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a b s t r a c t 

Nowadays, online social networks represent privileged playgrounds that enable researchers to study, char- 

acterize and understand complex human behaviors. Social Network Analysis, commonly known as SNA, 

is the multidisciplinary field of research under which researchers of different backgrounds perform their 

studies: one of the hottest topics in such diversified context is indeed Community Discovery. Clustering 

individuals, whose relations are described by a networked structure, into homogeneous communities is a 

complex task required by several analytical processes. Moreover, due to the user-centric and dynamic na- 

ture of online social services, during the last decades, particular emphasis was dedicated to the definition 

of node-centric, overlapping and evolutive Community Discovery methodologies. 

In this paper we provide a comprehensive and concise review of the main results, both algorithmic 

and analytical, we obtained in this field. Moreover, to better underline the rationale behind our research 

activity on Community Discovery, in this work we provide a synthetic review of the relevant literature, 

discussing not only methodological results but also analytical ones. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

In the era of big data, Online Social Networks, also known as

OSN, have allowed the collection and analysis of huge – and fine-

grained – information regarding human sociality and behaviors.

Such semantic rich analytical contexts opened the way to both

methodological and social studies: during the last decades, novel

algorithms were devised to cope with the continuously increas-

ing quantity of data and, thanks to them, unprecedented analytical

studies were performed to validate/disprove sociological theories. 

Among the Social Network Analysis tasks one has received

growing attention: Community Discovery (henceforth, CD). The

problem of extracting communities of users from a social graph,

or of dividing its vertexes into clusters, has been approached from

several perspectives. Algorithms for community extraction have

appeared in practically all scientific fields, not only in SNA: physics,

biology, and computer science are only a few contexts in which,

even with a different perspective, the CD problem has been deeply

investigated. 
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Indeed, the multiplicity and heterogeneity of the existing CD

pproaches is probably due to the absence of a formal and shared

efinition of what a “community” really is. Such problem ill-

osedness reflects the fact that, even though each algorithm ex-

racts coherent network substructures, it does so by maximizing

 given, even ad-hoc, topological objective function. Unfortunately,

very quality function potentially describes a different optimal net-

ork partition. Thus several families of Community Discovery ap-

roaches emerged, each one preserving different clustering pecu-

iarities. 

From a Social Network Analysis perspective, communities are

he most basilar bricks that make possible the analysis of complex

henomena: indeed, being able to identify tightly connected sets

f nodes allow an in-depth analysis of the human sociality. In this

cenario, due to the increasing availability of OSNs data, we have

itnessed the appearance of a vast number of algorithms tailored

o capture specific characteristics expressed by human interactions.

Observing the social structure of several OSNs, it was noticed

hat the neighborhood of a single node is often composed of a

ast number of peers belonging to different semantic contexts (i.e.,

chool, work, sports related...). However, not all the node’s acquain-

ances can be considered as “real” ones: conversely from the real

orld experience, in online services the action of establishing new

ies has no cost. Thus, most of the links observed in an OSN do not

epresent relations existing in real life. For such reason, CD solu-

https://doi.org/10.1016/j.osnem.2017.10.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/osnem
mailto:giulio.rossetti@isti.cnr.it
mailto:giulio.rossetti@gmail.com
mailto:dino.pedrechi@di.unipi.it
mailto:fosca.giannotti@isti.cnr.it
https://doi.org/10.1016/j.osnem.2017.10.003


G. Rossetti, D. Pedreschi and F. Giannotti / Online Social Networks and Media 3–4 (2017) 32–48 33 

t  

c  

g  

p  

i

 

C  

t  

t  

f  

s  

n  

t  

a

 

h  

w  

u  

i  

t  

l  

t  

a  

h  

t  

w  

m  

c

 

b  

v  

t  

c  

c  

t  

t  

r  

m  

e  

u  

n  

t  

a

2

 

p  

t  

c  

u  

t  

I  

a  

p  

c  

d  

n  

n  

a

 

n  

g

D  

a  

w  

c

 

w  

w  

w  

D

2

 

p  

e  

s  

a  

a  

s  

t  

t

 

D  

s  

i  

s  

b  

s  

d  

a

2

 

e

 

e  

c  

n

N  

i  

i  

o

 

m  

l  

g  

p  

a  

a  

m  

m  

a  

n  

o

 

r  

l  

a  

N  

c  

g  

t  

a  

f  

t  

a

ions in OSN contexts need, at least, to take care of two analytical

onstraints: (i) the identified social groups need to be as homo-

eneous as possible w.r.t. some semantic information, and (ii) the

roduced clustering must avoid the overestimation of user’s social-

ty. 

Another pressing issue related to OSN data analysis, affecting

D approaches, lies in the temporal granularity of the observa-

ions. As time goes by people tend to modify their social rela-

ionships: travels, job changes, rising of new interests are only a

ew examples of the causes that lead to a perturbation (and in

ome cases even to the ending) of interactions and social con-

ections. Such topological evolution is most evident in the social

issue described by communities, substructures that can born, die,

nd change through time. 

In such complex scenario, a peculiar category of CD methods

as been able to increasingly gather the attention of researchers as

ell as data analysts: node-centric (also called local-first , or bottom-

p ) approaches. CD algorithms that fall into such family pose each

ndividual at the center of the community identification: to do so,

hey usually decompose the observed networks by iteratively ana-

yzing each node neighborhoods, thus proceeding agnostically w.r.t.

he complete graph topology. Node-centric approaches are often

dopted to speed up the community extraction as well as to ensure

omophilic behaviors among the nodes of the identified mesoscale

opologies. Moreover, when dealing with temporally evolving net-

orks, the adoption of local approaches enable to design incre-

ental decomposition strategies that can operate by exploiting lo-

al topology perturbations. 

In this work we organize and discuss some of our contri-

ution to Community Discovery, placing them within the rele-

ant literature of the field. To do so, in Section 2 we introduce

he Community Discovery problem and fix some preliminary con-

epts that will allow the reader to understand the need for node-

entric, overlapping, approaches in the analysis of social data bet-

er. Section 3 focuses on node-centric algorithms designed to par-

ition and analyze static networks: moreover, in such section, we

eview some example of data-driven studies built upon them. Sym-

etrically, Section 4 focuses on local Dynamic Community Discov-

ry approaches, providing a classification and exemplifying their

se-cases. In Section 5 are reviewed different strategies to evaluate

etwork partitions, synthetic benchmarks, and dynamic communi-

ies related issues. Finally, Section 6 concludes the paper, providing

 discussion and overview of future research directions. 

. Community Discovery 

Community Discovery is a very relevant problem in the com-

lex network analysis field [15,26] . One of the main reason behind

he attention it has received in the last decades lies in its intrinsic

omplexity, primarily due to its ill-posedness. Indeed, a precise and

nique definition of what a community is cannot be proposed for

he problem itself can be defined from multiple points of views.

n the absence of a general topological ground truth partition of

 given graph each algorithmic approach designed to solve the CD

roblem relates its results to a specific quality function. Such pe-

uliarity has lead to the definition of several “meta” community

efinitions: for instance, classic works intuitively describe commu-

ities as sets of nodes closer among them than with the rest of the

etwork, while others, looking at the same problem from another

ngle, only define such topologies as dense network subgraphs. 

To maintain a more general perspective, we will adopt a defi-

ition proposed in [15] so to create an underlying concept able to

eneralize to all the variants found in the literature: 

efinition 1 (Community) . A community in a complex network is

 set of entities that share some closely correlated sets of actions
ith the other entities of the community. We consider a direct

onnection as a particular and very important, kind of action. 

Moving from such general definition, in the following sections,

e will describe a specific class of approaches that were designed

ith the aim of extract meaningful partitions from social net-

orks: our analysis will thus focus on node-centric Community

iscovery for both static and dynamic social networks. 

.1. A social networks perspective 

Social networks, both online and offline, describe peculiar com-

lex systems where the nodes, or agents , are individuals and the

dges connecting them model some kind of social relation (kin-

hip, co-working, direct interaction...) or shared attribute (nation-

lity, age...). The particular semantics attached to nodes and edges

re often used to guide the interpretation of analytical results: for

uch reason, the tools used to study social networks contexts need

o be carefully chosen so to preserve, as much as possible, non-

opological characteristics. 

In particular, when applied to social networks, Community

iscovery approaches usually aim to bound social contexts (i.e.,

chools, organizations...) as well as homogeneous actor character-

stics (i.e., age, education level, income...). Such final goals make

ome classes of approaches more suitable than others. In order to

etter highlight the characteristics we would expect from the re-

ult of a social network decomposition two Community Discovery

ichotomies needs to be tackled: top-down vs. bottom-up extraction

nd crisp vs. overlapping partitions. 

