybilRank’s random walks do
not jump to the trust seeds, because this would assign
high trust to Sybils that are close to the trust seeds (§6.3).

5

OSN
OSN Users

Fig. 7: Three steps performed by SybilRank in detecting Sybils. Black users are Sybils ( [Cao et al., 2012]).

non-Sybil regions are separate clusters of nodes. So, intuitively betweenness scores of the attack edges
should be high as they connect the clusters. Their scheme exploits this social network property and
uses a Sybil Resisting Network Clustering (SRNC) algorithm to detect Sybils. The algorithm computes
the betweenness of each edge and identifies the edges with high betweenness as attack edges.

Social graph based approaches still have some challenges to overcome. First, as graph-based Sybil
detection schemes exploit trust relations, the success of the identification highly depends on the trust
related assumptions. If an assumption is not right in a network, social graph-based Sybil detection
techniques might work poorly in that network. For example, the assumption that Sybils’ have prob-
lems in creating social connections with legitimate users (non-Sybils) is not well established. Although
study [Motoyama et al., 2011] shows that most of a Sybil identity’s connections are also Sybil iden-
tities and Sybils’ have less relationships with non-Sybil users, several other studies [Boshmaf et al.,
2011; Irani et al., 2011; Bilge et al., 2009] show that users are not careful while accepting friendship
requests and Sybil identities can easily befriend with them. Moreover, Sybil users are using advanced
techniques to create more realistic Sybil identities, either by copying profile data from existing ac-
counts, or by assigning real users to customize them. Also, another assumption that a social network
is fast-mixing may not be right for all social networks. Study [Mohaisen et al., 2010] shows that many
of the social networks are not fast-mixing, especially where edges represent strong real-world trust
(e.g., DBLP, Epinions, etc.).

Second, the performance of random walk-based Sybil detection techniques depends on the various
relevant parameters of the random walks (e.g., the length of a random walk). These factors will work
for a fixed network size (as all the schemes have shown), but they have to be updated with the evolution
of the social networks.

7.2 Sybil Resistance

Sybil resistance schemes do not explicitly label users’ as Sybils and non-Sybils, rather they attempt to
mitigate the impact that a Sybil user can have on others. Sybil resistance schemes have been effectively
used in applications from diverse domains including content rating systems [Tran et al., 2009; Chiluka
et al., 2012], spam protection [Mislove et al., 2008], online auctions [Post et al., 2011], reputation
systems [DeFigueiredo and Barr, July], and collaborative mobile applications [Quercia and Hailes,
2010].
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Note two assumptions of Sybil detection schemes: 1) non-Sybil region is fast mixing, 2) Sybils can
not create an arbitrary number of social relationships with non-Sybils. Sybil resistance schemes also
assume that non-Sybils’ have a limited number of social connections, but they do not rely on the fast
mixing nature of the non-Sybil regions. However, Sybil resistance schemes take an additional applica-
tion related information such as users’ interactions/transactions/votes etc. Using the underlying social
network of the users and system information, Sybil resistance schemes determine whether an action
performed by a user should be allowed or denied.

Most of the Sybil resistance schemes [Mislove et al., 2008; Post et al., 2011; Viswanath et al., 2012b]
share a common approach in resisting Sybils—they use a credit network built on the top of the social
network of users [Viswanath et al., 2012a]. Originally proposed in the electronic commerce community,
Credit Networks [Dandekar et al., 2012; Ghosh et al., 2007] create mutual trust protocols in a situation
where there is pairwise trust between two users, and a centralized trusted party is unavailable. Nodes
in a credit network trust each other by providing credits up to a certain limit. Nodes use these credits
to pay for services (e.g., sending a message, purchase items, vote casting) that they receive from one
another. These schemes assign credits to the network links, and allow an action between two nodes if
there is a path between them that has enough credit to satisfy the operation. As such, these schemes
find a credit assignment strategy in the graph and apply the credit payment scheme to allow a limited
number of illegitimate operations in the system. A Sybil user has limited number of edges with non-
Sybils (hence, limited credits available), which restricts her to gain additional advantages by creating
multiple Sybil identities. This scenario is shown in figure 8, which is a core defense philosophy of some
resistance schemes. In the following, we provide a brief overview of the Sybil resistance schemes.

