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Abstract
Approximate string matching is fundamental to bioinformatics and has been the subject of numerous
FPGA acceleration studies. We address issues with respect to FPGA implementations of both
BLAST- and dynamic-programming- (DP) based methods. Our primary contribution is a new
algorithm for emulating the seeding and extension phases of BLAST. This operates in a single pass
through a database at streaming rate, and with no preprocessing other than loading the query string.
Moreover, it emulates parameters turned to maximum possible sensitivity with no slowdown. While
current DP-based methods also operate at streaming rate, generating results can be cumbersome. We
address this with a new structure for data extraction. We present results from several implementations
showing order of magnitude acceleration over serial reference code. A simple extension assures
compatibility with NCBI BLAST.

1 Introduction
Approximate string matching (AM) is essential to many important applications. For example,
bioinformatics applications use AM to find similarities between DNA (nucleotide) or protein
(amino acid) sequences that have diverged through mutation or in the course of evolution.
Hamming distance, the number of differing characters, is one way to measure differences
between two strings, but does not tolerate insertions or deletions (indels). More generalized
scoring is based on the probability of particular character mutations and includes indels; it can
be handled using dynamic programming (DP) techniques. These have complexity O(mn) for
two strings of size m and n, respectively.

With the exploding size of biological databases, DP algorithms have often proven to be
impractical. This has spawned heuristic O(n) algorithms, the most famous being BLAST [1],
as well as a host of hardware implementations, particularly of DP methods [3,4,7,10,11,14,
18,19,22,27]. Somewhat surprisingly perhaps, little of this hardware is in general use.

We now summarize the state-of-the-art in FPGA-based AM. DP-based methods are optimal
in the sense that with m processing cells, their complexity is proportional to the data transfer
rate O(n). Their drawbacks, which have prevented their adoption, are their brittleness and the
lack of platforms available to the primary users. The first of these issues has been addressed
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in another recent study [25], while the latter is rapidly being addressed with the proliferation
of FPGA-based computational platforms.

BLAST implementations have so far been based closely on the original algorithm [6,15,17,
20]. These are substantially faster than the serial version and allow for easy integration into
well established systems. They have two drawbacks, however. The first is that they require
multiple passes, versus the single pass of the DP-based methods. The second is that in order
to process indels, another pass (e.g., using DP) is required, albeit on only a fraction of the
database. Further discussion of related work appears in Section 2 and Section 6.

There is another significant difference between the FPGA versions of DP and BLAST. Whereas
FPGA BLAST easily returns any number of the highest scoring alignments, FPGA DP only
returns one, or at most, a small number.

Solutions to these issues are the subject of this paper. We present a new FPGA BLAST
algorithm, TreeBLAST, that operates in a single pass at streaming rate. Significantly,
TreeBLAST emulates BLAST with that program’s parameters turned to maximum possible
sensitivity with no performance penalty. Indels are still handled independently. We also present
a structure that can be appended to FPGA DP that effciently extracts high-scoring local
alignments. All of these have been implemented on an FPGA development board with a Xilinx
Virtex-II Pro XC2VP70 -5 FPGA and evaluated for performance and validity.

A preliminary version of this work was presented at the 2006 IEEE Symposium on Field-
Programmable Custom Computing Machines [13]. There are many additions: the integration
of Tree-BLAST into a complete FPGA-based BLAST, an extension of TreeBLAST to handle
large queries, performance improvements, additional validation experiments, a new
(simplified) proof of TreeBLAST correctness, and an appreciation of the importance our DP
results extraction structure.

2 Review and motivation
The discussion in the next two subsections covers well-known material; for more detail, please
see, e.g., Durbin et al. [9] or Gusfield [12].

2.1 Alignment scoring theory
Sequences, or (more commonly) parts of sequences, are considered to have a possible
biological relationship if the scoring procedure outlined here yields a score having statistical
significance. Typically, one of the sequences has unknown function (e.g. a hypothesized gene)
while the other is the database being searched for matches. We refer to the former as the query
sequence of length m and the latter as the database of length n.

Since the query is matched with only part of the database at a time, it is convenient to talk about
scoring a possible alignment of the two sequences. Frequently, we are interested in the best
possible matches of any subsequence of the query with the database, a process called local
alignment. More precisely, an alignment of two sequences is a one-one correspondence
between their characters, without reordering, but with the possibility of a number of insertions
or deletions (i.e., gaps or indels).