.1.1. Bottom-up vs. top-down 

Usually Community Discovery algorithms are designed to follow

ither a divisive or an agglomerative schema. 

Top-down approaches, as [30,50,54,60] , follow the former strat-

gy: starting from the whole graph they recursively break down

ommunities by disconnecting its components removing either

odes or edges. An archetypal example is provided by the Grivan–

ewman [50] algorithm. Such approach, during each iteration,

dentifies the edge having highest edge betweenness and removes

t: its execution generates a dendrogram describing the hierarchy

f communities present in the analyzed graph. 

Bottom-up methods, as [7,16,17,59] , conversely, build the com-

unity hierarchy in an agglomerative fashion starting from the

eafs (i.e., the individual nodes), not from the root (i.e., the whole

raph). A well-known example of bottom-up approach is indeed

rovided by the Louvain [7] algorithm. Louvain aims to optimize

 specific quality function, modularity [49,50] . It works following

n iterative two-step procedures. First, each node joins one com-

unity among the ones of its neighbors, choosing it so to maxi-

ize the modularity increase. Secondly, the identified communities

re collapsed in meta-nodes and a novel graph – which identifies a

ew level in the hierarchy – is built connecting them. At the end

f the second step, a new iteration begins. 

As we can easily observe, bottom-up and top-down algorithms

epresent opposite approaches to the Community Discovery prob-

em. In SNA, often, the center of the investigation is the individual:

part analyzing the network as a whole, the final goal of Social

etwork Analysis is to understand the behavior of the actors that

ompose it. From such viewpoint, bottom-up partitioning strate-

ies allow to maintain a favorable analytical position: they keep

he computation as near as possible to the objects of the analysis

nd allow the researcher to decide when, and how, to stop per-

orming aggregations. Moreover such strategies, due to their na-

ure, often enable for parallelization schemas thus making easier

nd less costly the analysis of big data sources. 
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1 Code available at https://goo.gl/J1YVCM . 
2.1.2. Crisp vs. overlapping 

The second dichotomic choice that needs to be made when

choosing a Community Discovery approach is related to the ex-

pected separation among the identified clusters: indeed, some ap-

proaches are designed to produce crisp , neat, node partitions while

others identify overlapping ones allowing nodes to belong to sev-

eral communities at once. Crisp partitions are usually obtained,

for instance, by methods that optimize modularity [49,50] , as the

already discussed Louvain [7] , and conductance [71] . Overlapping

communities, on the other hand, are usually identified by pattern-

based approaches, such as ego-networks [16] , cliques [52] , as well

as flow-based approaches, i.e., label propagation [59] . 

Indeed, slightly different problem definitions, analytical goals

as well as semantic contexts profoundly affect the choice among

those two families of approaches. Often, when social networks

are the objects of analysis, a crisp node partition oversimplifies

the complexity underlying the observed topology. Social commu-

nities are often used to identify and separate different contexts

an actor is involved in: professional contacts, sports ones, fam-

ily, are all “communities” each node is expected to participate at

the same time. Such semantic distinction, however, is rarely com-

pletely neatly reflected by the network topology the node is em-

bedded into: for such reason, overlapping approaches, at the cost

of a reduced effectiveness concerning classical quality measures,

are often considered as valuable options in SNA. 

3. Node-centric communities in social networks 

In the era of big data analytics, where networks of billions of

nodes are generated and collected on a daily basis by a plethora

of online and offline human-related activities, temporal constraints

are indeed a pressing issue for both analysts and researchers. Be-

ing able to process huge networks so to extract in real-time use-

ful knowledge from them is for sure one of the main objectives

of cutting-edge companies. Indeed, partition a social network is,

usually, a computationally expensive task: for this reason, the def-

inition of easily parallelizable CD approaches (even at the cost of

degrading the quality of the identified mesoscale structures) has

become a relevant problem for the research community. 

As discussed, to preserve some non-topological characteris-

tics often observed in social network contexts as well as to

speed up the computation time, several classes of node-centric

and overlapping Community Discovery approaches have been pro-

posed so far. Among them we can recall seed set expansion

[43,44,48,85,88] , diffusion based [19,36,59,76] and ego-network

based CD [9,16,17,34,57,72] . 

In Section 3.1 we will focus our attention on the latter subclass

of approaches, describing the rationale behind them and the gen-

eral algorithmic pattern they implement. In Section 3.2 , for sake

of completeness, we briefly describe the idea behind seed set ex-

pansion and diffusion based approaches. Moreover, in Section 3.3 ,

we briefly introduce real-world data-driven Social Network Anal-

ysis enabled by node-centric algorithms. Finally, in Section 3.4 ,

we provide a discussion on the analytical investigation enabled by

bottom-up approaches w.r.t. the top-down ones. 

3.1. Ego-networks analysis 

A billion nodes social graph can, in a first instance, easily be

broken down directly extracting the set of ego-networks that com-

pose it. An ego-network is defined as follows: 

Definition 2 (Ego-network) . Given a graph G = (V, E) , where V

identifies the set of nodes and E the set of edges, and a node n ∈ V

the ego-network Ego ( G, n ) is a graph induced on G , centered in n

and composed by n itself (called ego ), the n first order neighbors

V n (also called alters ) and all the edges among them. 
Indeed, several variations of such definition have been proposed

o capture slightly different node-centered topologies: for instance,

everal works do not consider edges connecting alters within the

go-network, as in [4] , or remove the ego-node from it, as in

16,17] . In the latter scenario, the resulting topology is referred to

s ego-minus-ego graph. 

Each ego-network provides a node-centric perspective of the

ocial graph, as shown in Fig. 1 , capturing all those relations that

re meaningful for the ego and discarding those that do not affect

ts immediate surroundings. The growing availability of social me-

ia data has indeed allowed for extensive studies of such peculiar,

ocal, topologies leading to valuable insights also regarding offline

ocial contexts. In particular, in [4] several Facebook and Twitter

atasets were analyzed to show that ego-networks extracted from

nline social networks maintain the same qualitative and quantita-

ive properties of human ego networks in general. Moreover, in the

ame work the role of ego-networks in information diffusion pro-

esses were observed showing that, by considering their structural

roperties, it is possible to model information diffusion cascades

oth at the individual level, as well as at the entire network level.

ndeed, ego-networks are the minimal bricks that constitute com-

lex social tissue. 

.1.1. Ego-network based Community Discovery 

Due to their nature, ego-networks can be easily seen as proto-

ypical community units – at least in social network contexts. Mov-

ng from such observation in [16] we introduced one of the first

ocal, bottom-up, approaches aimed to identify overlapping com-

unities: Demon. 1 Demon explicitly makes use of the first order

ode surroundings to build up mesoscale structures: conversely,

rom classical bottom-up approaches, like Louvain, it does not ex-

licitly optimize any quality function. 

The rationale behind our approach lies in the observation that

ifferent egos should have different perspectives over the same

eighbors and it is the union of all these perspectives that cre-

tes an optimal partition of the network. In other words: only if

wo nodes are placed in the same community by all the nodes

onnected to both of them, then they should be grouped in the

ame cluster. Such result is achieved by a democratic, bottom-up

ining approach: in turn, each node gives the perspective of the

ommunities surrounding it and then all the different perspectives

re merged into an overlapping structure. 

Demon, as well as most of the ego-network based approaches

hat followed it, implements a simple but effective algorithmic

chema, logically composed of three steps (see Algorithm 1 for the

lgorithm 1 Algorithmic schema for ego-network bottom-up al-

orithms. 

equire: 

G = (V, E) : an undirected graph 

nsure: set of communities C
1: C = ∅ 
2: for all n ∈ V do 

3: e ← Ego(G, n ) 

4: C(n ) ← LocalCommunities (e ) 

5: end for 

6: C ← Aggregat eLocalC ommunities (C) 

7: return C 

seudocode): 

(i) firstly, for each node its ego-minus-ego graph is extracted (i.e.,

the ego-network from which the ego is removed); 

https://goo.gl/J1YVCM
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Fig. 1. Global vs. local. A global view of a 15k nodes sample Facebook vs. the ego-mins-ego graph of a single node of such graph. 
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Algorithm 2 Algorithmic schema for seed-set expansion algo- 

rithms. 