A X

X'

X''

X'''

5
2

3
9

10
6

2
2

Rest of the 
network

Fig. 8: Credit network based Sybil resistance [Viswanath et al., 2012a]. The network contains four Sybil identities as nodes X,
X′, X′′, X′′′ of a Sybil user. A directed edge (X,Y) represents how much credit is available to X from Y. If X wants to pay credits
from other three nodes, the credits must be deducted from X’s single legitimate link to A. So, a Sybil’s other identities do not
provide any additional credits in the rest of the network.

Ostra [Mislove et al., 2008] leverages existing trust relationships among users to thwart unwanted
communication (e.g., spam). It bounds the total number of unwanted communications a Sybil user
can produce by assigning credit values to the trust links. If a user sends a message to another user,
Ostra finds a path with enough credit from the sender to the receiver. If a path is available, credit is
assigned along all the links in the path, which is refunded if the receiver considers the messages as not
unwanted. However, if no such path exists, Ostra blocks the communication, but the credit is paid. In
this way, Ostra ensures that a user with multiple identities cannot send a large number of unwanted
communications, unless she also has additional trust relationships.
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Bazaar [Post et al., 2011] is targeted to strengthen the users’ reputation in online marketplaces
like eBay. The opportunity to create accounts freely leads Sybil users to create multiple accounts and
causes the waste of time and significant monetary losses for defrauded users. To mitigate Sybil users,
Bazaar creates transaction network by linking users who have made a successful transaction. The
weight of a link is the amount that has been successfully transferred due to the transaction. Prior to
a transaction, using a max flow based technique, Bazaar computes the reputation of the users doing
the transaction and compares with the new transaction value. If it finds available flow, it removes the
value of the transaction between the users as credits, and eventually adds back if the transaction is a
fraud. However, a new transaction is denied if essential flow is not found.

Canal [Viswanath et al., 2012b] complements Ostra and Bazaar credit networks-based Sybil resis-
tance schemes by applying landmark routing-based techniques in calculating credit payments over a
large network. One of the major problems of Ostra and Bazaar is that they require computing max-
flow over a graph. However, the huge size of present day network (Facebook has over billion of nodes
in social graph) leads to significant computation complexity to compute the max-flow between two
nodes in the network. As such, this poses a bottleneck to those techniques to practically deploy in a
real-world social network. Canal efficiently computes an approximate max-flow (compromising accu-
racy with speed-up) path using existing landmark routing-based algorithm [Tsuchiya, 1988; Gubichev
et al., 2010]. The main components of Canal are universe creator processes and path stitcher processes.
Universe creator processes continuously select new landmarks and path stitcher processes continu-
ously process incoming credit payment requests. Using real-world network datasets the authors show
that Canal can perform payment calculations efficiently (within a few milliseconds), even if the net-
work contains hundreds of millions of links.

MobID [Quercia and Hailes, 2010] makes co-located mobile devices resilient to Sybil attackers.
Portable devices in close proximity of each other could collaborate various services (e.g., run local-
ization algorithms to get a precise street map), which is severely disrupted by Sybil users (Sybils could
inject false information). MobID uses mobile networks to Sybil resilience. More specifically, a device
manages two small networks as it meets with other devices. A network of friends contains non-Sybil
devices and a network of foes contains suspicious devices. Using two networks, MobID determines
whether an unknown device is attempting a Sybil attack. MobID ensures that a non-Sybil device ac-
cepts, and accepted by most other non-Sybil devices with high probability. So, a non-Sybil device could
successfully trade services with other non-Sybil devices.

8. MITIGATING ATTACKS FROM LARGE-SCALE CRAWLERS

OSNs enhance social browsing experience by allowing users to view public profiles of others. This
way a user meets others, gets a chance to know strangers and eventually befriends some of them.
Unfortunately, attackers are there in the vast landscape of OSNs, who exploit this functionality. Users’
social data are always invaluable to marketers. Professional data aggregators build databases using
public views of profiles and social links and sale the databases to insurance companies, background-
check agencies and credit-ratings agencies [Bonneau et al., 2009]. For example, crawling 100 million
public profiles from Facebook created news recently [Bradley, 2012]. Sometimes crawling is a violation
of terms of service. Facebook states that someone should not collect “...users’ content or information,
or otherwise access Facebook, using automated means (such as harvesting bots, robots, spiders, or
scrapers) without our prior permission” [Facebook, 2015].