The basis of alignment scoring is that character matches can be scored independently, and then
combined into an alignment score. Each possible character match has an independently
generated score, with positive scores for exact or close matches and negative scores for
mismatches. These scores are available a priori.
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We refer to the sequence of initial character-character scores as the ScoreSequence for the
alignment. If no indels are considered, then the alignment is said to be ungapped, and the
alignment score is generated by summing the score sequence. Gaps are handled by adding a
penalty per gap based on the length of the gap. Usually the first indel in a gap is assigned a
larger penalty than its successors; various, generally simple, functions are used to generate gap
penalties.

2.2 Scoring algorithms
A simple procedure for scoring ungapped alignments “slides” the database over the query, and
then, for each alignment, computes the score. This results in an O(mn) algorithm. Finding the
maximum local alignment can be done with the same complexity using the following
procedure:

SimpleScoring — for evaluating one alignment

Traverse ScoreSequence

Get next character match score into next_score

Add next_score to current_score

If current_total > max_score, update max_score

If current_total_score < 0, set current_total to 0

The naive extension of the above algorithm to deal with gaps has potentially unbounded
complexity, but a clever technique based on dynamic programming (DP) reduces the
complexity back to O(mn). Variations yield the well-known Needleman-Wunsch and Smith-
Waterman algorithms, for global and local alignment, respectively. The basic idea is now
described.

The Needleman-Wunsch algorithm for aligning two strings is normally presented as a 2D array,
such as that shown in Figure 1. Each axis represents one of the strings to be aligned, and steps
along each axis represent character positions within the string. Throughout this paper we use
the convention that the query string is along the vertical dimension and the database along the
horizontal. The algorithm proceeds as if there were a cursor in each string. When both cursors
step concurrently, that represents a match in one character position, whether or not the
characters in that position are the same. If one string’s cursor steps but the other cursor holds
its position, that represents a character in the first string being skipped, i.e. a gap being opened
in the comparison.

The alignment shown is drawn as one path through the 2D array of possibilities. Finding the
highest scoring alignment is an iterative process that scores all cells of the array and determines
the highest-scoring path through the array. Comparison starts as if the cursors in the two strings
were set to position 0, the position just before the first character in each string. The score Si,j
for grid cell (i, j) is computed using the following recurrence relation (see, e.g., [9]):

Line (1) is the base step of the recurrence, Lines (2) and (3) represent the left end-gap, and
Lines (4–6) represent the interior of the array. There, the decision is made to extend the
alignment by one position along both strings (4), or to assume a gap in one string or the other
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(5 or 6). The comparison function s(qi, rj) determines goodness of match between two
characters, qi and rj. The Sgap value represents the penalty for skipping a character in
performing the alignment. The more common affine function for computing multiple
successive skips, Sgap = Sopen+Scont*len—where Sopen is the penalty for opening a gap and
Scont the penalty for continuing a gap—only increases the complexity of the recurrence slightly.

The score at the lower right corner, Sm,n, represents the end-to-end goodness of match between
the two strings. When asking the question, “Is string A more similar to B or to C?”, the result
depends only on the scores for the A/B alignment and the A/C alignment. Other times, however,
the experimenter is interested in seeing which parts of the two strings are similar. In that case,
a second (traceback) pass is made over the computation array, starting with that final score
Sm,n, and following the highest preceding score back to the origin. Local alignment requires
only slight modification to the recurrence relation.

Although O(mn) is a remarkable improvement over the naive algorithms, it is still far too great
for large databases. A heuristic algorithm, BLAST, generally runs in O(n) time, and is often
sufficiently sensitive. BLAST is based on an observation about the typical distribution of high-
scoring character matches in the DP alignment tableau (see Figure 2): There are relatively few
overall, and only a small fraction are promising. This promising fraction is often recognizable
as proximate line segments parallel to the main diagonal.

We now sketch the classic BLAST algorithm [1]. There are three phases: identifying
contiguous high scores (parallel to the main diagonal), extending them along the diagonal, and
attempting to merge nearby extensions which may or may not be on the same diagonal. The
third phase, which accounts for gaps, is nowadays often replaced by a pass of Smith-Waterman
on the regions of the database identified as of possible interest. The O(mn) complexity of Smith-
Waterman is not as significant when only run on small parts of the database; e.g.,
Krishnamurthy, et al. [17], find that, for a set of BLASTn experiments, the final pass accounts
for well under one percent of the run time. This (effectively) makes the final pass O(m2) where
m ≪ n.

Detail of the first two phases follows. The first is called seeding and identifies positions in the
database where a group of contiguous characters (a word) have a high match score against a
word in the query string. Although the word size W is a parameter, the most common sizes are
3 for amino acids and 11 for nucleitides. The seed threshold T is also a parameter. The second
phase extends the seeds using the SimpleScoring procedure outlined above. There is one
difference, however: rather than extending until the current score reaches zero, extension is
curtailed when the current score is X (another parameter) less than the maximum.