Require: 

G = (V, E) : an undirected graph 

Ensure: set of communities C
1: C = ∅ 
2: S ← ComputeSeeds( G) 

3: for all s ∈ S do 

4: C s ← C omput eLocalC ommunity (s, G) 

5: C ← C − C s 
6: end for 

7: return C 
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ii) secondly, from each ego-minus-ego graph local communities

are extracted (in the Demon case using an overlapping Label

Propagation [59] approach); 

ii) finally, all the local communities are merged using a threshold-

ing function to obtain the final overlapping partition. 

The last step in Demon is performed by applying as similar-

ty function a variant of the Jaccard measure. In particular, given

wo communities C i and C j , where | C i | ≤ | C j | their similarity is com-

uted as 
C i ∩ C j 

C j 
in order to evaluate the percentage of overlap w.r.t.

he smallest topology. Indeed, since such comparison is pairwise,

t represents one of the critical aspects of bottom-up ego-network

ased approaches, an issue that can pose a serious computation

ottleneck due to its algorithmic complexity. 

To address such issue, in [17] we extended Demon proposing a

ierarchical merge function. HDemon follows the same rationale of

emon but implements community merge using a community in-

uced graph (a strategy previously applied in Louvain, see Section

.1.1 ). 

Other works address the same issue, both proposing a parallel

mplementation of our approach, PanDemon [3] , as well as chang-

ng the local community detection approach, NodePerception [75] .

ollowing a similar rationale SONIC [72] is designed to extract

go-networks based communities in a dynamic, streamed, network

cenario. Finally, in [21] a scalable and easily parallelizable non-

verlapping Community Discovery ego-network based approach is

efined. Indeed, going further from Demon derived approaches,

go-networks have proven to be a fertile starting point to perform

ommunity detection analysis [9,14] . 

.2. Seed set expansion and diffusion-based approaches 

Similarly, from ego-network based approaches, seed-centric al-

orithms focus their attention on the node perception of the clus-

ered graph structure. The basic idea underlying these approaches

onsists of identifying particular nodes in the network, called seeds ,

round which communities can then be identified. Indeed, dif-

erent algorithms adopt different seed definitions and commu-

ity expansion strategies, as discussed in [33] . As for ego-network

ased Community Discovery, we can identify a general algorithmic

chema for seed-set expansion strategies. 

As shown in Algorithm 2 , seed set expansion approaches can be

asily decomposed in two steps: identification of the seed nodes
nd definition of an iterative rule that specify how the community

hey identify forms around them. An example of seed set expan-

ion approach is indeed LICOD [32] . Such approach, implementing

 leader-based community detection strategy, operates the follow-

ng choices: 

• the seed set is identified by all nodes having a centrality higher

that σ% of their direct neighbors, then it is reduced by grouping

together seeds (i.e., leaders ) estimated to belong to the same

community – a community must be associated with a single

seed. 

• Each non-seed node compute its, ranked, degree of commu-

nity membership for all the seeded communities, a rank sub-

sequently updated by considering the ones of its direct neigh-

borhood. 

• Finally, each node is assigned to its top-ranked community. 

The idea of identify special nodes as community representatives

ndeed allows the definition of scalable and easily parallelizable

ottom-up approaches. For such reason, the same strategy has also

een used in dynamic network context [83] where the seeds ac-

uire the critical role of connecting temporally displaced network

artitions. 

Another family of local approaches to community diffusion is

he one commonly referred to as diffusion based [15] . A diffusion

ommunity can be defined as: 

efinition 3 (Diffusion community) . A diffusion community in a

omplex network is a set of nodes that are grouped by the propa-

ation of the same property, action or information in the network.
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Diffusion Community Discovery algorithms let each node in

the graph to autonomously chose its community by observing the

choices made by its neighborhood – or, in some variations, by

evaluating its participation in particular local patterns [19,36] (e.g.,

cliques, quasi-cliques). The final partition is thus obtained by per-

forming a diffusion or percolation procedure on the network – ap-

plying algorithm specific rules – and then group nodes that end up

in the same state. The algorithmic schema behind diffusion based

CD is the one shown in Algorithm 3 . 

Algorithm 3 Algorithmic schema for diffusion based algorithms. 

Require: 

G = (V, E) : an undirected graph 

Ensure: set of communities C
1: C = ∅ 
2: while True do 

3: C new 

← ∅ 
4: for all n ∈ V do 

5: C new 

← U pd ateNod eLabel(n, G, C) 

6: end for 

7: if C == C new 

then 

8: return C 
9: else 

10: C ← C new 

11: end if 

12: end while 

A classic example of this family of approaches is offered by the

Label Propagation algorithm (also known as LP) [59] . LP assumes

that each node in the network joins the community to which the

maximum number of its neighbors belongs. Node labels, identify-

ing community affiliation, propagates through a densely connected

group of nodes until a consensus is reached. Several variants of LP

has been proposed to cope with peculiar community definitions al-

lowing, for instance, to identify overlapping structures [76] . Due to

the fast computation offered by some diffusion based algorithms

(i.e., LP having quasi-linear time complexity) their partitions are

often used as preprocessing step by other CD approaches (i.e., DE-

MON [16] ) that upon them builds more refined mesoscale topolo-

gies. 

3.3. Applications 

The ability of efficiently identify partitions of large social graphs

keeping a node-centric perspective enables for several analytical

applications of Community Discovery. In the following, we discuss

how ego-centric communities, in particular, the ones produced by

Demon and HDemon, can provide bound to homophilic behav-

iors observed in online social networks. In particular we will de-

scribe two analytical works that tackle relevant SNA problems: ho-

mophilic network decomposition , Section 3.3.1 and network quantifi-

cation , Section 3.3.2 . 

3.3.1. Homophilic network decomposition 

The increasing availability of Big Data describing customers be-

havior has changed the way Companies advertise their services.

Online shopping site, as well as OSNs, are nowadays collecting

data on their users’ activities and sociality to extract information

which can guarantee them an edge on competitors. In this sce-

nario, being able to identify how much users are engaged in a spe-

cific product/service offered by a brand (i.e., Skype video call, Face-

book chat, Dropbox file sharing, Google online document editing...)

is a powerful tool. Indeed, such analysis that can be used to drive

decision on future commercial strategies [6,20] as well as analyze

churn rates and characteristics [51,62] . Moreover, the success of a
roduct/service is often due to the virality it is able to achieve. To

roaden the diffusion of a particular product, it becomes manda-

ory identify a fertile ground, a set of potential users that are likely

o be interested in it. Several SNA studies have shown that ho-

ophily is a property that can be observed in almost all human

ocial networks: people tend to cluster homogeneously by age, lo-

ation, interests and, more important in our scenario, tastes. 

Social communities are, perhaps, the smallest topologies that

an be used to bound such phenomenon and that can provide indi-

ators able to show who to target when programming advertising

ampaigns. In [66,68] we studied the effectiveness of a supervised

earning model aimed to predict user engagement level starting

rom community topological features. We train such model on fea-

ures computed on the outcome of four different CD approaches:

go-networks, HDemon, Louvain and BFS sampling. 

Our analysis was carried on three real-world datasets: the

hole Skype contact graph, a 75k user Last.fm network and a

3k Google+ user dataset [29] . For each dataset a different proxy

or user engagement was identified: monthly number of usage for

ideo/Chat/Audio in Skype, number of song listenings in Last.fm,

omogeneity/heterogeneity of education level in Google+. In Skype

nd Last.fm, we discretized the user engagement levels in high/low

y analyzing the distribution of the chosen target variable. Doing

o, we identify two scenarios, a balanced one, where we separate

n the 50th percentile, and an unbalanced one, built upon the 75th

ercentile. However, such different settings did not impact signi-

catively on the final analytical results. 

On the Skype network, our results showed that algorithms

roducing overlapping micro-communities like HDemon and ego-

etworks reach the best performances (in Fig. 2 are shown the per-

ormances of the predictors built on top of each CD approach w.r.t.

verage community density and size). Conversely, modularity-

ased approaches like Louvain do not guarantee good performance

nd are often outperformed by naive algorithms such as BFS. Sim-

lar analytical results were obtained on Last.fm, while in the bal-

nced scenario of Google+, the only dataset among the analyzed

nes that do not take into account explicit user activities, Lou-

ain communities were able to outperform the other partitioning

ethods slightly. In such specific scenario, the target regards per-

onal information, which may represent one of the reasons behind

he presence of some network connections (i.e., if they studied to-

ether): however, such semantics it is not necessarily the glue that

eeps communities together. Such peculiarity indeed privileged ap-

roaches that break the network tissue in few large communities

overing a high percentage of nodes, that even if misclassified have

educed impact on the overall accuracy, and a high number of

mall ones. That phenomenon becomes more evident considering

he classification results in the unbalanced scenario where, as in

kype and Last.fm, the most effective partitions are again the ones

roduced by HDemon and ego-networks due to the more selective

riterion used to filter out medium-size communities of produced

y such bottom-up approaches. 

