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Abstract. The mallba project tackles the resolution of combinato-
rial optimization problems using algorithmic skeletons implemented in
C++. mallba offers three families of generic optimization techniques:
exact, heuristic and hybrid. Moreover, for each technique, mallba pro-
vides three different implementations: sequential, parallel for local area
networks, and parallel for wide area networks. This paper explains the
architecture of the mallba library, presents some of the implemented
skeletons, and offers several computational results to show the viability
of the approach. In our conclusions we claim that the design used to
develop the optimization techniques is general and efficient at the same
time, and also that the resulting skeletons can outperforms existing al-
gorithms on a plethora of problems.

1 Introduction

The mallba project is an effort to develop an integrated library of skeletons for
combinatorial optimization (including exact, heuristic and hybrid techniques)
dealing with parallelism in a user-friendly and, at the same time, efficient man-
ner. Its three target environments are sequential computers, LANs of worksta-
tions and WANs (local and wide area networks, respectively). The main features
of mallba are: integration of all the skeletons under the same design principles,
facility to switch from sequential to parallel optimization engines, and cooper-
ation among solvers to provide more powerful hybrid skeletons, ready to use
on commodity machines. Clusters of PCs under Linux are currently supported,
and the resulting software architecture is flexible and extensible (new skeletons
can be added, alternative communication layers can be used, etc.). See a quick
introduction on mallba in [3].

Combinatorial optimization problems arise frequently in various fields such as
Control Theory, Operations Research, Biology, Telecommunications and Com-
puter Science. Several tools offering parallel implementations for generic opti-
mization techniques such as Simulated Annealing, Branch and Bound or Genetic
Algorithms have been proposed in the past (see, e.g. [13, 18, 19, 21]). Also, Some
existing frameworks, such as Local++, its successor EasyLocal++ [12], Bob++
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[8], and the IBM COIN open source project [16] provide sequential and parallel
generic implementations for several exact, heuristic and hybrid techniques, but
they lack features to integrate them. Furthermore, the DREAM project [5] is
loosely related to our goals, although DREAM is targeted to distributed agent
and simulations, not having a clear focus on optimization, and no evaluations
exist showing its performance on a large set of problems.

In this work we describe the design, implementation and evaluation of a
project that accomplishes for all these goals. The resulting set of software tech-
niques and numerical studies account for the results of the mallba project.

The contributions of this paper are manyfold. First, we test several algorithms
provided by the mallba project. Second, we want to find out the expected and
actual outcomes of solving optimization problems in LAN and WAN. Third, we
are interested in showing really useful results, and thus we include a mixed set
of algorithms and optimization problems showing some difficulties usually found
in real-world tasks. Last, but not least, our conclusions are somewhat expected
and somewhat surprising at the same time, since we do validate in practice
some theoretical thoughts on WAN optimization, but also we are able to report
competitive performance in WAN.

To our knowledge, there is no other work that considers, at the same time,
all these classes of algorithms and problems, and that also extends the analysis
to LAN and WAN environments.

In this paper we first present (Section 2) the architecture of mallba and its
advantages for developing new algorithms and fast prototyping. In Sections 3, 4,
and 5 we provide working examples plus a numerical and time analysis of exact,
heuristic and hybrid algorithms; they all follow the basic mallba architecture
for sequential, LAN and WAN platform execution, and all them are shown to be
competitive when compared against existing results in literature. In Section 6 we
include some summary conclusions and future work. Finally, we have added two
appendices to this paper; the first one contains an example instantiation of an
optimization skeleton in mallba to help the interested reader. The second one
lists all the problems whose solution is addressed in the evaluation sub-sections
for each one of the techniques.

2 The MALLBA Architecture

The mallba project is an effort to develop a library of algorithms for optimiza-
tion that can deal with parallelism in a user-friendly and, at the same time,
efficient manner. Its three target environments are sequential, LAN and WAN
computer platforms. All the algorithms in this paper are implemented as soft-
ware skeletons with a common internal and public interface. Every skeleton
implements a resolution technique for optimization problems, taken from the
fields of exact, heuristic or hybrid optimization. This permits fast prototyping
and transparent access to parallel platforms.

mallba skeletons are based on the separation of two concepts: the concrete
problem to be solved and the general resolution technique to be used. While the



particular features related to the problem must be given by the user, the tech-
nique and the knowledge to parallelize the execution of the resolution technique
is implemented in the skeleton itself. The user does not program the resolution
technique nor its parallelization. It is very common that the problem is repre-
sented by a complex function to be optimized and the details on how manipulate
tentative solutions (merge, cut, or interpret parts of a solution, for example). Ba-
sically, the resolution technique is the algorithm defining the steps to proceed to
the optimization of the problem. Almost every optimization technique exhibits
a traditional three stage process, namely: (1) generating initial solutions (2) an
improvement loop and (3) testing a stop condition. The way in which different
skeletons do this work is really different and varied in the actual spectrum of
optimization research.