In order to reduce the number of seeds that are extended, many implementations add another
filtering step: seeds are not extended unless there is another collinear seed within some number
of characters (ungapped), usually 40.

2.3 FPGA algorithms
The O(mn) complexity of the DP algorithms spawned not only heuristic alternatives, but also
a raft of special purpose hardware to accelerate the original algorithm [3,4,7,10,11,14,18,19,
22,27]. Most implementations follow the construction shown in Figure 3. Because of the
dependencies in the DP recurrence, computation can proceed in a wave-front along the diagonal
as shown in Figure 3a. Only the computation cells on that diagonal require hardware: Figure
3b shows those computation cells, along with the storage for the previous results on which
those computations depend. If the number of cells is greater than m, the size of the query string
(see e.g. [25]), the FPGA algorithm runs in O(n). The constant is the time-per-character required
to pump the database through the array.
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There have been fewer BLAST implementations, perhaps because the software version is
already fast. Still, the importance of the application and the potential for additional performance
make its acceleration an important topic. Current published FPGA implementations
concentrate on the first two passes and closely follow the serial algorithm [6,15,17,20]. The
algorithm used by TimeLogic [24] is not publically available.

3 Single Pass BLAST
3.1 Motivation

From the previous section, it appears that direct FPGA implementations of BLAST (FPGA/
BLAST) have a hard time competing with FPGA-based DP (FPGA/DP). FPGA/DP requires
only a single pass (and no preprocessing), and handles gaps. In this section we address the
former issue with an FPGA/BLAST algorithm that operates at streaming rate.

Still, why FPGA/BLAST when FPGA/DP is already so fast? Although it is not possible to be
asymptotically faster (e.g., a reduction from O(mn) to O(n) in the serial case), the basic cell
turns out to be simpler. This has two consequences: a reduction in cycle time, and an increase
in the number of processing cells—and so the size of the query string—that can fit on the chip.
Another issue is cultural: BLAST is widely used and well understood.

“BLAST” has been used to describe a variety of algorithms based on the description in the
previous section. There are two issues here. The first is that, as the third pass is already the
highly efficient FPGA/DP, we do not include that (in this section). As a consequence, gaps
need not be considered. The second issue is that the algorithm in this section makes some of
the sensitivity parameters irrelevent. In particular, many aspects of very high sensitivity are
achieved with no impact on performance. This has multiple benefits. It yields an even more
drastic improvement in performance over serial performance with comparable settings. Also,
alignments are likely to be returned that have been missed when sensitivity parameters have
been set at their nominal levels.

3.2 Algorithm basics
Before describing the algorithm itself, we make an observation about a fundamental distinction
between DP- and BLAST-based methods. The DP wavefront keeps track of the highest scoring
m paths, independent of their twists and turns; therefore, the DP systolic array is perpendicular
to the main alignment diagonal (as shown in Figure 4a).

In contrast, BLAST-based methods look for matches (seeds), and then extend these seeds
along the alignment diagonals. Reducing this to first principles, we could do the equivalent
work (with much more processing, but with maximal sensitivity) by successively processing
each alignment diagonal in its entirety, e.g., by using SimpleScoring. A sketch of a systolic
implementation is shown in Figure 4b. The result, however, would be O(m) processing time
for each of n alignments; impossibly slower, even than the serial BLAST algorithm. It is
possible, however, to create a streaming FPGA/BLAST based on this structure, as we now
show. We present two basic ideas, followed by a “strawman” algorithm. The result is that
processing is performed with a throughput of one alignment per cycle (per database stream).

1. A structure along the diagonal shown in Figure 4b is used to perform m character matches
in parallel and so generate, in a single cycle, the ScoreSequence for a particular ungapped
alignment (see Figure 5). The hardware to implement this for typical queries is a fraction of a
high-end FPGA. The only non-obvious detail is that, since the query string is held in place,
only a single column of the matching array needs to be associated with each element, not the
entire table (i.e., for proteins, 20 entries rather than 400).
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2. The hardware to implement each of m copies of SimpleScoring consists of an m-length
queue needed to store the ScoreSequence as it is processed, plus some arithmetic logic to
perform the sums and compares. The processing then takes m cycles. See Figure 5.

SimpleScoring2 — m-waySystolicBLAST

Construction: One m-length one-dimensional match-scoring array and m copies of a
SimpleScoring processor, each with an m-length queue.