One solution of the problem could be the removal of the public profile view functionality. But removal
of the public profile view functionality is against the business model of OSNs. Services like search
and targeted advertisements bring new users and ultimately revenues to OSNs, but openly accessible
contents are necessary for their operation [Wilson et al., 2010]. Moreover, removal of the public view
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functionality will undermine user experience, as it makes a connection, communication and sharing
easy with unknown people in the network.

OSN operators such as Facebook and Twitter attempt to defend large-scale crawling by limiting
the number of user profiles a user can see from an IP address in a time window [Stein et al., 2011].
However, tracking users with low level network identifiers (e.g., IP address, TCP port numbers or SSL
session IDs) is fundamentally flawed as a solution of this problem [Wilson et al., 2010]. Aggressive at-
tackers may gather a large vector of those identifiers by creating a large number of fake user accounts,
gaining access to compromised accounts, virtualizing in a cloud, employing botnets, and forwarding
requests to proxies. Until now, researchers have leveraged encryption based technique [Wilson et al.,
2010] and crawler’s observational behavior [Mondal et al., 2012] to combat the problem.

ONS’s anti-crawling techniques suffer from the fact that web clients can access a particular page
using a common URL accessible to all clients [Wilson et al., 2010]. This can be exploited by a distributed
crawler e.g., a crawling thread can download and parse a page for links using a session key and can
deliver those links to another crawling thread to download and parse using different session keys. So,
if some crawlers get banned from the OSNs for malicious activities, the links they have parsed are
still valid and a fresh start is possible from those links. SpikeStrip [Wilson et al., 2010] overcomes the
problem by creating unique, per-session “views” of the protected website that forcibly tie each client
to their session keys. SpikeStrip is a web server add-on that leverages link encryption technique. It
allows OSN administrators to moderate data access, and it defends against large-scale crawling by
securely identifying and rate limiting individual sessions.

When a crawler visits a page, it receives a new session key and a copy of the page whose links are all
encrypted. SpikeStrip appends each user’s session key to those links and then encrypts the result using
a server-side, secret symmetric key. It also appends a salt to the link after encryption to make each link
unique. As time passes, the crawler progressively covers more pages and collects links. However, at a
point, the crawler requires to change the session key due to the expiration of the session or due to a ban
from the OSN. As SpikeStrip couples all URLs to the browser’s session key, this switching of sessions
invalidates all the links collected for future traversals. Thus, a fresh start to reconstruct the collection
should be started from the beginning. The authors implemented mod spikestrip, a SpikeStrip imple-
mentation for Apache 2.x and showed that it imposes only 7% performance penalty on Apache.

Genie [Mondal et al., 2012] exploits browsing patterns of honest/real users and crawlers and thwarts
large-scale crawls in OSNs using Credit Networks [Dandekar et al., 2012; Ghosh et al., 2007]. The
system design is based on three observations from real-world datasets: (i) there is a balance between
the number of profiles a honest user views and views requested by other users to her profile, but
crawlers view many more profiles than the number of times their profiles are viewed; (ii) a honest user
views profiles of socially close users.(iii) a honest user repeatedly views a small set of profiles in the
network, but unless re-crawling, the crawlers avoid repeating viewing of other users’ profiles. Genie
leverages these observations and enforces a viewer to make a “credit payment” in the credit network if
a user wants to view a profile. It allows a user (also might be a crawler) to view a profile if a max-flow
between them has at least a threshold value. The required credit payment to view a profile depends on
the shortest path length from viewer to viewee; a user has to pay more to view the profile of a distant
user in the social graph. As a legitimate user usually views one or two hop distant profiles, and also
other users also view her profile, her liquidity of credits remains almost the same. On the other hand,
a crawler views a lot of distant profiles and gets fewer views. Eventually it lacks credit liquidity to
view the profiles of others. As such, the credit network poses a strict rate limit on profile views of the
crawlers.

Genie might see a large number of honest users’ activities (profile viewing) flagged due to the exis-
tence of outliers in a social network. This might limit the usability of social networks, because without
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viewing a profile an outlier will not be able to befriend others. Genie also might require a fast com-
putation of shortest paths, as for each profile viewing request, it computes all the shortest paths from
viewer to viewee. Intuitively, this operation is too costly in a modern social network (more than one
billion users), even considering the state of the art shortest path algorithms.