Skeletons are implemented by a set of required and provided C++ classes
which represent object abstractions of the entities participating in the resolu-
tion technique. The provided classes implement internal aspects of the skeleton
in a problem-independent way. Typically, these internal aspects refer to the im-
plementation of the resolution technique. Those classes have been completely
implemented in the respective skeletons. The required classes specify informa-
tion and behavior related to the problem. For the whole skeleton to work, it is
required that these classes get completed with problem-dependent information.
This conceptual separation allows us to define required classes with a fixed inter-
face but without an implementation, so that provided classes can use required
classes in a generic way. Fig. 1 depicts this architecture.

Fig. 1. Architecture of a mallba skeleton. The horizontal line stands for the separation
in mallba between the C++ classes the user must code -upper part of the figure- and
the classes that mallba already includes in a fully operational form -lower part-.

Therefore, the user of a mallba skeleton only needs to implement the par-
ticular features related to the problem, i.e., to fill ul the required classes with
an specific problem-dependent implementation. This speeds the creation of new
algorithms with a minimum effort considerably.



The mallba infrastructure is composed of computers and communication
networks from the Universities of Málaga (UMA), La Laguna (ULL) and Barcelona
(UPC). These three universities are connected through RedIRIS, the academic
and scientific computer network, and managed by CSIC (Consejo Superior de
Investigaciones Cient́ıficas), that connects the main universities and research
centers in Spain. RedIRIS is a WAN with ATM technology (ATM accesses of
34/155 Mbps). There is a node in each administrative region of Spain.

In the next section we proceed to introduce and discuss the utilization inter-
face in order a new user could program its own skeleton in mallba. Next, we
will discuss the communication and the hybridization interfaces in the other two
sub-sections. The aim is to explain first what a final user must consider, then
what a really internal programmer needs to know about the parallel issues and
finally to discuss how to merge skeletons to yield new optimization procedures.
We need these three descriptions since what a ”user” is depends on the level
of interaction of a researcher with our software and its goal: using MALLBA
for his/her problem, changing communications, or creating new techniques for
optimization, respectively.

2.1 Utilization Interface

From the user’s point of view, two major aspects must be considered: the prob-
lem to be solved, and the resolution technique to be used. The user will be re-
sponsible for adequately describing the former. As to the latter, rather complete
descriptions are provided by the library. The user addresses these two aspects
by selecting the skeleton and implementing its problem-dependent aspects. Since
LAN and WAN skeletons exist, the user can now execute the resulting program
on sequential or parallel environments.

Apart from some illustrative examples, mallba does not contain any ac-
tual code for solving specific problems. On the contrary, it provides the generic
code the user has to customize. This way, a single implementation –abstract yet
efficient– can be reutilized in different contexts. The user need not have a deep
knowledge about parallelism or distributed computing; these aspects are already
included in the library.

See the global picture of the system in Fig. 2. mallba already includes a large
set of solvers ready for utilization; extending them is quite direct, and creating
new solvers is conceptually guided by the class hierarchy provided by mallba
and even by reusing some parts of existing skeletons. Each skeleton could have
its own configuration file to avoid recompilation when parameters change. Also,
the reader can appreciate the three types of users we envision, namely: final user,
programmer and internal filler.

Let us now get deeper in our understanding of the provided and required
C++ classes.

– Provided classes: Classes within this category are responsible for imple-
menting the basic functionality of the corresponding skeleton. First of all,
class Solver encapsulates the behavior of the algorithm under consideration.
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Fig. 2. Users and mallba.

This optimization engine is fully generic, and interacts with the problem us-
ing the classes required from the user (see below). In order to enable a
skeleton to have different solver engines, the Solver class defines a unique
interface and offers several subclasses that provide different sequential and
parallel implementations (see Fig. 1). Secondly, class SetupParams contains
all parameters describing the execution of the algorithm, e.g., the number
of iterations, the population size in a genetic algorithm, the queue manage-
ment policy in a branch-and-bound algorithm, etc. Another provided class
is Statistics, whose purpose is collecting statistical information about the
execution of the algorithm. Finally, there exist two classes StateVariable
and StateCenter whose necessity and purpose will be described later (in
the hybridization interface section).