.3.2. Quantification in social networks 

Another interesting problem which still poses its grounds on

he existence of homophilic behaviors within well-defined network

ubstructures is the quantification one. 

Many real-world applications require estimating and monitor-

ng the distribution of a population across different classes. An ex-

mple of such applications is the crucial task of determining the

ercentage (or “prevalence”) of unemployed people across differ-

nt geographical regions, genders, age ranges or even temporal ob-

ervations. In the literature, this task has been called quantification

22,25,46,79] . 

Quantification is closely related to classification . However, the

oal of classification differs from the quantification one since, in
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Fig. 2. CD approach and their effectiveness in predicting the user engagement on the Skype Video service. Dense and small communities, as the one identified by HDemon 

provides a better proxy for user engagement prediction. 
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he former, the focus is on correctly guessing the real class label

f every single individual while, in the latter, the aim is to esti-

ate class prevalence. Classification and quantification differ be-

ause, while a perfect classifier is also a perfect quantifier, not nec-

ssarily a good classifier is also a good quantifier. Indeed, a classi-

er that generates on the test set a similar number of misclassi-

ed items over the different classes is a good quantifier because

he compensation of the misclassifications leads towards a perfect

stimation of the class distribution. 

Most of the works address the quantification problem taking

nto consideration data presented in conventional attribute for-

at. Since the ever-growing availability of web and social media,

e have a flourish of networking data representing a new valu-

ble source of information. In this scenario an interesting question

rises: how can the quantification be performed in contexts where the

bserved entities are related to each other? 

The impact of quantification techniques for networking data is

otentially high: this because today we are witnessing an ever

ore effective dissemination of social networks and social me-

ia where people express their interests and disseminate informa-

ion on their opinions, about their habits, and their wishes. The

ossibility to analyze and quantify the percentage of individuals

ith specific characteristics or a particular behavior could help

he analysis of many social aspects. For example, analyzing so-

ial platforms like Facebook or Google+, as we did in [47] , where

as we have already discussed – users can choose to specify

heir education level, we could estimate the level of education of

n entire population even in the presence of missing, or evolv-

ng, data. Following the same rationale, using a quantification ap-

roach, we could determine the distribution of the political ori-

ntation or the geographical origin of the social network popula-

ion. In [47] we compare quantification approaches based on De-

on [16] , Infohiermap [71] and ego-networks on three different

atasets: (i) Google+, where the target variable is the education

evel, (ii) CoRa, a reference based graph built upon a computer

cience bibliographic library where class labels represent topics,

nd (iii) IMDB a movie-to-movie network where each node’s la-

el capture whether the opening weekend box-office sales have

xceeded $2 million or not. In such scenarios, we leveraged so-

ial networks homophilic behaviors to assign labels to the unla-

eled nodes belonging to each of the clusters generated by the

elected algorithms. We applied two strategies: (i) density based ,

here the class label selected is the highest frequency one of the

enser community to which the unlabeled node belongs, and (ii)

requency based , where to each unlabeled node is assigned the

lass having the greatest overall relative frequency across all the

ommunities the nodes belongs to. The latter strategy in case of
 e  
go-network partitioning lead the selection of the highest fre-

uency class among the direct neighbors of the unlabeled ego

ode, as shown in Fig. 3 . Experimental results highlight that

he latter approach constantly outperforms the former concern-

ng quantification quality (measured via KLD, Kullback–Leibler di-

ergence [25] ). Moreover, the more the topologies used to assign

lass labels to unlabeled nodes are small the more likely that the

redicted class distribution will better approximate the real one,

s shown in Table 1 for Google+. In this particular scenario, ego-

etworks represent the best choice since they enable for a tighter

ound of homophilic phenomena, confirming what already ob-

erved in Section 3.3.1 . 

.4. Discussion 

In this section, we focused our attention on node-centric ap-

roaches to Community Discovery. As discussed, such strategies

nswer two different demands: (i) they, in principle, allow for a

eduction of computational costs since approach the partitioning

roblem at the local level, and (ii) they better capture node per-

pective while partitioning the overall network. 

As shown in the applications reported in Section 3.3 , while an-

lyzing data extracted from social contexts (ONSs, call graphs...) CD

pproaches able to produce small and strongly connected commu-

ities – as node-centric ones are – allow to bound homophilic be-

aviors. Indeed, such property is primarily due to the bottom-up

pproach they follow and to their tendency toward the discovery

f a relatively high number of communities composed of a reduced

umber of nodes. Top-down partitioning approaches, on the other

and, tend in general to break the graph into few communities,

ome of which covering a significant percentage of its nodes. This

atter kind of partitions – at least in a social context – do not allow

or the extraction of valuable insights due to the heterogeneous

istribution of information that medium-large sized communities

ontain. Indeed, what observed in a social context cannot be trans-

erred directly to other, different, ones. 

Such issue is not limited to bottom-up vs. top-down analysis.

n alternative example that underlines the importance of contex-

ual information on the selection of a CD algorithm is related to

he community shape. If while partitioning a social graph overlap-

ing mesoscale structures make sense – due to the multiple envi-

onments individuals can participate in – when analyzing a differ-

nt context they may not (e.g., scenarios modeling mutually exclu-

ive choices, or tasks requiring to identify well separate modules). 

Indeed, there not exist the perfect Community Discovery ap-

roach able to always outperform its competitors. Conversely, for

ach context and analytical request, it is possible to identify a set
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Fig. 3. Frequency based ego-network quantification. For each unlabeled node is extracted its one-hop ego-network and the higher frequency label within it is selected. 

Table 1 

Google+ Edu: mean of KLD scores for the frequency based approaches. Tests were performed ne- 

glecting class labels for 20% and 30% of the graph nodes sampled using a random strategy (RS) 

bottom-degree (BS) and top-degree (TS). 

RS BS TS 

Method 20 30 20 30 20 30 

Infohiermap 2.744e −3 2.641e −3 5.385e −1 4.822e −1 1.061e + 0 9.135e −2 

Demon 3.092e −1 3.150e −1 2.840e −1 2.816e −1 2.152e −1 1.887e −1 

Ego 1-hop 1.160e −3 1.354e −3 3.424e −3 2.508e −3 1.860e −3 2.531e −3 

Ego 2-hop 3.504e −3 4.177e −3 2.531e −3 1.795e −3 1.407e −2 1.167e −2 
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of approaches capable of preserving some of the network seman-

tics within the partitions they generate. 

4. Social network dynamics 

So far our attention has been focused on the analysis of static

social graphs, however, a peculiar characteristic of social phenom-

ena is that they naturally evolve as time goes by. 

Since its beginning, complex network analysis has been ap-

proached through the definition of very specific, task-oriented,

mining problems. The almost complete absence of the time di-

mension in such definitions comes from historical reasons that can

be identified in (i) the graph theory ancestry of the field, and in

(ii) the reduced number of dynamic data sources available at the

time the area of complex networks analysis emerged. Indeed, such

scenario radically changed during the last decades’ thanks to the

explosion of human-generated data collected via socio-technical

platforms: wide repositories of time-aware data that can be eas-

ily modeled as dynamic networks. 

Graphs have often been used to model and study dynamic phe-

nomena: to better describe these realities, in which relationships

among agents change through time, several works in the last few

years have started to lay the foundations of temporal network

analysis. 

Indeed, there is a significant number of social systems that can,

potentially, be modeled as temporal networks. In addition to cellu-

lar processes and social communications, large infrastructures (i.e.,
all graphs and web graphs) posses both network and temporal as-

ects that make them attractive for temporal network modeling. 

The emergence of such theoretical grounds has been high-

ighted in the book “Temporal Networks” [31] where the curators,

olme and Saramaki, propose an ensemble of works covering dif-

erent dynamic network analysis methodologies. As a first step,

everal works have tried to transpose known problems on static

etworks to temporal networks: Temporal motifs mining [35] , Dif-

usion [41,56] , Link prediction [77] , are only a few examples. 

Moreover, to support the definition of such revised analytical

ramework, several formalisms have been proposed to represent

volving networks without loss of information: Temporal Networks

31] , Time-Varying Graphs [10] , Interaction Networks [67] , and Link

treams [81] , to name the most famous. Henceforth, we use the

erm dynamic network to encompass all those formalisms. In order

o be as general as possible, we will define a dynamic network as

one in [64] : 

efinition 4 (Dynamic network) . A dynamic network is a graph

G = (V, E, T ) where: V is a set of triplets of the form ( v, t s , t e ),

ith v a vertex of the graph and t s , t e ∈ T are respectively the birth

nd death timestamps of the corresponding vertex (with t s ≤ t e ); E

s a set of quadruplets ( u, v, t s , t e ), with u, v ∈ V are vertices of the

raph and t s , t e ∈ T are respectively the birth and death timestamps

f the corresponding edge (with t s ≤ t e ). 