Both SpikeStrip and Genie limit crawlers’ ability to quickly aggregate a significant portion of OSNs
user data. Unfortunately, equipped with a large number of user profiles (fake or compromised) and
employing dedicated crawlers for a long time, attackers could still collect a huge amount of users’
social data.

9. MITIGATING SOCIAL SPAM

Spam is a news in web-based systems (e.g., [Xie et al., 2006; Ntoulas et al., 2006; Mehta et al., 2008]).
However, OSNs have added a new flavor to it by acting as effective tools for spamming activities and
propagation. Social spam (e.g., [Zinman and Donath, 2007], [Lin et al., 2007]) is unwanted content that
is directed specifically at users of the OSN. The worst consequences of social spam include phishing
attacks [Jagatic et al., 2007] and malware propagation [Boyd and Heer, 2006].

Spamming activity is pervasive in OSNs and spammers are successful. For example, about 0.13% of
spam tweets in Twitter generate a page visit [Grier et al., 2010], which is only 0.003%-0.006% for spam
email [Kanich et al., 2008]. This high click-through is due to the fact that OSNs expose intrinsic trust
relationship among online friends. As such, users read and click messages or links that are shared
from their friends. Study [Bilge et al., 2009] shows that 45% of users on OSNs click on links posted by
their friends’ accounts.

Defending spam in OSNs can improve user experience. OSN service providers will also be bene-
fited as this will lessen the system workload in terms of dealing with unwanted communications and
contents. Defense mechanisms against spam in OSNs can be classified into two categories: 1) spam
content and profile detection, and 2) spam campaign detection. Spam content and profile-level detec-
tion involve checking individual accounts or contents for an evidence of spam contents (Section 9.1).
On the other hand, a spam “campaign” is a collection of malicious content having a common goal, for
example, selling backdoor products [Gao et al., 2010] (Section 9.2).

9.1 Spam Content and Profile Detection

Some early spam profile detections [Spitzner, 2002; Webb et al., 2008; Lee et al., 2010] use social
honeypots. A honeypot is a trap deployed to capture examples of nefarious activities in networked
systems [Spitzner, 2002]. For years, researchers have used honeypots to characterize malicious hacker
activities [Spitzner, 2003], to obtain footprints of email address crawlers [Prince et al., 2005], and to
create intrusion detection signatures [Kreibich and Crowcroft, 2004]. Social honeypots are used to
monitor spammers’ behaviors and store their information from the OSNs [Lee et al., 2010].

Webb et al. [Webb et al., 2008] take the first step to characterize spam in OSNs using social honey-
pots. They created 51 honeypot MySpace profiles in different geographic locations for harvesting de-
ceptive spam profiles on MySpace. An automated program (commonly known as bots) works on behalf
of a honeypot profile and collects all of the traffic it receives (via friend requests). After four months
of the deployment and operation, the bots collected 1,570 friend requests (and corresponding spam
profiles). Through statistical analysis the authors show the followings: (i) spam profiles follow distinct
temporal patterns in spamming activity; (ii) 57.2% of the “About me” contents of the spam profiles are
duplicated; (iii) spam profiles redirect users to predefined web pages.

In [Lee et al., 2010], the authors also collected spam profiles using social honeypots. But this work is
different from the previous one in that it not only collects and characterizes spam profiles, it extracts
features from the gathered spam profiles and builds classifiers to detect potential spam profiles. The
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authors consider four categories of features such as demographics, content, activity and connections
from the spam profiles collected from MySpace and Twitter. The paper shows the performance results
of ten classifiers using the features. For MySpace dataset, each classifier’s accuracy is greater than
98.4%, for Twitter dataset, each of the top 10 classifiers achieves an accuracy greater than 82.7%.

One of the limitations of these honeypot-based solutions [Webb et al., 2008; Lee et al., 2010] is
that they consider all profiles that sent friend requests to honeypots are spam profiles. But in social
networks, it is common to receive friend requests from unknown person, who might be legitimate users
in the network. The solutions would be more rigorous if legitimate users were not considered. Also, the
methods are effective when spammers become friends with the honeypots. Otherwise the honeypots
will be able to target only a small subset of the spammers. Moreover, in social networks, friendship is
not always required for spamming. For example, in twitter, a spammer can use mention (e.g., @user)
tag to send spam tweets to a user.