– Required Classes. These classes are responsible for providing details about
the problem being solved. It must be noted that despite this problem depen-
dency, the interface of these classes is known and fixed; thus, provided classes
can use them without specific knowledge of the problem-dependent features
that have been implemented. Among the required classes, one can cite class
Problem (that must provide all necessary methods for handling data of the
problem instance), class Solution (that encapsulates the representation and
manipulation of a solution for the problem), class UserStatistics (that al-
lows the user gathering specific data not being considered by the provided
class Statistics) as well as other classes that depend on the algorithmic
skeleton chosen.



2.2 Communication Interface

Providing a parallel platform has been one of the central objectives in mallba.
Local networks of computers are nowadays a very cheap and popular choice in
labs and departments. Moreover, the available computational power of Internet
is allowing the interconnection of these local networks, offering a plethora of
possibilities for exploiting these resources (commonly infra-utilized in practice).

To this end (i.e., using mallba onto a network of computers), it is necessary
to have a communication mechanism allowing executing skeletons both in LAN
and WAN. Since these skeletons are implemented in a high-level language, it is
desirable this communication mechanism to be also high-level; besides, maybe
in the future would be needed a management of parallel processes (creation,
destruction, etc.), and here the new MPI-2 standard could come to the rescue.

The needed set of services is generically termed middleware, and it is re-
sponsible for all basic communication facilities. Several steps were followed to
construct this system: first, related existing systems were studied and evaluated;
then, a service proposal was elaborated; finally, the middleware was implemented
in C++.

The detailed review of existing tools included both systems based in the
message-passing paradigm and systems for the execution and management of
distributed objects and programs. We evaluated PVM, MPI, Java RMI, CORBA
and Globus, as well as some other specific libraries [1]. Our main conclusion was
the need for our own system, adapted to the necessities of our library, but based
on an efficient standard, capable of being valid in the future.

Meeting all these criteria can be, almost exclusively, possible by using MPI
as the base for developing a communication library. Efficiency was a major
goal in this work, and hence this decision; besides, MPI (in both MPICH and
LAM/MPI, the two well-known implementations of the standard) is becoming
increasingly popular, and has been successfully integrated in new promising sys-
tems such as Globus.

Although there is no theoretical drawback in using MPI directly, we devel-
oped a light middleware layer termed NetStream (see Fig. 3). With this tool, a
mallba programmer can avoid the large list of parameters and interact with the
network in the form of stream modificators, that allows advanced input/output
operations to look like basic data exchanges with streams. By using << and >>
the programmer can develop LAN and WAN skeletons by feeding data and net
operations in a easy away.

Then, NetStream allows skeletons exchanging data structures efficiently, keep-
ing a high abstraction level and ease of use. For this latter purpose, the number
of parameters in the resulting methods has been minimized, and an large num-
ber of services has been implemented. These services can be classified into two
groups: basic services, and advances services. Among the former one can cite:

– Send-Reception of primitive data types: int, double, char, strings,
etc. both in raw format and packed (for efficiency purposes when used on a
WAN). This can be done using input/output streams from/to the network.
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– Synchronization services: barriers, broadcast, checking for pending mes-
sages, etc. As in the C++ standard, these services are available by means of
manipulators, i.e., methods that alter the behavior of a stream, feeding it as
if they were data.

– Basic management of parallel processes: querying a process ID or the
number of processes, establishing and retrieving the IDs of processes at the
ends of a stream, etc.

– Misc.: starting and stopping the system (using static (class) methods rather
than instances methods), etc.

Among the advanced services implemented we can cite the following:

– Management of groups of processes: this allows skeletons to be arranged
in parallel optimization demes. Available methods allow manipulating com-
municators and intercommunicators between groups, in the MPI sense. This
organization could be important for certain distributed algorithms, especially
in the case of hybrid algorithms.

– Services to acquire the on-line state of the net: this C++ methods are
provided to allow working with a model of both communication links and the
estate of machines involved in the execution, all this under a real time basis,
during the run of a skeleton. Basically, these services endow the skeleton
programmer with C++ methods to check the delays in any link of the LAN
or WAN for different packet sizes, plus the error rate (noise) in the link, and
the load of a workstation in the net. Furthermore, independent clients in C,
C++ and Java have been developed in addition to the mentioned one in order
to make NetStream a stand alone communication layer for optimization and
other applications at a minimum complexity and overhead.

All these services provide high-level programming and will ease taking on-line
decisions in WAN algorithms, although we are still at the stage of developing
”intelligent” algorithms that use this information to perform a more efficient
search.