On each cycle i:

1. Generate the ScoreSequence for alignment i

2. Transfer the ScoreSequence to the i%mth FIFO

3. Foreach of m SimpleScoring processors, advance the queue to process the next
character match score with the associated Scoring Unit.

This algorithm clearly performs ungapped alignments with maximal sensitivity and at the
streaming rate of one entire alignment per cycle. Just as clearly, the requirement of m2 register
elements makes it impractical for FPGAs in the forseeable future for sequence lengths of
biological interest. We now show how to address this problem and reduce the logic
requirement, including computational storage to O(m).

3.3 TreeBLAST
3.3.1 Description—The key idea behind TreeBLAST is that SimpleScoring can be
performed with iterative merging using a tree structure (as shown in the lower part of Figure
6), and that the tree nodes require only a small amount of logic. Further, the tree structure can
be pipelined level-by-level. As a result, ungapped alignment scores of maximum sensitivity
are generated every cycle. Most significantly, only m − 1 nodes are required; these fit on current
FPGAs for most queries. For large queries, the tree can be folded; for small queries, the tree
can be replicated.

As with TwoDSystolicBLAST, TreeBlast begins with a one dimensional systolic array that
outputs broadside the m character-character ScoreSequence. These match scores are then
iteratively combined into subsequence scores using the following logic. Note that only four
words of storage are required, but that there are two different node types. The latter reflects
the nature of the algorithm, with basis and induction step. We begin with some definitions.

Run ≡ A sequence being evaluated with, say, SimpleScoring, that currently has a positive score,
and so can be extended by a further merge. Somewhat tricky is that Runs can be extended in
either direction.

Cover ≡ The subsequence of the original ScoreSequence that is “Covered” by a node.

Maximum ≡ A subsequence that comprises the maximally scoring local alignment within a
sequence. The Maximum for a Cover can be null.

LeftRun, RightRun ≡ Sequences of characters that, if extended, could result in a new
Maximum. Runs have direction: a LeftRun extends to the left, a RightRun extends to the right.
The right-most (left-most) character of a RightRun (LeftRun) is the right-most (left-most)
character of the sequence.

Remainder ≡ In sequences with a LeftRun (RightRun), the part of the sequence that is not in
the LeftRun (RightRun).
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When we concatenate two sequences to form a new sequence, we refer to attributes xxx of the
the inputs as Left.xxx and Right.xxx, and of the output as New.xxx.

3.3.2 Proof of correctness—The idea is that a small constant amount of information about
a ScoreSequence of any length is sufficient to characterize, with that same information, a
concatenation between two such sequences. As this information includes the score of the
maximum local alignment, this procedure is sufficient to find the maximum local alignment
within any sequence constructed by pair-wise concatenation of any number of subsequences.

Theorem: TreeBLAST performs the ungapped alignment shown in SimpleScoring in a single
pass and O(m) space. The score of the maximum local ungapped alignment for the alignment
of the query sequence with the m +ith m-length subsequence of the database appears in variable
MaxScore of the root node in cycle m + i + logm + 1.

Proof: Following the algorithm, we use an induction with basis and induction steps. The basis
step is executed by the leaf nodes, the induction steps by the internal nodes. In both parts we
show that the computation of Sum, LeftRunScore, RightRunScore, and MaxScore is correct:
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Basis Step: Sum — By definition, Sum = Left + Right.

LeftRunScore (RightRunScore is analogous) — There are five possible cases which generate
three possible values:

1. Left and Right are both are positive.

Then LeftRunScore = Right + Left

2. Right is positive and Left is negative with ABS(Right) > ABS(Left).

Then LeftRunScore = Right + Left

3. Left is positive and Right is negative.

Then LeftRunScore = Left

4. Left and Right are both negative.

Then LeftRunScore = 0

5. Right is positive and Left is negative with ABS(Right) < ABS(Left).

Then LeftRunScore = 0

Maximum — There are four cases depending on whether none, one (Left or Right), or both
of Left and Right contribute.

Induction Step: Sum — By definition, Sum = Left.Sum + Right.Sum.

LeftRunScore — There are four cases:

1. Left.LeftRunScore > 0 and Right.LeftRunScore > Left.Remainder

Then New.LeftRunScore = LeftRunScore + Left.Remainder + Right.LeftRunScore
= Left.Sum + Right.LeftRunScore

2. Left.LeftRunScore > 0 and Right.LeftRunScore <= Left.Remainder

Then New.LeftRunScore = Left.LeftRunScore

3. Left.LeftRunScore = 0 and |Right.LeftRunScore| > |Left.Sum|

Then New.LeftRunScore = Left.Sum + Right.LeftRunScore

4. Left.LeftRunScore = 0 and |RightRunScore| <= |Left.Sum|

Then New.LeftRunScore = 0

Referring to Figure 7, in (a) we see case 2 while in (b) we see cases 1 and 3.