In a dynamic context, all network entities can vary as time

oes by. In a social scenario, such flexibility naturally models the
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Fig. 4. Classification of DCD approaches. Two level taxonomy proposed in [64] . 
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olatility of some human interactions (e.g., telephone call, face to

ace meetings, email exchange...) whose valence/duration tend to

e overestimated when they are analyzed through classical graph

heory tools. 

.1. Dynamic community discovery 

Indeed, moving from a static to a dynamic model deeply im-

acts the definition of community and the analytical tasks that can

e built around such concept. 

As done for in Section 2 to avoid making any assumption on the

ature of communities we adopt a generic definition (borrowed

rom [64] ) to describe the Dynamic Community Discovery (hence-

orth DCD) problem. 

efinition 5 (Dynamic Community Discovery) . Given a

ynamic network DG = (V, E, T ) , a Dynamic Commu-

ity DC is defined as a set of distinct (node, peri-

ds) pairs: DC = { (v 1 , P 1 ) , (v 2 , P 2 ) , . . . , (v n , P n ) } , with P n =
((t s 0 , t e 0 ) , (t s 1 , t e 1 ) . . . (t sN , t eN )) , with t s ∗ ≤ t e ∗ . Dynamic Com-

unity Discovery aims to identify the set C of all the dynamic

ommunities in DG . The partitions described by C can be neat as

ell as overlapping. 

The time evolving clustering C (or set of Dynamic Communities)

f a dynamic network DN captures, as time goes by, how nodes

rganize their self into mutable topological substructures. 

.1.1. Local Dynamic Community Discovery approaches 

Even though the DCD problem started receiving significative at-

ention only recently the number and variety of algorithms de-

igned to operate on a dynamic network is non-negligible. To al-

ow practitioners to quickly identify the DCD approach that best

uit their needs in [64] we introduced a first comprehensive clas-

ification of existing methods. 

In our taxonomy, synthesized in Fig. 4 , the higher level corre-

ponds to the different definition of what are Dynamic Commu-

ities, without assumptions on the technique used to find them.

hese high-level classes are then divided into subcategories, which

orrespond to different methods used to find communities corre-

ponding to this definition. 

We identified three major families of approaches: 

– The first one ( instant-optimal CD ) assumes that communities

existing at t only depend on the current state of the network at

t . Matching communities found at different steps might involve

looking at communities found in previous steps, or considering

all steps, but communities found at t are considered optimal,
w.r.t. the topology of the network at t . Approaches falling in

this class are non-temporally smoothed . 

– In the second class ( temporal trade-off CD ), communities de-

fined at an instant t do not only depend on the topology of

the network at that time, but also on the past evolutions of

the topology, past partitions found, or both. Communities at t

are therefore defined as a trade-off between optimal solution

at t and known past. They do not depend on future modifica-

tion, an important point for “on the fly” CD. Conversely, from

the approaches falling in the previous class, temporal trade-off

ones are incrementally temporally smoothed . 

– In the third class ( cross-time CD ), the focus shifts from searching

communities relevant at a particular time to searching commu-

nities relevant when considering the whole network evolution.

Methods of this class search a single partition directly for all

time steps. Communities found at t depends both on past and

future evolutions. Methods in this class produce communities

that are completely temporally smoothed . 

Such taxonomy does not take in consideration the top-

own/bottom-up nature of the DCD approaches on purpose. Con-

ersely, it aims to highlight the assumptions a DCD approach made

n community stability – the highest level of the hierarchy – as

ell as how such assumptions reflect in the algorithmic solution it

roposes. 

For instance, within the instant optimal class fall all those ap-

roaches – we called them iterative similarity based – that lever-

ge classical algorithms designed for static networks applying

hem to temporally discretized network snapshots. Such algorith-

ic schema, also known as two-step since it separates commu-

ity identification and alignment (i.e., the reconciliation of consecu-

ive, distinct, instances of the same community), is often exploited

hen DCD represent a preprocessing step of more complex analyt-

cal contexts – as we will see in Section 4.2 . 

Indeed, as previously discussed, social interactions can model

olatile connections, e.g., phone calls: in such scenarios identify a

ignificative temporal unit to discretize the observed phenomenon

s not trivial. For such reason recent research moved from snap-

hot community analysis to online community detection, thus try-

ng to keep track of community changes immediately as they occur

11,12] . 

In [69] we introduce tiles , a temporal trade-off approach

pecifically designed to track community evolution by ob-

erving local perturbations caused by individual interaction
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Fig. 5. Tiles Dynamic Communities. Example of how simple local perturbations – new edges represented as dashed red lines – can affect community structure. (For inter- 

pretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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appearance/vanishing. Tiles 2 works by analyzing an interaction

stream: it applies a constrained label propagation strategy that, en-

forced by a predefined set of rules, allows to efficiently discover

and track through time communities, thus avoiding the need for

the temporal alignment step imposed by classic two-step proce-

dures. Tiles is, indeed, a node-centric algorithm: for each novel lo-

cal perturbations, community updates are evaluated only analyzing

the surroundings of the nodes involved. The rationale behind TILES

is shown in Algorithm 4 . Given an interaction stream – e.g., a tem-

Algorithm 4 TILES pseudocode. 

Require: 

S: interaction stream, 

τ : observation threshold, 

t t l: interaction duration 

Ensure: Set of dynamic communities DC 
1: t old ← 0 

2: DC ← ∅ 
3: G ← C reat eEmptyGraph () 

4: for all (u, v , t) ∈ S do 

5: Remov eExpiredInteractions (G, t, ttl) 

6: G ← Ad d NewInteraction ((u, v , t)) 
7: DC ← LocalU pdat eC ommunities (G) 

8: if t − t old ≥ τ then 

9: yield DC 
10: end if 

11: t old ← t 

12: end for 

porally ordered log of phone calls – it operates following steps: 

(i) Community contraction. From the graph are removed all the ex-

pired interaction, i.e., all the ones for which ttl time units are

elapsed from appearance. This cause an implicit update of those

communities that contained them (death/split/shrink events); 

ii) Graph update. The novel interaction is added to the graph; 

ii) Community expansion. All the communities affected by the ap-

pearance of the interaction are evaluated and their structure

modified if needed (birth/merge/growth events); 

v) Community observation. Finally, if a temporal window of width

τ units is elapsed from the last observation, the actual status of

DC is returned. 

Community updates are evaluated locally, evaluating only the

communities whose nodes were endpoints of the processed inter-

action. Fig. 5 provides a toy example that illustrates how dynamic

community memberships are updated by our approach. 

The locality of community updates choice makes TILES easily

parallelizable although defined to operate on streamed dynamic

networks. Indeed, it is possible to evaluate at runtime local de-

pendencies on consecutive community updates and, in their ab-

sence, automatically decompose Tiles execution in multiple parallel

processes. We applied our approach to several data sources, both
2 Code available at https://goo.gl/zFRfCU . 

i

 

i  
xtracted from OSN (Facebook and Sina Weibo) and synthetically

enerated: our results suggest that it outperforms its competitor

or both running time and community quality. 

.2. Applications 

Dynamic Community Discovery is not only an interesting prob-

em per se : DCD approaches, as well as CD ones, are often used

o support other graph mining tasks. While static Community Dis-

overy enables the analyst to focus its attention on structural net-

ork model and their properties (e.g., homophilic behaviors as dis-

ussed in Section 3.3 ), dynamic one allows analyzing how func-

ional graph modules unfold through time. To provide an exam-

le of how DCD approaches can be embedded into more complex

nalytical processes in Section 4.2.1 we describe a particular case

tudy: interaction prediction . 

.2.1. Interaction prediction 

Reasoning on networks evolution a very urgent question arises:

s there any rule that regulates the rising of new edges? or similarly,

here exists couples of nodes that are most likely to establish a con-

ection than the others? 