2.3 Hybridization Interface

In this section we discuss the mechanisms available in mallba to foster com-
binations of skeletons in the quest for more efficient and accurate solvers. The
term “hybridization” has been used with diverse meanings in different contexts.
Here, we refer to the combination of different search algorithms (the so-called
weak hybridization [7]). As it has been shown in theory [23] and practice [10],
hybridization is in a broad sense an essential mechanism for obtaining effec-
tive optimization algorithms for specific domains. For this reason, there exist in
mallba some basic tools for building such hybrid skeletons. This contrast with
other optimization libraries that let the programmer alone when building new
algorithms from existing ones.

Due to the fact that the algorithmic skeletons will be reutilized and combined
both by mallba end-users and by specialists, it is necessary to specify in a
standard and unified fashion the way these skeletons can interact. For this reason,
we propose using the notion of a skeleton state. The state of skeleton is its
connection point with the environment. By accessing this state, one can inspect
the evolution of the search, and take decisions regarding future actions of the
skeleton. For this latter reason, it is mandatory to have not only the means for
inspecting the estate, but also for modifying it on the fly. Thus, either a user or
another skeleton can control the future direction of the search. This is done with
independence of the actual implementation of the skeleton, a major advantage
in any large-scale project.

The advantages of using a estate is that combining skeletons has a low, despite
the fact that uniformly defining the state is not trivial, and constitutes an open
research topic [9]. Our proposal is articulated around the two basic classes we
mentioned before: StateVariable and StateCenter. The former allows defining
and manipulating any information element within the algorithm skeleton. This
way, StateVariable provides the means for assigning an ID to such elements,
as well as for inspecting and updating their value.

All StateVariable instances are subsumed within a StateCenter. The lat-
ter is the connection point that provides access to the state itself. Such access
is not performed using specific method for each variable, but using a generic
method and an ID as its parameter. The interface is then very generic (there
is no dependency either to the problem or to the algorithm) and flexible (state
variables can be very easily defined and accessed, even during the execution of
the skeleton, and whatever their data types could happen to be).

On the basis of these classes, constructing a hybrid algorithm is very easy:
one has to simply specify the behavior pattern by means of the appropriate
manipulation of the states of the skeletons being combined. As an example of
the flexibility of this model we have developed meta-algorithms that defines
the way in which n component skeletons interact each other. One simply has
to specify the precise algorithm involved to instance this metha-algorithm to a
concrete working hybrid skeleton; the behavior pattern is the same no matter
which these component algorithms are. This philosophy of ”make once instance



many” can serve to product different algorithm with the same underlying search
pattern at a minimum cost.

3 Exact Optimization Techniques

EXACT

4 Heuristic Optimization Techniques

HEURISTIC

5 Hybrid Optimization Techniques

In its broadest sense, hybridization refers to the inclusion of problem-dependent
knowledge in a general search algorithm [11] in one of two ways:

– Strong hybridization: problem-knowledge is included as specific non-conventional
problem-dependent representations and/or operators.

– Weak hybridization: several algorithms are combined in some manner to
yield the new hybrid algorithm.

In this work we have implemented two hybrid algorithms, namely GASA and
CHCES; they two are different instances of the weak hybrid scheme above men-
tioned. The first of them (GASA) is made of a genetic algorithm and a simulated
annealing; the second one uses this same scheme to combine a CHC [14] and an
evolution strategy (ES). The rationale for this selection of algorithms is that,
while the GA/CHC locates ”good” regions of the search space (exploration), the
SA/ES allows for exploitation in the best regions found by its partner.
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Fig. 4. Models of Hybridization; (left): Model of Hybridization 1 (CHCES1); (right):
Model of Hybridization 2 (CHCES2/3).

We define two main classes of hybrids in this work:



– A first hybrid schema (GASA1/CHCES1) where a GA/CHC algorithm uses
the other algorithm (SA/ES) as an evolutionary operator; the local search
algorithm is applied in the main loop after the traditional recombination and
mutation operators. See an example for GASA1 in Fig. 4 (left).

– A second hybrid schema executes a GA/CHC until the algorithm completely
finishes. Then the hybrid selects some individuals from the last population
and executes a SA/ES algorithm over them. We have implemented two vari-
ants whose only difference is the selection method. Concretely, we analyze a
first version (GASA2/CHCES2) that uses a tournament selection (model 2.1
of Fig. 4 right), and another version (GASA3/CHCES3) that uses a random
choice of individuals (model 2.2 of Fig. 4 right).