MaxScore — There are three cases:

1. New.Maximum is entirely within Left.

Then New.MaxScore = Left.MaxScore

2. New.Maximum alignment is entirely within Right.

Then New.MaxScore = Right.MaxScore

3. New.Maximum overlaps Right and Left.

Then New.Maximum must necessarily consist of the concatenation of following two
alignments: (i) the maximum alignment in Right that can be obtained by starting at
the right-most value and moving left, and the maximum alignment in Left that can be
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obtained by starting at the left-most value and moving right. Since these two
alignments are exactly Left.RightRun and Right.LeftRun, respectively, the result of
this case is New.MaxScore = Left.RightRunScore + Right.LeftRunScore.

Referring to Figure 8, (a), (b), and (c) illustrate cases 1, 2, and 3, respectively.

4 Extracting Results from the Smith-Waterman Structure
The FPGA/BLAST algorithm of the previous section has the additional advantage that the
highest scoring result for each ungapped alignment is easily extracted: a priority queue is
simply appended to the root of the tree. DP-based methods, however, are not amenable to such
simple structures. The reason (illustrated in Figure 2) is that the FPGA/DP array processes m
alignments simultaneously; in contrast, FPGA/BLAST only processes one.1 This is a necessary
consequence of being able to exhaustively score all ungapped alignments. As a result, the
FPGA/DP array is sufficient to retrieve only a single maximum, not the other highest scoring
alignments.

This issue becomes critical when DP is used to process TreeBLAST alignments. Recall that
the first two passes of BLAST, and the TreeBLAST emulation, are used to indicate the foci of
interest to be examined further by a DP pass. The problem is that, unlike BLAST, TreeBLAST
does not distinguish among (possibly) multiple “good” scoring subsequences (local
alignments) that could occur within a single alignment, returning only the score of the highest.
If DP also only returns a single score, then information critical to the BLAST user may have
been lost: in typical BLAST usage, not just the maximum alignment is considered important,
but rather some number of those scoring highest.

This situation is rectified by appending a priority tree to the DP systolic array from Figure 3
(as shown in Figure 9). The inputs to the leaf nodes are the current local maxima in each node
of the systolic array. On each cycle, the scores in each child node are compared with that in
the parent node, and exchanged if necessary so that the maximum of the three ends up in the
parent node. This way, the highest alignment scores percolate to the root of the tree. The root
score is then entered into a priority queue as is done with the FPGA/BLAST algorithms.

The number of local alignments retrieved, as with the FPGA/BLAST algorithms, is limited
only by the size of the priority queue and the frequency with which it is drained. Note that it
is possible for the priority tree to lose high scoring local alignments, but only with very low
probability. For this to happen, several independent high scoring local alignments would need
to be generated in adjoining leaf nodes on the same cycle.

The area cost of the priority tree is significantly less than the base FPGA/DP array.

5 Implementation and Results
5.1 Basic Operation and Generic FPGA Implementation Issues

Basic Operation—The query sequence, database, and scoring matrix are specified by the
user. The FPGA is initialized with the query sequence and scoring matrix. The database is
streamed from disk or memory through the FPGA; high scores, their corresponding database
sequences, and positions in those sequences are returned. The highest-scoring sequences
(HSSs) are sent on to the (reconfigured) FPGA for gapped alignment using Smith-Waterman.
The HSSs passed from TreeBLAST to Smith-Waterman are filtered using the same scoring

1In TreeBLAST, the processing of multiple alignments can overlap, as is done in our pipeline implementation, but in a way that is easily
separable.
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threshold that is used by NCBI BLAST. Conversion from raw scores to final output is done
using code derived from the NCBI source.

As previously described, TreeBLAST uses no heuristics and so returns a superset of results
returned by standard BLAST codes. There is some concern that only those alignments be
returned that would be from, say, NCBI BLAST. This is accomplished by adding a pass on the
host that uses NCBI BLAST itself. The original query is reprocessed with respect to just the
highest scoring sequences, and unwanted sequences are necessarily removed. For reasonable
thresholds and non-trivial databases, the set of returned alignments is < .01% of the database
size; the increased processing is therefore neglibible.

Generic FPGA Implementation Issues—In previous sections, the algorithms are
presented independent of both target hardware and character-character scoring function. We
now consider some issues in implementing TreeBLAST on a generic FPGA and for sequences
of biological interest. Here we describe protein alignment; nucleic acid alignment is simpler
and uses the same basic mechanisms. There are three issues: character-character scoring to
derive the score sequence, processing the score sequence to obtain the alignment score, and
streaming the data base through the FPGA.