In the last decades, an extensive set of models were proposed

ith the aim to understand and reproduce real networks traits:

ll those models mimic, to some extent, the processes behind net-

orks growth over time. Here, we are interested in addressing a

lightly different issue: we know the nodes of our network (we as-

ume that no other nodes could be added in successive time steps)

nd want to study the probability that two of them became neigh-

ors in the future. Suggest new friendships on a social network,

o-authorship on a professional network or interesting products of

n online-market are for sure facilities that online services nowa-

ays need to offer to their users. Link prediction group together all

hose problems. It is defined as the problem of identifying, given

 snapshot of a network G at a time t 0 , the top-k edges that are

ost likely to appear among its set of nodes, at a time t 1 , restrict-

ng the prediction to those nodes that are not connected by edges

uring the first observation. 

Correctly predict a new link in a, often, sparse network is a

ard task to accomplish: for this reason, several approaches were

roposed to study this evolutive aspect of complex networks, us-

ng both supervised and unsupervised methodologies. In particular,

nsupervised approaches are built upon on local (neighborhood-

ased), or global (path-based), topological aspects relative to the

airs of nodes for which a prediction is needed. Those methodolo-

ies, given their simple nature, were shown to be able to guarantee

round 10% of correct predictions in several OSN datasets: due to

he complexity of the problem, this value that could seem very low

s, actually, an excellent result. Often link prediction methodologies

re designed to cope with static networks: indeed, classical solu-

ions discretize the network history in two epochs the past – i.e.,

he network structure used to make predictions – and the future –

.e., the network structure that needs to be predicted. 

Indeed, when the analyzed phenomenon is continuously evolv-

ng the adoption of temporal network modeling allows designing

https://goo.gl/zFRfCU
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Fig. 6. Interaction prediction. Predictive accuracy of the supervised model while varying the DCD approach used in the preprocessing step ( left ) and the length, in terms of 

observed weeks, of the training set ( right ). 

Fig. 7. Interaction prediction. Supervised learning approach workflow. Starting from a snapshot representation of the dynamic graph: (i) communities are extracted inde- 

pendently for each network observation; (ii) the topological features of each dynamic community are used to build features time series; (iii) the future value of each time 

series are forecasted; (iv) the forecasted values are used to train a supervised classifier aimed to predict the absence/presence of interactions within future evolutions of the 

community. 
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ime-aware predictive models: in such cases, we talk about inter-

ction prediction . In [65,67] we designed a time-aware approach

o interaction prediction that exploits two-step DCD approaches as

reprocessing phase. 

The overall analytical process is composed of four stages, as

hown in Fig. 7 : (i) DCD community extraction, (ii) extraction of

ommunity-based temporal feature vector, (iii) forecasting of fea-

ure vector future value through time-series analysis and (iv) def-

nition of a supervised learning strategy that leveraging such fore-

asts predict future node–node interactions. The DCD step was in-

roduced to bound the set of eligible interactions to predict: in-
eed, interactions occurring among nodes that belong to the same

ommunity are more likely to occur than one that relates nodes

ar apart in the observed graph. 

The idea behind the described workflow is to build a synthetic

nd holistic representation of the future state of the observed dy-

amic network through the forecast of a set of – interaction re-

ated – topological features. As an example, after such step, the

pproach will know the expected number of common neighbors

as well as the value of Jaccard coefficient, betweenness, ...) among

ode i and j in the future network observation. Such representa-

ion is then used as an unlabeled input for a classifier trained on



42 G. Rossetti, D. Pedreschi and F. Giannotti / Online Social Networks and Media 3–4 (2017) 32–48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

e  

t

 

p  

m

D  

i  

j  

d  

n

Q  

w  

n  

n  

a  

 

c  

u  

c  

l  

i  

i  

a

 

m  

i

 

b  

s  

t  

m  

f  

i  

a  

g

5

 

t  

fi  

c  

s  

p  

b  

f  

f

N  

w  

a  

a  

e  

t  

t  

s  

m  

w

the observed dynamic graph snapshots (e.g., a dataset relating the

presence/absence of an interaction to the values of the same set of

topological features computed for its endpoints). 

Our approach was tested both for predicting intra-community

interactions as well as, with some minor modification, inter-

community ones. For both scenarios, we tested our approach

against real-world temporal OSN datasets: our results highlight

the importance of selecting the right CD approach to boost the

predictive performances. In particular, as shown in Fig. 6 for the

intra-community prediction in Social (a Facebook-like dataset), we

observed how ego-network based approaches (e.g., the DCD ver-

sion of Demon) were able to outperform modularity and conduc-

tance based ones in terms of AUC, even while varying the length

of the temporal observation used to train the model. Such results

confirm what observed in Section 3.3 : node-centric approaches

represent a reasonable choice when designing analytical tasks in

OSNs, both in static and dynamic contexts. 

4.3. Discussion 

As we have seen in this section, we can recognize three classes

of DCD approaches, each one having advantages and drawbacks,

none superior to the others. Nevertheless, each one of them is

more suitable for some use cases. 

For instance, if the final goal is to provide on-the-fly commu-

nity detection on a network that will evolve in the future, instant

optimal as well as temporal trade-off approaches represent the most

suitable fit. If the analytical context requires working with a fine

temporal granularity, therefore modeling the observed phenomena

with temporal networks, it is strongly suggested to avoid methods

of instant optimal approaches, since they almost exclusively deal

with snapshots. 

Indeed, the first layer the taxonomy proposed in [64] can be

used to provide guidance and recommendations on which ap-

proach (or class of approaches) select given a specific problem for-

mulation. For instance, we can observe how, 

• Instant optimal approaches are the best choice when the final

goal is to provide communities which are as good as possible

at each step of the evolution of the network. 

• Cross-time approaches are the best choice when the final goal is

to provide communities that are coherent in time, in particular

over the long-term. 

• Temporal trade-off approaches represent a tradeoff between

these other two classes: they are the best choice in case of con-

tinuous monitoring, rapidly evolving data, and in some cases

limited memory applications. 

Identifying the particular family a DCD approach belongs to is

valuable to understand which are its real competitors and, do-

ing so, to better organize comparative analysis and also refine the

problem definition. 

5. Evaluating community partitions 

A major issue that profoundly affects Community Discovery ap-

proaches lies in a direct drawback of the ill-posedness of the prob-

lem itself: partition quality evaluation. In this section, we will re-

view the classical methods used to compare and rank the outcome

of different CD, as well as DCD, approaches on the same graph. 

In particular, we discuss in Section 5.1 external evaluation and

in Section 5.2 internal evaluation strategies. Within the former we

also approach ground-truth comparison and synthetic benchmarks .

Finally, in Section 5.2.1 we propose an example of internal evalua-

tion strategy tailored for DCD algorithms: community life-cyle anal-

ysis. 
.1. External evaluation 

External evaluation methodologies assume the existence of an

xternal ground truth that needs to be retrieved or a specific par-

ition quality score to optimize. 

A common way to compare different algorithms is to rank their

artitions w.r.t. a quality score. Modularity [49,50] is probably the

ost widely used quality function. It is defined as [82] : 

efinition 6 (Modularity) . Let σ i be the community to which node

 is assigned: the expected number of edges between nodes i and

 , if edges are drawn at random, is 
k i k j 
2 m 

, where k i and k j are the

egrees of the nodes and m is the total number of edges in the

etwork. The modularity is given by 

 = 

1 

2 m 

∑ 

i 	 = j 

(
A i, j −

k i k j 

2 m 

)
δ(σi , σ j ) (1)

here the function δ( σ i , σ j ) is 1 if σi = σ j and 0 otherwise. If the

umber of within-community edges is lesser than the expected

umber of edges in a random graph, we will get Q = 0 . Values of Q

pproaching 1 indicate networks with strong community structure.

Indeed, the legitimacy of modularity has been challenged in re-

ent years: in particular [27] shows that partitions of optimal mod-

larity do not necessarily correspond to what one expect as good

ommunities. There the authors introduced the problem of “reso-

ution limit”, that may prevent from detecting small communities

n large networks, and vice-versa. Indeed, such issue deeply lim-

ts the interpretability of the results provided by modularity based

pproaches to social contexts. 

Although being the most famous community scoring function,

odularity is not the only measure used to evaluate partition qual-

ty; we report a synthetic list of them in Table 2 . 

Studies about the relations between these quality functions can

e found in [18,87] . Evaluating solutions based on golden quality

cores has a major drawback: it favors methods that are designed

o maximize it. Even though it can be used fruitfully to compare

ethods that optimize it, its application to approaches that search

or communities having different definition may produce mislead-

ng, or inconclusive/irrelevant, comparisons. For these reasons, an

lternative approach used to compare CD algorithms is often used:

round-truth testing. 