5.1 Hybrid Skeletons for Optimization

In our project, we naturally deal with several optimization techniques or solvers.
We have selected to discuss in this work the skeletons for evolutionary algorithms
(EAs) -in particular genetic algorithms (GAs)- a CHC algorithm, and an evolu-
tion strategy (ES). Also, a local search technique like simulated annealing (SA)
has been included due to its widely recognized efficiency in optimization (see a
description of all these algorithms in [6]). All techniques have been parallelized
for LAN and WAN platforms; a more detailed presentation of them is included
in the next sub-sections.

Evolutionary Algorithms Evolutionary algorithms (EAs) are stochastic search
techniques that have been successfully applied in many real and complex applica-
tions (epistatic, multimodal, multi-objective and highly constrained problems).
Their success in solving difficult optimization tasks has promoted the research in
the field known as evolutionary computing (EC) [6]. An EA is an iterative tech-
nique that applies stochastic operators on a pool of individuals (the population)
(see Fig. 5). Every individual in the population is the encoded version of a ten-
tative solution. Initially, this population is generated randomly. An evaluation
function associates a fitness value to every individual indicating its suitability
to the problem. For the present study we implemented three parallel distributed
EAs, whose component sub-algorithm is a GA, an ES or a CHC.

GAs are a very popular class of EAs. Traditionally, GAs are associated to the
use of a binary representation, but nowadays GAs use other types of representa-
tions also. A GA usually applies a recombination operator on two solutions, plus
a mutation operator that randomly modifies the individual contents to promote
diversity.

A CHC [14] is a non-traditional GA which combines a conservative selec-
tion strategy (that always preserves the best individuals found so far) with a
highly disruptive recombination (called HUX ) that produces offsprings that are
maximally different from their two parents. The traditional though of preferring
a recombination operator with a low disrupting properties may not hold when
such a conservative selection strategy is used. On the contrary, certain highly



Generate(P(0))

t := 0

while not Termination Criterion((P(t)) do

Evaluate(P(t))

P’(t) := Selection(P(t))

P’(t) := Apply Reproduction Ops(P’(t))

P(t+1) := Replace(P(t), P’(t))

t := t+1

return Best Solution Found

Fig. 5. Pseudo-code of an evolutionary algorithm (EA).

disruptive crossover operator provide more effective search in many problems,
which represents the core idea behind the CHC search technique (see a pseudo-
code in Fig. 6. This algorithm introduce a new bias against mating individuals
who are too similar (incest prevention). Mutation is not performed, instead, a
restart process re-introduces diversity whenever convergence is detected.

t := 0

d := L/4

initialize P(t)

evaluate structures in P(t)

while not end do

t := t + 1

select C(t) from P(t-1)

C’(t) := HUX(C(t))

evaluate structures in C’(t)

replace P(t) from C’(t) and P(t-1)

if P(t) = P(t-1)

d--

if d < 0

diverge P(t) //restart
d := r * (1.0 - r) * L

return Best Solution Found

Fig. 6. Pseudo-code of the CHC algorithm.

The last EA we include in our study is an ES (Fig. 7). This algorithm is suited
for continuous values, usually with an elitist selection and a specific mutation
(crossover is used rarely). In ES, the individual is made of the objective variables
plus some other parameters guiding the search. Thus, a ES facilitates a kind of
self-adaption by evolving the problem variables as well as the strategy parameters
at the same time. Hence, the parameterization of an ES is highly customizable.

Simulated Annealing The simulated annealing algorithm (SA) was first pro-
posed in 1983. SA is a stochastic relaxation technique that can be seen as a



t := 0

initialize P(t)

evaluate structures in P(t)

while not end do

t := t + 1

C(t) := select best from(P(t-1))

mutate structures in C(t) to yield C’(t)

evaluate structures in C’(t)

replace P(t) from C’(t) and/or P(t-1)

return Best Solution Found

Fig. 7. Pseudo-code of an evolution strategy (ES).

hill-climber with an internal mechanism to escape local optima (see a pseudo-
code in Fig. 8). In SA, the solution s′ is accepted as the new current solution if
δ ≤ 0 holds, where δ = f(s′) − f(s) . To allow escaping from a local optimum,
moves that increase the energy function are accepted with a decreasing prob-
ability exp (−δ/T ) if δ > 0, where T is a parameter called the ”temperature”.
The decreasing values of T are controlled by a cooling schedule, which specifies
the temperature values at each stage of the algorithm, what represents an im-
portant decision for its application. Here, we are using a proportional method
for updating the temperature (Tk = α · Tk−1).

t := 0

Initialize T

s0 := Initial Solution()

v0 := Evaluate(s0)

repeat

repeat

t := t+1

s1 := Generate(s0,T) //Move
v1 := Evaluate(s1)

if Accept(v0,v1,T)

s0 := s1

v0 := v1

until t mod MarkovChainLen = 0

T = Update(T)

until ’outer-loop stop criterion’ satisfied

return s0

Fig. 8. Pseudo-code of simulated annealing (SA).