1. Character-character scoring. For proteins, character-character scoring is a table look-up into
a pre-selected 2D scoring matrix. On an FPGA, for each character in the query sequence, the
corresponding column of the scoring matrix is held in one of the hundreds of independently
addressable block RAMs (BRAMs) available on typical high-end FPGAs. There are two
optimizations. One is scoring multiple characters with each look-up, rather than only one. The
size of the look-up table increases exponentially with the number of characters; with current
FPGA BRAMs, two-character tables fit easily, but those for three characters do not. The second
optimization uses the multiple ports of the BRAMs to enable two look-ups per BRAM per
cycle. Combining these optimizations allows for the scoring of four pairs of amino acids per
BRAM per cycle.

2. The logic for processing the score sequence follows directly from Procedure TreeBLAST
in Section 3.3.1, with the following addition and optimization. The size of the processing tree
depends on the amount of logic available on the FPGA, a quantity typically only loosely related
to the number of BRAMs. Therefore, tree size is only coincidentally related to the size of the
query and to the size of the score sequence that can be processed per cycle. There are two cases,
depending on whether the query is larger or smaller than the available processing logic. Queries
that are larger than the tree size are handled by folding the tree. This allows the use of each
systolic array cell in the tree for multiple character evaluations, with a proportional reduction
in throughput. The number of folds is limited only by the availability of buffer space; for current
BRAMs, at least 32-1 folding is reasonable. For queries smaller than half the tree size, a simple
optimization is possible: In this case the tree can be replicated and multiple streams processed
in parallel.

3. The rate the database is streamed through the FPGA depends on the number of streams and
the throughput per stream. Since the I/O capacity of modern FPGAs is high, with several
hundred signal pins and numerous multi-Gb communication connections, the streaming rate
is likely to be limited by the capability of the system to get the database to the FPGA.

5.2 Sample Implementation
The target system for our experiments is an Annapolis Microsystems WildstarII-Pro board with
two Xilinx Virtex-II Pro XC2VP70 -5 FPGAs, although only one is used. This board is housed
in a Dell workstation-class PC with a 2.8GHz Xeon processor, 2GB of memory, and running
Windows XP. One of the FPGAs is used for TreeBLAST, and then reconfigured for the DP
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pass. The board has a 133MHz 32-bit PCI interface. The databases are stored on a 150 GB
IDE-connected NTFS drive. Database sequences are streamed using DMA code from the
Annapolis Micro Systems software library. The routines used for disk I/O and performance
measurement are the C++ fstream libraries and Dskspd utility from Microsoft. We have also
configured TreeBLAST onto a Xilinx XC4VLX160 through post place-and-route. None of the
designs has been optimized beyond using good digital design practices: e.g., no floor planning
has been done.

On the VP70, the BRAM count limits the query size that can be handled without folding to
slightly over 1200. The limiting factor for this chip, however, is the number of slices, which
reduces that number to 600. The cycle time is 9ns. We have also implemented TreeBLAST on
a Xilinx XC4VLX160 through post place-and-route. Here, we obtain an unfolded query size
of 1024 without folding, and a clock of 5.6ns. This last design uses 90% of the slices, 88% of
the block RAMs, and 78% of the lookup tables.

For DP, in previous work we implemented a large number of variations [25]. Perhaps the most
“vanilla” of these holds a query of size 150 and has an operating frequency of 40MHz. The
database is processed at one character per cycle. Adding the priority tree filtering network
yields an operating frequency of 33MHz and a query size of 120. DP and DP-plus-filtering
should both benefit analogously to TreeBLAST when implemented on the Xilinx
XC4VLX160.

5.3 Verification and Validation
Verification—The raw scores generated by TreeBLAST were verified through various
reference programs, including NCBI BLASTp.

Validation—For validation we investigate TreeBLAST output with respect to NCBI BLAST.
This is an issue because TreeBLAST performs only ungapped alignment, and because it is not
possible for TreeBLAST to emulate NCBI input parameters such as word size and threshold,
TreeBLAST sensitivity being maximal by default. For operation we assume the procedure
outlined in Section 5.1: TreeBLAST, filtering of HSSs, then Smith-Waterman.

1. For any given alignment, are the E-values returned by the TreeBLAST-based system the
same as those returned by NCBI BLAST?

The E-value, or expectation value, describes how often an alignment with a given score is
expected to occur at random. Matching E-values for a given alignment is critical because this
measure provides a common statistical basis for comparison among all possible alignments.
E-values depend on query and database compositions and the raw score, with query and
database parameters typically being computed off-line. It therefore suffices to return identical
alignments (and therefore raw scores), and to use the same E-value computation to guarantee
correct E-Values.