.1.1. Ground truth communities 

When network semantic plays a major role – as in SNA con-

exts – a common strategy is often used to evaluate the identi-

ed communities: ground truth comparison [87] . Although several

riticisms were opposed to this evaluation methodology [55] , it is

till the most widely spread to compare different algorithmic ap-

roaches. The common way to assess how a given partition resem-

les the ground-truth one is to compute the Normalized Mutual In-

ormation score (NMI, [38,39,45] ) a measure of similarity borrowed

rom information theory, defined as: 

MI(X, Y ) = 

H(X ) + H(Y ) − H(X, Y ) 

( H( X ) + H(Y )) / 2 

(2)

here H ( X ) is the entropy of the random variable X associated to

n identified community, H ( Y ) is the entropy of the random vari-

ble Y associated to a ground truth one, and H ( X, Y ) is the joint

ntropy. NMI is defined in the interval [0,1] and is maximal when

he compared communities are identical. One drawback of NMI is

hat assuming an approximate size z for the compared community

ets its computation requires O ( z 2 ) comparisons, a complexity that

akes it often unusable to evaluate partitions of large-scale net-

orks. 
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Table 2 

External community quality functions. Detailed definitions can be found in the referenced works. 

Measure Description Reference 

Conductance The percentage of edges that cross the cluster border [58,87] 

Expansion The number of edges that cross the community border [58] 

Internal density The ratio of edges within the cluster w.r.t. all possible edges [58] 

Cut/normalized cut The fraction of all possible edges leaving the cluster [26,74] 

Maximum/average ODF The maximum/average fraction of nodes’ edges crossing the cluster border [23] 

Flake ODF The fraction of nodes involved in fewer edges within the community than outside it [23] 

Volume The sum of degrees of nodes in the community 

Fig. 8. F1-community scatter plot: inforhiermap (left) vs. Demon (right) on DBLP. Each point represents the ( precision, recall ) pairs for a given community match: the deeper 

the color the more the communities sharing the same values of ( precision, recall ). Points in the upper right corner (precision and recall equals to 1) identify perfect matches: 

communities having high precision and low recall (bottom-right corner) underestimate the ground-truth ones, communities having low precision and high recall (top-left 

corner) overestimate the ground truth ones. 
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In order to cope with the high computational complexity of

uch method in [69,70] we introduced the F1-community score. 3 

n such work we address the evaluation problem as a classification

ask: 

(i) network nodes are labeled according to their ground-truth

community; 

ii) each community identified by the tested algorithm is matched

to the ground-truth one whose label is shared by the majority

of its nodes; 

ii) precision and recall scores are computed for each community

by considering observed nodes and expected ones; 

v) the F1-community score is calculated as the average of the har-

monic mean of precision and recall of the matched communi-

ties. 

Such approach requires O ( z ) to be computed and allows to

raphically visualize the performances of a given algorithm via

ensity scatter plots: as an example in Fig. 8 is shown the com-

arison among communities identified by two different methods

n the same dataset having ground-truth communities. In [63,69] ,

n order to cope with community overlap and redundancy, we in-

roduced a normalized version of the F1-community score, namely

F1 . 

.1.2. Synthetic benchmarks 

Generally, network datasets come without an explicit ground

ruth community annotation. For such reason, during the last

ecade, several synthetic network generators with tunable struc-

ure embedded communities have been proposed. The aim of syn-

hetic models [5,61,84,86] is to provide an understanding of the

ynamics of network formation and evolution. Among them, the
3 Code available at: https://goo.gl/9tUrcG . 
ost famous benchmarks used to assess the performances of Com-

unity Discovery algorithm are LFR [37,38] and Girvan–Newman,

N [28] . 

However, one relevant aspect of real-world networks have been

gnored by such benchmarks so far: community dynamics. To pro-

ide a coherent environment to test both CD and DCD algorithms,

e proposed RDyn [63] , a flexible network generator able to sim-

late not only interaction dynamics but also community ones. 

RDyn 

4 allows tuning the generated topology and related dy-

amics through the introduction of several controlling variable.

t describes network evolution as an iterative process composed

f three main components, (i) degree/community size distribution

onfiguration, (ii) dynamic network generation and (iii) community

vent generation. We designed RDyn as an iterative process (an ex-

mple of its execution in Fig. 9 ): the topologies it generates are the

esults of subsequent choices made by the graph nodes that, dur-

ng each iteration, are allowed to perform a specified set of actions

i.e., create/destroy edges). Moreover, once completed each itera-

ion the status of the resulting communities is evaluated and re-

urned if considered stable, e.g., if the partition satisfies a specified

uality threshold (modularity, conductance, density...): then com-

unity dynamics are planted. Nodes act as independent agents in

 social network: each one of them can decide when, how and

ith whom to establish or broke an interaction as well as for how

ong. The rationale behind RDyn is reported in Algorithm 5 . RDyn

akes five parameters: (i) a set of nodes, (ii) the probability of in-

eraction renewal, (iii) the probability that an interaction will ap-

ear within (across) a community, (iv) the minimum quality re-

uired to define a community stable , and (v) the quality function

sed to evaluate the planted partition. Each of those parameters

ffects the topologies generated by RDyn. In particular: 
4 Code available at: https://goo.gl/WtLg4V . 

https://goo.gl/9tUrcG
https://goo.gl/WtLg4V
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Fig. 9. RDyn execution timeline: ground-truth communities are generated only during stable iterations (black circles). Interactions between two consecutive stable iterations 

compose a snapshot (here identified with S0,...,S5). Interaction dynamics (as well as community ones) happens between consecutive iteration. 

Algorithm 5 RDyn. 

Require: 

V : node set 

ν: interaction renewal probability, 

p in : intra/inter community interaction probability, 

κ: community quality threshold, 

QF: quality function 

Ensure: 

G: a dynamic graph, 

C: a set of, planted, evolving communities 

1: G = (V, ∅ ) 
2: d degree , d comSize ← InstantiateDistributions() 

3: C ← NodeToCommunityAssignment( G, d degree , d comSize ) 

4: while True do 

5: for u ∈ V do 

6: G ← RemoveExpiredInteractions( u , ν) 

7: G ← GenerateNewInteraction( u , p in ) 

8: end for 

9: quality ← EvaluatePartitionQuality(QF, G, C) 

10: if quality ≥ κ then 

11: yield G, C
12: C ← GenerateCommunityEvents( G, C) 

13: end if 

14: end while 
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• The node set, V , defines the size of the graph; 

• varying the interaction removal probability we can tune the

overall dynamic graph stability, moving from extremely volatile

structures, ν = 0 , to almost static ones, ν = 1 ; 

• varying the inter/intra community probability, p in , we can act

both on the degree of separation among network clusters and

on their relative density; 

• finally, varying the community quality function and thresh-

old, QF and κ , we can take control on the kind of mesoscale

topology will be planted in the graph and decide when a pro-

grammed community event (either split or merge) completed. 

As an example, Fig. 10 shows the quality, computed in terms

of NF1 , of CD partitions extracted from RDyn generated graphs by

both static (Louvain [7] , Infohiermap [71] , Demon [16] ) and dy-

namic (iLCD [11] , Tiles [69] , D-GT [2] ) Community Discovery ap-

proaches. The proposed example underlines how, for the chosen

parameters, Infohiermap and iLCD are, respectively, the best per-

forming algorithms among static and dynamic ones. Such results

are primarily due to: (i) the measure used to evaluate commu-

nity quality (density), and (ii) the fact that RDyn generates crisp,

nonoverlapping, communities. The adoption of density as qual-

ity function works in favor of iLCD since, due to its definition, it
earches for compact communities: the definition of planted crisp

ommunities, on the other hand, privilege those approaches (like

nforhiermap) that search for well separated mesoscale topologies.

his latter peculiarity is also the main reason for which, in Fig. 10 ,

he compared dynamic algorithms perform worst than the static

nes: indeed, all the former search for overlapping communities. 

Moreover, the analytical studies performed in [63] shows that

Dyn offers a more challenging benchmark than LFR and GN.

oreover, the possibility to specify a custom quality function for

mbedded communities (density in case of Fig. 10 ) enables RDyn

o simulate different topological contexts, thus modeling several

ocial network realities. 

.2. Internal evaluation 

Internal evaluation methodologies, conversely from the previ-

usly discussed ones, focus on the inspection and description of

he identified topologies as well as on the assessment of approach

omplexity and scalability. 