Stringhini et al.’s solution [Stringhini et al., 2010] overcome some limitations of the previous two
honeypot-based papers. The authors deployed honeypots accounts on Facebook, Twitter and MySpace;
300 on each platform for about one year and logged the traffic (e.g., friend requests, messages, and
invitations). Combining all, the honeypots received 4,250 friend requests and 85,569 messages from
the three platforms. They build classifiers from the following six features: (i) FF ratio: the ratio of the
number of friend requests sent by a user and the number of friends she has; (ii) URL ratio: the ratio
of the number of messages containing URLs and total messages; (iii) Message Similarity: similarity
among the messages sent by a user; (iv) Friend Choice: the ratio of the total number of names among
the profiles’ friends, and the number of distinct first names; (v) Messages Sent: the number of messages
sent by a profile as a feature; and (vi) Friend Number: the number of friends a profile has.

The authors manually inspected and labeled profiles as spam and used Random Forest algorithm
for classification. A 10- fold cross validation on the training data set of Facebook yielded an estimated
false positive ratio of 2% and a false negative ratio of 1%. Twitter dataset yielded an estimated false
positive ratio of 2.5% and a false negative ratio of 3%. They detected 15,857 spam profiles on Twitter
using the classifier and the Twitter spam team eventually suspended those accounts.

Benevenuto et al. [Benevenuto et al., 2009b; Benevenuto et al., 2009a] detect video polluters such as
spammers and promoters in YouTube online video social networks using machine learning techniques.
The authors considered three attribute sets: user attributes, video attributes, and social network (SN)
attributes in classification. Four volunteers manually analyzed the videos and built a test set of the
dataset labeling users as spammers, promoters and legitimate users. They proposed a flat classification
approach, which was able to detect correctly 96% of the promoters, 57% of spammers, and wrongly
classifying only 5% of the legitimate users. Interestingly, social network attributes performed the worst
in classification—only one feature (UserRank) was within the top 30 features.

9.2 Spam Campaigns Detection

Chu et al. [Chu et al., 2012] detect social spam campaigns on Twitter using tweet URLs. They collected
a dataset of 50 million tweets from 22 million users. They considered tweets having the same URL as
a campaign and clustered the dataset into a number of campaigns. The ground truth was produced
through manual inspection using Twitter’s spam rules and automated URL checking in five services.
They obtained a variety of features ranging from individual tweet/account levels to a collective cam-
paign level and built a classification model to detect spam campaigns. Using several classification
algorithms they were able to detect spam campaigns with more than 80% success rate. The focus of
this solution is spam tweets with URLs. However, Twitter spammers can post tweets without any
URL. Even obfuscated URLs (e.g., somethingDOTcom) will make the detection inefficient.
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Gao et al. [Gao et al., 2010] conduct a rigorous and extensive study on detecting spam campaigns
in Facebook wall posts. They crawled 187 million Facebook wall posts from about 3.5 million users.
Inspired by a study [Kreibich et al., 2009] which shows that spamming bot-nets create email spam
messages using templates, they consider wall posts having similar texts as a spam campaign. In par-
ticular, they model the wall posts as a graph: a post is a node and two nodes are connected by an
edge if they have the same destination URL or their texts are very similar. As such, posts from the
same spam campaign will make connected subgraphs or clusters. To detect which clusters are from
spammers, they use “distribute” coverage and “bursty” natures of spam campaigns. The “distributed”
property is characterized based on the number of user accounts posting in the cluster under the intu-
ition that spammers will use a significant number of registered accounts for a campaign. The intuition
behind the “bursty” property is that most spam campaigns are the results of coordinated actions of
many accounts within short periods of time [Xie et al., 2008]. Using threshold filters on these two
properties they found 297 clusters of wall posts and classified them as potentially malicious spam
campaigns.