2. In comparison with NCBI BLAST, does TreeBLAST miss any alignments? Because of its
inherently maximal sensitivity, we expect TreeBLAST to return more alignments than one-hit
ungapped NCBI BLAST; the opposite would indicate a problem.

We begin by describing the process algorithmically, then describe specific experiments.
TreeBLAST scores all possible segment pairs; HSSs are selected using the same filtering used
by NCBI BLAST. NCBI BLAST on the other hand, uses heuristics to select a subset of segment
pairs for scoring. Therefore, if TreeBLAST has been implemented correctly, it should not miss
any alignments returned by NCBI BLAST.
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For validation, we emulate BLASTp. We compare with both the standard two-hit algorithm
[2] as well as the older one-hit version. In both cases the query source was e. coli and the subject
the non-redundant protein database nr. Fifteen source sequences were chosen at random.
Reporting cutoffs were chosen to return the top 100 matches. Also for both, the parameters
were as follows: neighborhood size = 3, threshold for seed extension = 11, dropoff for ungapped
extension = 7 bits. For all experiments, TreeBLAST returned all alignments returned by NCBI
BLAST, and with identical score and location. In comparison to the one-hit algorithm,
TreeBLAST typically returned two additional alignments not returned by NCBI BLAST; for
the two-hit algorithm, this number is typically five to ten.

3. In comparison to the first two passes of NCBI BLAST, does TreeBLAST send too many
alignments to the DP pass? By eliminating the filtering, will the DP phase be overwhelmed
with work?

We find that this is not the case. Algorithmically, the reason is that the filtering of HSSs is
unrelated to how candidate HSSs are generated. In the same experiments as just described, we
find that the one-hit algorithm only sends less than 20% more HSSs to the DP pass than the
two-hit algorithm. Streaming FPGA/DP easily handles this increased workload.

5.4 Performance
We begin by discussing performance of implementations of the TreeBLAST algorithm.
Performance of the entire TreeBLAST-based system is described below. As TreeBLAST is a
streaming algorithm, its throughput depends simply on the bandwidth of the tightest bottleneck.
We divide the considerations into two categories, getting streams to the FPGA, and streaming
data through the FPGA; we begin with the latter.

Bandwidth through the FPGA depends on the operating frequency, the number of streams, and
for queries larger than the tree size, the number of folds. As stated above, for the Xilinx Virtex-2
VP70 queries up to size 600 can be processed without folding at 110MHz, for a throughput of
110M database amino acids per second (Maa/sec). In folded versions, queries of up to size
1200 can be processed at 55Maa/sec, up to size 2400 at 22.5Maa/sec, and so on. For the V4
LX160 (in simulation only), queries up to 1024 can be processed at 178 Maa/sec, with similar
reductions in performance for larger queries. For smaller queries, however, there is a
proportional increase in performance. For example, on the V4 for typically sized queries of
300 residues, the throughput is over 500Maa/sec.

Getting streams to the FPGA depends on the overall system, with many possible alternatives.
In our configuration, we achieved a transfer rate from disk to FPGA of 55MB/sec, and from
host memory to FPGA of 320 MB/sec. Queries with respect to the FASTA nr amino acid
database (1.8GB), which fits in host memory, were processed in the following times: 8.2
seconds (query size 200–300), 16.4 seconds (query size 300–600), and 32.8 seconds (query
size 600–1200). If the VP70 were replaced with a Xilinx Virtex-4 LX160, we estimate the
processing time of, e.g., queries of size 300–500 to be less than 6 seconds; the limit here is the
bandwidth of the I/O bus. In both cases, queries with respect to smaller databases are
proportionally faster.

Given the simplicity of the algorithm and the accurate characterization of basic parameters in
FPGA systems, it is possible to estimate the performance of TreeBLAST in a tighly coupled
system such as, e.g., the XtremeData XD1000 [26], the SGI RASC RC100 [23], or the SRC
SR-7 [21]. Each of these has sufficient memory proximate the FPGA to hold a protein database
such as nr, and sufficient memory/FPGA bandwidth to support 16 byte-wide streams. For
expected workload, we examine statistics gathered by NCBI [8] for BLASTp. For database
selection, 80% of queries are with respect to nr; the distribution of query sizes also follows the
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distribution of sequence sizes in nr with 300 being the average and over 90% of queries having
fewer than 1000 residues. We weight these potential queries by size; assuming a Xilinx Virtex-2
VP100, queries of 513–1024 have weight 1, 257–512 weight .5 (two trees), 1025–2048 weight
2 (one fold), etc. and obtain a weighted average of .61. This yields an average response time
of 10 seconds. For large numbers of sequences tighter packing is possible (e.g., large queries
with small). Then the average number of streams increases from 1.6 to 2.3 and the average
response time reduces to 7 seconds. Table 1 shows results of running an FPGA-bound system
such as those just described, for various FPGAs, over a range of query sizes with respect to
the nr database. For reference, some sample results from running NCBI BLASTp on a PC
(described in Section 5.2) are given. Standard settings were used.