Parallel Hybrid Skeletons Since we want to conduct our research in LAN
and WAN platforms, it seems natural to explore the behavior of parallel hy-
brids. A parallel EA (PEA) is an algorithm having multiple components EAs,



regardless of their population structure. Each component (usually a canonical
EA) sub-algorithm includes an additional phase of communication with a set of
neighboring sub-algorithms [4]. Different parallel algorithms differ in the char-
acteristics of their elementary skeletons, and in the communication details.

As example parallel skeletons we have chosen a parallel GA (PGA) because of
its popularity and because it can be readily implemented in clusters of machines.
In distributed GAs there exists a small number of islands performing separate
GAs, and periodically exchanging individuals after a number of isolated steps
(migration frequency).

The migration policy must define the island topology, when migration oc-
curs, which individuals are being exchanged, the synchronization among the
sub-populations, and the kind of integration of exchanged individuals within the
target sub-populations. Concretely, we use a static ring topology, select random
migrants and include them in the target populations only if they are better than
the worst-existing solutions.

For the parallel SA (PSA) there also exist multiple component SAs. Each
component SA periodically exchanges the best solution found after a number
of isolated steps (cooperation phase) with its neighbor in the ring. The hybrid
versions applied, in the parallel case, SA (CHC) as an operator in each island of
a GA (CHC) algorithm.

These different implementations can be obtained by creating separate sub-
classes of the Solver abstract class (see Fig. 1). At present, we are using our
own middleware layer NetStream implemented on top of MPI to ease communi-
cations. The result is a parallel version of what we will call GASA1 (CHCES1)
(Section 5).

Analysis of the Results In this section we include the analysis of the perfor-
mance of sequential, LAN and WAN hybrid skeletons for four problems: two of
them have a combinatorial nature (MaxCut and MTTP) and the two others are
representatives of the continuous optimization domain (RAS and FMS). See the
details on these problems in the second appendix at the end of the paper. We
include such four problems in this section to show the really wide application
of the hybrid skeletons developed within mallba. Our goal with the upcoming
results is to compare hybrid versus pure search schemes in all these platforms
and also to show that the underlying philosophy of mallba is efficient and ac-
curate, as least as compared against the alternative of making separated and
unstructured ad hoc implementations.

In Table 1 we provide the parameters used for the non-hybrid (basic) skele-
tons, while in Table 2 we include the parameters used for the incorporated oper-
ators. We tend towards a low-cost utilization of SA/ES in the hybrid skeletons
to promote gradual exploitation of solutions during the search.

We show the results for the sequential, LAN and WAN platforms in figures
3, 4 and 5, respectively. All they are the average values of 30 independent runs
for each problem, in each one of the three platforms. Since we want a fair com-



Table 1. Parameters of the algorithms.

Problem Popsize Cross. prob. Mut. prob. Others

MaxCut (GA) 100 0.8 0.01 -
MTTP (GA) 200 0.6 0.02 -

RAS, FMS (CHC) 100 0.8 - 35% population restart

Table 2. Parameters of the hybrid operators.

Algorithm Prob. # max iter. Others

SA 0.1 100 MarkovChainLen = 10
Temp. decay factor = 0.99

ES 0.01 50 (1+10)-ES, Mutation prob. = 0.8

parison we begin with a canonical having one workstation in each of the three
geographically separated sites.

After these three figures, we can conclude that LAN and WAN enhance the
percentage of hits (number of times locating an optimum) of the sequential plat-
form, especially for the discrete problems. The LAN skeletons provide the best
execution times for all the problems, but the speedup is sub-linear. An interest-
ing result occurs for the FMS problem in which the WAN skeletons outperform
the sequential and LAN ones in accuracy (opt. column) with similar times than
the sequential time (LAN is faster), and with an equivalent number of evalua-
tions than sequential and LAN. Therefore, although the reductions in time are
important (especially for LAN skeletons), the most relevant conclusions focus
in the numerical results, since the WAN skeletons are competitive in this sense
with sequential and LAN versions. These are great news for our intended future
work on aggregating a high number of computers in WAN.