10. MITIGATING DISTRIBUTED DENIAL-OF-SERVICE ATTACKS (DDOS) ATTACKS

A denial-of-service (DOS) attack is characterized by an explicit attempt to monopolize a computer
resource, so that an intended user cannot use the resource [Mirkovic et al., 2004]. A Distributed Denial-
of-Service attack (DDoS) deploys multiple attacking entities to simultaneously launch the attack (we
refer readers [Mirkovic and Reiher, 2004] for a taxonomy of web-based DDoS attacks and defenses).
DDoS attacks in social networks are also common. For example, on August 6, 2009, Twitter, Facebook,
LiveJournal, Google’s Blogger, and YouTube were attacked by a DDoS attack [McCarthy, 2009]. Twitter
experienced interrupted service for several hours, users were complaining of not being able to send
their Tweets. Facebook users were experiencing longer periods of time (delays) in loading Facebook
pages.

Several papers evaluated how a social network could be leveraged to launch a bot-net based DDoS on
any target of the internet, including the social network itself. Athanasopoulos et al. [Athanasopoulos
et al., 2008] introduce a bot-net “FaceBot” that uses a social network to carry out a DDoS attack against
any host on the internet (including the social network itself). They created a real-world Facebook
application, “Photo of the Day”, that presents a different photo from National Geographic to Facebook
users every day. Every time a user clicks on the application, an image from the National Geographic
appears. However, they placed special codes in the application’s source code. Every time a user views
the photo, this code sends a HTTP request towards a victim host, which causes the victim to serve
a request of 600 KBytes. They used a web server as a victim and observed that the server recorded
6 Mbit per second of traffic. They introduce defense mechanisms which include providing application
developers with a strict API that is capable of giving access to resources only related to the system.

Ur and Ganapathy [Ur and Ganapathy, 2009] showed how malicious social network users can lever-
age their connections with hubs to launch DDoS attacks. They created MySpace profiles which be-
friended hubs in the network. Those profiles posted “hotlinks” to large media files hosted by a victim
web server to Hubs’ pages. As hubs receive a large number of hits, a significant number of the visitors
would click those hotlinks. As a consequence, it staged a scenario where a flash crowd was sending
requests to the victim web server—a denial of service was the result. They proposed several mitigating
techniques. One approach is to restrict some privileges of a user when he becomes a hub (e.g., friends
of a hub might no longer be able to post comments containing HTML tags to the hub’s page). But this
approach unfortunately restricts the user’s freedom on the OSN. So, they propose a focused automated
monitoring on a hub or creating a hierarchy of a hub’s friend, so that only close friends will be able to
post on a Hub’s profile (the intuition is that close friends will not exploit the hub). Furthermore, they
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recommend a reputation based system for social networks that scores user behavior. Only users with
a higher reputation scores are allowed to post on the Hub’s profile.

However, bot-net based DDoS attacks are difficult to mitigate, because of the difficulty to distinguish
legitimate communications from those that are part of the attack. As social networks are flourishing,
bot-net based DDoS attacks are becoming stronger, because more legitimate users are unwillingly
becoming part of an attack.

11. MITIGATING MALWARE ATTACKS

Malicious software (malware) is a program that is specifically designed to gain access, disrupt com-
puter operation, gather sensitive information or damage a computer without the knowledge of the
owner. Participatory internet technologies (e.g., AJAX) and applications (e.g., RSS) have expedited mal-
ware attacks, because they enable the participation of the users. OSNs (all of them use participatory
technologies and applications) are providing themselves as infrastructures for propagating malware.
The “Koobface” is probably the best example of malware propagation using social networks [Facebook,
2012]. It spread rapidly through Facebook social networks. The malware used Facebook credentials on
a compromised computer and sent messages to the owner’s Facebook friends. The messages redirected
the owner’s friends to a third-party website and they were asked to download an update of the Adobe
Flash player. If they would download and install the file, Koobface would install and infect their system
using the same process.

In a survey, Gao et al. [Gao et al., 2011] discuss a number of methods in which malware propagates
through social networks. For example, using cross-site request forgery (CSRF or XSRF) malware in-
vites legitimate users to click on a link. If a user clicks, it opens an exploited page containing malicious
scripts. Eventually, the malware submits a message with a URL for a wall post on the user’s profile
and clicks on the “Share” button so that all of her friends can see this message as well as the link.
URL obfuscations are also widely used for malware attacks. An attacker uses commonly known URL
shorteners to obfuscate the true location of a link and lures other users to click it.