The adoption of internal evaluation strategies is often made to

vercome the issue of determining a qualitative ranking among dif-

erent algorithms by proposing a quantitative evaluation. Instead of

omparing the obtained partition with a ground-truth or comput-

ng quality measures, authors that exploit internal evaluation focus

n the algorithmic complexity [8,69,80] , running time [42,69,73] ,

calability [24,78,89] or analysis enabled by their approaches (i.e.,

dentification of specific “events” [12,40,53] ). Internal evaluation

oes not want to produce a direct comparison among different par-

itions: it assumes that each algorithm is based on a different com-

unity definition. Starting from such assumption internal evalua-

ion strategies measure quantitative performances defining a con-

ext of applicability for the proposed algorithm. Indeed, internal

valuation techniques are often used as support for external one,

s in [1,24,69] . An example of this class of evaluation methodolo-

ies, tailored to the Dynamic Community Discovery context, is the

tudy and analysis of community events and life-cycle. 

.2.1. Dynamic community events, life-cycle tracking and stability 

The vast literature on dynamic networks agrees on the basilar

et of simple actions that involve entities of complex time-varying

etworked systems: node/edge appearance and vanishing. Those

imple operations are able, as time goes by, of generating signif-

cant perturbations of the whole network topology thus affecting

ommunity structures. 

Such atomic actions allow for the definition of more complex

opological events and to a novel, interesting, problem that stands

ide-by-side to Community Discovery in dynamic networks: com-

unity life-cycle tracking. 

The persistence along time of communities subjected to pro-

ressive changes is a significant problem while analyzing social
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Fig. 10. RDyn benchmarks. Average NF1 scores w.r.t. the synthetic communities (whose lower bound quality is defined in terms of density) for both static (left) and dynamic 

(right) Community Discovery approaches. 

Table 3 

Dynamic community events. 

Event Description 

Birth Identifies the first appearance of a new community 

Death Describe the vanishing of a community 

Contraction Some nodes leave the community thus decreasing its size 

Growth New nodes increase the size of a community 

Merge Two communities or more merge into a single one 

Split A community breaks into two or more components 

Continue A community remains unchanged 

Resurgence A community vanishes for a period, then comes back without significant perturbations as if it has never stopped existing 
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etwork contexts. The perturbations caused by node/edge appear-

nce/vanishing can be used to describe a set of community trans-

ormation events . Such transformations, or operations, were firstly

ntroduced in [53] , which listed six of them (Birth, Death, Growth,

ontraction, Merge, Split). A seventh operation, “Continue”, is

ometimes added to these ones, while in [13] , an eighth operation

as proposed ( Resurgence ). We report the complete list of com-

unity events, along with their description, in Table 3 . Indeed, not

ll those operations are necessarily handled by a generic DCD ap-

roach and, most importantly, even if their semantics is fixed their

mplementation often vary from an approach to the other. This lat-

er peculiarity, along with the heterogeneity of DCD definitions,

akes impossible to directly compare community life-cycles ex-

racted from a same dynamic graph by different DCD approaches. 

Despite the particularities introduced by each approach when

efining topology transformations, the identified events allow to

escribe for each community its so-called life-cycle [63,64] : 

efinition 7 (Community life-cycle) . Given a community C , its life-

ycle (which univocally identifies C ’s complete evolutive history) is

omposed of the polytree such that: (i) the roots are Birth events,

f C and its potential predecessors if C has been implicated in

erge events; (ii) the leafs are Death events, corresponding to

eaths of C and of its successors, if C has been implicated in Split

vents; (iii) the central nodes are the remaining actions of C , its

uccessors, and predecessors. The edges of the tree represent tran-

itions between subsequent actions in C life. 

An example of community life-cycle is shown in Fig. 11 . It is

ossible – in principle – to perform a life-cycle analysis starting

rom the output of any generic Dynamic Community Discovery ap-

roach. 

Indeed, as illustrated by the famous Theseus’ Ship Paradox, de-

iding if an element composed of several entities at a given instant
s the same or not as another one consisting of some – or even

one – of such entities at a later point is necessarily arbitrary, and

annot be answered unambiguously. 

Such issue deeply affects community life-cycle analysis, espe-

ially for all those approaches where community identification is

erformed following a non-smoothed approach (e.g., instant opti-

al two-step algorithms). Indeed, since different DCD approaches

ake different assum ptions on both network and community dy-

amics, community life-cycle tracking is used only as an internal

valuation strategy: a methodology to underline some characteris-

ics of the topologies extracted by a given algorithm 

As previously discussed, in [69] we introduced an online algo-

ithm to avoid the community reidentification step: in the same

ork, we also provided an example of the community stability

nalysis. In the same work, moving from communities life-cycles,

e studied Tiles’ community stability through time in a specific

ataset: the dynamic interaction graph built upon Sina Weibo

sers’ conversations. Fig. 12 shows how community structure is af-

ected by the dynamic unfolding of user interactions. In the ob-

erved scenario Tiles’ communities remain stable, unchanged, as

ime goes for on average 40% of their nodes and, symmetrically,

lmost 36% of the dynamic network nodes do not change com-

unities across consecutive observations – Fig. 12 left. Moreover,

bserving the unfolding of community events – Fig. 12 right –

e can notice two peculiarities: (i) all events follow a same pat-

ern , a pulse that characterize the evolution of the particular net-

ork, and, (ii) the sample of Sina Weibo observed describes a phe-

omenon in which is more likely to observe the rise and merge of

ommunities rather than their splits (community death events may

lso capture community vanishing due to merging events). Indeed,

uch kind of evaluation represents also an example of the analyt-

cal insights that can be driven by the results of DCD approaches

nd the reconstruction of communities evolution history. 
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Fig. 11. Community lifecycle. As time goes by, dynamic communities experience mutations that are often abstracted by adopting a predefined set of operations. This toy 

example highlights lifecycles of communities A and C . 

Fig. 12. Community stability and community events in Facebook. ( left ) Evolution through time of node join/leave events and ( rigth ) community events. In the right plot are 

reported the trends for birth (B), death (D), merge (M) and split (S) events. 
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6. Conclusion and future research directions 

Community Discovery is one of the hottest topics in complex

network analysis: indeed, countless SNA analysis and applications

are nowadays built on top of mesoscale network topologies. 

In this work, we discussed several different perspectives offered

by CD literature, both algorithmic and analytical. Moving from clas-

sic static network analysis, we illustrated how considering the tem-

poral dimension affects the definition and extraction of commu-

nities. We discussed a specific family of approaches, namely local

bottom-up and overlapping Community Discovery, that best suits

the analysis of OSNs due to their node-centric approach as well

as their scalability. Finally, we showed some example of analytical

tasks that benefit from such kind of methods and discuss evalu-

ation strategies that are commonly adopted to assess community

quality. All the results we proposed, framed in their relevant liter-

ature, represent our recent contribution to the Community Discov-

ery field. 5 

Indeed, especially in the dynamic network scenario, several rel-

evant lines of research remain open. Moving from the tracking of

communities life-cycles one complex issue to address regards the

forecasting of future community events. Indeed, being able to track

the evolutive history of a social network and its components is just

the first step: being able to leverage such information to accurately

predict what will be the future shape of an analyzed social tis-

sue is of paramount importance. Several applications, from peer-to-

peer load balancing through the study of diffusive phenomena, can
5 The code of our algorithms is available at: https://goo.gl/x4KrXN . 

a  

o

reatly benefit from a preemptive analysis that allows anticipating

he system needs. Moreover, a very relevant topic for SNA is the

tudy of the relations among dynamics of and on networks. Cor-

elate the topological evolution, as well as community life-cycle,

ith spreading processes on social networks is a fascinating topic

o address, a topic whose thorough analysis can open an entirely

ovel field of research. So far diffusive phenomena were studied

revalently assuming static social network context. Such oversim-

lification, however, does not allow to model the complex sys-

em carefully and, implicitly affects analytical results. Indeed, net-

ork topology evolution and diffusive processes are strongly tied

nd affect one another reciprocally, i.e., think for instance to the

pread of a virus and to the possible containment strategies that

an be applied to reduce it as well as to the perturbation it causes

n the network topology once infected nodes are stably removed.

till pursuing a similar line of research, another relevant topic that

eeps together dynamics of and on networks regards the analysis

f competing diffusion processes: how does graph topology evolve

hen several diffusion processes compete for mutually exclusive

esources (e.g., nodes)? Can we forecast the stable state, if any, of

uch complex intertwined phenomena? 

As already discussed, Community Discovery is a very important,

till ill-posed, problem that deeply affects the outcome of several

etwork analytical tasks. In particular, its dynamic formulation has

he potential to become a key step in data-driven investigations:

or that to happen, it is indeed necessary that research effort will

e dedicated not only to the definition of novel approaches but

lso to the investigation of sound and shared evaluation method-

logies, specifically tailored for dynamic contexts. 

https://goo.gl/x4KrXN
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