Now let us compare our figures against existing results in the literature. Some
up-to-date results on the same instances of MaxCut and MTTP can be found
in [2], where the authors analyze three types of sequential and distributed EAs.
Our results in mallba clearly outperform those of [2] for MaxCut, whose best
percentage of hits is 5%, while ours are between around 10% and 16% in LAN
and WAN, with an additional reduction in the whole search effort. For MTTP,
we offer an almost constant 100% of hits with pure and hybrid skeletons with
below 40.000 evaluations (with the exception of our 66% for sequential GA);
however, in [2] the authors report similar hits percentages, but with a number of
evaluations (specially for their LAN algorithms) well above 100.000. Similarly,
all our hybrid versions outperform any of their evaluated pure algorithms in
efficiency clearly.

For our two continuous optimization problems (RAS and FMS) the results
reproduce other existing values within a lower run time (in LAN); RAS has been



optimized quite accurately in all our skeleton versions, while FMS admits clear
improvements in accuracy that are only possible with specialized operators just
like the ones investigated in [15].

Table 3. Average results in the sequential platform.

Problem Algorithm opt. #evaluations time hits

MaxCut GA 1008 33794 68.2 3.3%
GASA1 1030 48823 96.3 9.9%

MTTP GA 219 42017 5.8 66.6%
GASA1 200 38297 5.5 100%

RAS CHC 0 9634 4.15 100%
CHCES1 0 14413 4.82 100%

FMS CHC 30.95 32270 19.65 100%
CHCES1 20.78 17962 26.62 100%

Table 4. Average results for the LAN platform.

Problem Algorithm opt. #evals time hits

MaxCut GA 1031 23580 49.1 16.6%
GASA1 1038 40682 89.6 16.6%

MTTP GA 201 40002 5.2 96.6%
GASA1 200 25601 5.8 100%

RAS CHC 0 7591 3.33 100%
CHCES1 0 13048 3.73 100%

FMS CHC 30.79 27341 9.2 100%
CHCES1 16.92 16558 11.45 100%

6 Concluding Remarks and Future Work

We have sketched the architecture of the mallba library, including its design
goals, skeleton implementation, available resources and communication issues
for parallelizing then in LAN and WAN platforms. Also, we have presented and
evaluated a large set of exact, heuristic, and hybrid algorithms on a benchmark
showing many different difficulties. Our goal in this paper has been to design,
implement and evaluate most popular classes of skeletons for optimization tar-
geted to the three platforms more readily accessible for researchers: sequential,
LANs and WANs.



Table 5. Average results for the WAN platform.

Problem Algorithm opt. #evals time hits

MaxCut GA 1014 14369 89.1 9.9%
GASA1 1031 28956 298.5 9.9%

MTTP GA 200 32546 25.7 100%
GASA1 200 34952 45.62 100%

RAS CHC 0 7606 133.45 100%
CHCES1 0 13681 10.0 100%

FMS CHC 29.29 29743 17.25 100%
CHCES1 13.41 17816 26.69 100%

Our experience after conducting all this work indicates that these skeletons
can be easily instantiated for a large number of problems. Sequential instanti-
ations provided by the users are ready to use in parallel; also, the parallel im-
plementations are scalable, and the evaluated skeletons have provided solutions
whose quality is comparable to ad hoc implementations for concrete problems.
The architecture supports easy construction of powerful hybrid algorithms and
a remarkably fast prototyping phase.

Our future work will focus on offering a more complete set of skeletons for
LAN and WAN, and to export the whole architecture to be utilized from foreign
non-mallba environments.
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A Appendix: Example of a Skeleton Instantiation

In this section we will highlight the main steps in a skeleton instantiation from
the point of view of a final user. Such a user would probably want to include
his/her problem in an existing skeleton to solve it. As an example let us consider
a Simulated Annealing heuristic (SA). If such a SA were to be used it would
be necessary to define class Move defining the neighborhood structure among
solutions. In Fig. 9 we show the design for such a SA algorithm. In that design,
it appears a set of new classes that are specifically included for the SA technique



(Move hierarchy). These new classes allow the user to generate new solutions
from the current one in order to search in its neighborhood.

Stop_Condition_1

Move

Default_Move

SetUpParams User_Statistics

State_Vble

State_Center

Problem

Solution

NetStream

Solver_SeqSolver_Lan Solver_Wan

Statistics

Stop_Condition

Required Classes

<<abstract>>

Solver

Fig. 9. UML Diagram describing the design of an optimization technique in mallba.
Lines ending with a triangle denote extension of class Solver by inheritance; the other
arrows points from the ”part” to the ”whole” expressing a whole-part aggregation
relationship. A diamond means ”one or more instances” included, e.g. of state variables
in a state center. We mark with an asterisk the user required classes.