Unfortunately, malware propagation on social networks exhibits unique propagation vectors. As
such, existing Internet worm detection techniques (e.g., [Ellis et al., 2004]) cannot be applied to them.
In the context of OSNs, Xu et al. [Xu et al., 2010b] proposed an OSN malware detection system by
leveraging both the propagation characteristics of the malware and the topological properties of OSNs.
They introduced a “maximum coverage algorithm” that picks a subset of legitimate OSN users to whom
the defense system attaches “decoy friends” to monitor the entire social graph. When the decoy friends
receive suspicious malware propagation evidence, the detection system performs local and network
correlations to distinguish actual malware evidence from normal user communication. However, the
challenge for this honeypot-based approach is to determine how many social honeypots (in this context
decoy friends) large-scale OSNs (e.g., billions of Facebook users) should deploy.

12. SUMMARY AND DISCUSSION

Millions of Internet users are using OSNs for communication and collaboration. Many companies rely
on OSNs for promoting their products and influencing the market. It becomes harder and harder to
imagine life without the use of OSN tools, whether for creating an image of oneself or organization,
for selectively following news as filtered by the group of friends, or for keeping in touch. However, the
growing reliance on OSNs is impaired by an increasingly more sophisticated range of attacks that
undermine the very usefulness of the OSNs.

This paper reviews online social networks’ privacy and security issues. We have categorized various
attacks on OSNs based on social network stakeholders and the forms of attack targeted at them.
Specifically, we have categorized those attacks as attacks on users and attacks on the OSN. We have
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discussed how the attacks are launched, what are the available defense techniques and what are the
challenges involved in such defenses.

In online social networks, privacy and security issues are not separable. In some contexts privacy
and security goals may be the same, but there are other contexts where they may be orthogonal,
and there are also contexts where they are in conflict. For example, in an OSN, a user wants privacy
when she is communicating with other users though the messaging service. She will expect that non-
recipients of the message will not be able to read it. OSN services will ensure this by providing a secure
communication channel. In this context, the goals of security and privacy are the same. Consider
another context where there is a security goal of authenticating a user’s account. OSNs usually do this
by sending an activation link as a message to the user’s e-mail address. This is not a privacy issue—
OSNs are just securely authenticating that malicious users are not using the legitimate user’s e-mail
to register. In this context, security and privacy goals are orthogonal. However, anonymous views in
OSNs (e.g., LinkedIn) present a context where security and privacy goals are in conflict. Users may
want to have privacy (e.g., anonymization) while viewing other users’ profiles. However, the viewee
might want to secure her profile from anonymous viewing.

The attacks discussed in this paper are often closely intertwined. User data collected though crawl-
ing attacks or via social applications may help an attacker to create background knowledge for launch-
ing de-anonymization attacks. An attacker might possess an unprecedented number of user accounts
using malware and Sybil attacks and could use those accounts for social spam propagation and dis-
tributed denial-of-service attacks. Social spam can also be used to propagate malware. Some attacks
might be a pre-requisite for another attacks. For example, a de-anonymization attack can reveal the
identity of an individual. That identity could be used to launch an inference attack and to learn un-
specified attributes of an individual.

There are also several functionality-oriented attacks that we did not discuss in this paper. Functionality-
oriented attacks attempt to exploit specific functionalities of a social network. For example, Location-
based Services (LSP) such as Foursquare, Loopt and Facebook Places utilize geo-location information
to publish users’ checked-in places. In some LSP, users can accumulate “points” for “checking in” at
certain venues or locations and can get real-world discounts or freebies in exchange for these points.
There is a body of research that analyzes the technical feasibility of anonymous usage of location-based
services so that users are not impacted by location sharing [Gruteser and Grunwald, 2003; Xiao and
Tao, 2006]. Moreover, real-world rewards and discounts give incentives for users in LSP to cheat on
their locations, and hence research [Zhu and Cao, 2011; He et al., 2011] has focused on how to prevent
users from location cheating.

OSNs and social applications are here to stay, and while they mature, new security and privacy at-
tacks will take shape. Technical advances in this area can only be of limited effect if not supported
by legislative measures for protecting the user from other users and from the service providers [Nis-
senbaum, 2011].
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