Hence, a user of mallba will have to implement some data structures to
represent the problem considered, as well as providing an actual behavior for all
methods included in the interfaces of required classes, according to the previously
chosen representation.

A Appendix: Problems

In this section we present the optimization problems that will be used to test
our hybrid skeletons. We made a benchmark of XXX optimization tasks, and
included in it a complex instance for each one. For testing the algorithms in com-
binatorial optimization we consider the minimum tardy task problem (MTTP),
the error correcting code design problem (ECC), and the maximum cut problem
(MaxCut). Our representatives for continuous optimization are the Rastrigin
function (RAS) and the frequency modulation sounds (FMS).

The first two problems were chosen because their continuous nature make
them adequate for testing the ES algorithm. The first problem is of moder-
ate difficulty. The second one is a highly complex multimodal problem having
strong epistasis. The rest of problems represent a broad spectrum of challenging
intractable tasks in the areas of scheduling, coding theory, graph theory and
transportation. Almost all of them have a direct real world use.

We list the problems alphabetically for the reader’s commodity.



The Frequency Modulation Sounds Problem (FMS) The Frequency
Modulation Sounds [22] has been proposed as a hard real task consisting in
adjusting a general model y(t) to a basic sound function y0(t). The goal is to
minimize the sum of square errors given by Eq. 1.

The problem is to evolve six parameters x = (a1, w1, a2, w2, a3, w3) in order
y(t) to fit the target y0(t). The evolved and target models have the expressions
shown in Eq. 2 and Eq. 3.

The resulting problem is a highly complex multimodal function having strong
epistasis with minimum value f∗ = 0. For the experiments, we consider as an
optimum any solution with fitness value below 0.12.

FMS(x) =
N∑

i=0

(y(t)− y0(t))2 (1)

y(t) = a1 sin (w1tθ + a2 sin (w2tθ + a2 sin(w3tθ))) (2)
y0(t) = 1.0 sin (5.0tθ + 1.5 sin (4.8tθ + 2.0 sin(4.9tθ))) (3)

θ = 2π/100 ai, wi ∈ [−6.4, 6.35]

The Minimum Tardy Task Problem (MTTP) The minimum tardy task
problem is a task-scheduling problem [17]. Each task i from the set of tasks
T = 1, 2, . . . , n has an associated length li, the time it takes for its execution, a
deadline di before which the task must be scheduled and its execution completed,
and a weight wi. The weight is a penalty indicating the importance that a task
remain unscheduled. Scheduling the tasks of a subset S of T consists in finding
the starting time of each task in S, such that at most one task at a time is
performed, and such that each task finishes before its deadline.

The optimal solution is a feasible schedule S with the minimum tardy task
weight W which is the sum of weights of unscheduled tasks (Eq. 4).

min W =
∑

i∈T−S

wi (4)

A feasible solution must satisfy that no task is scheduled before the comple-
tion of an earlier scheduled one and all tasks are completed within its deadline.

For our experiments, we use a scalable problem instance ([17]) of size 100
task, “mttp100” (f∗ = 20).

The Maximum Cut Problem (MaxCut) The maximum cut problem [2]
consists in partitioning the set of vertices of a weighted graph into two disjoint
subsets such that the sum of the weights of edges with one endpoint in each
subset is maximized.

We use a binary string (x1, x2, . . . , xn) of length n where each digit corre-
sponds to a vertex. Each string encodes a partition of the vertices. If a digit is 1
then its corresponding vertex is in set V1, if it is 0 then the corresponding vertex
is in set V0. The function to be maximized is:



F (x) =
n−1∑

i=1

n∑

j=i+1

wij

(
xi(1− xj) + xj(1− xi)

)
(5)

For the experiments reported here, we use a a scalable problem instance ([2])
with a graph of size n = 100, “cut100” (f∗ = 1077).

The Rastrigrin Function (RAS) The generalized Rastrigin function (6) is a
problem with a large search space and a very large number of local optima ([20]).
This function is a non-epistatic function representing a typical test for EAs. For
the experiments, we have used a problem instance of 20 variables (fitness values
f∗ = 0).

Ras(xi|i=1..n) = 10 · n +
n∑

i=1

[x2
i − 10 · cos (2 · πxi)] xi ∈ [−5.12, 5.12] (6)
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