We now extend the performance discussion to complete “end-to-end” BLAST
implementations based on TreeBLAST (FPGA/BLAST). Proper performance comparison of
FPGA/BLAST with NCBI BLAST run on a generic PC (PC/BLAST) requires accounting for
the gapped extension (DP) phase as well as other differences in pre- and post-processing.

The FPGA acceleration of the DP phase has been researched extensively with speed-ups in the
hundreds common (see, e.g., [25]). The obvious method of implementing FPGA/BLAST is
therefore to have the FPGA process both ungapped and gapped phases. The performance
implications are as follows. Depending on the query and the database, and on BLASTp versus
BLASTn, PC/BLAST spends from .03% to 34% of the time performing the DP phase [15,
17]. One potential concern is that with FPGA accelerators, the critical resource is available
logic: both FPGA/BLAST and FPGA/DP benefit from using the whole chip. The time to
reconfigure the FPGA, however, is small in comparison to processing of all but the simplest
queries. To summarize: For FPGA/BLAST, the total additional processing time for adding the
gapped extension is almost always less than 10% of that required for the rest of the computation,
and usually less than 1%.

Two other differences relate to preprocessing. The first is that PC/BLAST requires that the
database be preprocessed to create the seed index, a step not required by FPGA/BLAST.
Another is the relative time to load the database from disk into memory. For a given disk I/O
system, the time is similar for PC and FPGA versions. But because FPGA/BLAST is so much
faster, a latency that is negligible for PC/BLAST can dominate in FPGA/BLAST. At least for
proteins, however, even large databases (e.g., nr, which also accounts for most queries) fit in
memory for common PC configurations. Once loaded, the database can be used for any number
of queries.

6 Discussion and Future Work
We have presented an algorithm for accelerated FPGA/BLAST. There are two parts:
TreeBLAST, which emulates the first two passes of the common BLAST algorithm, and an
extension to the well-known FPGA/DP algorithm that eases data extraction. We are able to
support all but the largest queries without splitting, although for queries greater than twice the
average (on the Xilinx Virtex-2 VP70, three times the average on the V-2 VP100 and V4
LX160) some slowdown results.

The BLAST cell is somewhat smaller and simpler than the DP cell: FPGA/DP queries must
be folded four times as much as FPGA/BLAST queries; also, FPGA/BLAST operation is three
times faster than FPGA/DP. On the other hand, FPGA/DP handles gaps. Combining TreeBlast
with FPGA/DP, where the latter handles only the highest scoring alignments, provides high
performance gapped alignment.

In previous work we determined FPGA/DP to be 150× to 400× faster than PC implementations.
Such a determination is harder with BLAST: performance is highly workload dependent, both
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in query size and selection. Even so, FPGA/BLAST achieves substantial speed-up over the
serial version. And, the performance of the FPGA-based system is independent of sensitivity
parameter settings.

Since the preliminary version of this work was published [13], Jacob, et al. have presented a
different version of FPGA/BLAST, Mercury BLASTp [15], based more closely on the original
BLAST algorithm. This version obtains similar performance to that described here (both
versions have better performance than described in [13]), and allows some manipulation of
parameters. Mercury BLASTp makes compromises, some of which are as follows: for
performance, word size of 4 is used to emulate a word size of 3; the two-hit algorithm is modeled
by a heuristic; and, by certain use of fixed size structures, it may miss some seeds. Still, the
correlation—at the level of finding high scoring database sequences—between NCBI BLAST
and Mercury BLASTp is very high.

To compare the approaches: the advantage of Mercury BLAST is its reduction of work in the
extention phase through the use of Bloom filters. It is also fully integrated into a production
system and well-characterized. The advantage of TreeBLAST is its fidelity to the original
concept of sequence alignment: because of this it emulates BLAST as if that program were
running with highest possible sensitivity; and it does this without loss of performance. Another
advantage of TreeBLAST is its simplicity. It remains to be determined whether one or the other
will have significantly better performance once both algorithms have been tuned and ported
to future generation FPGA technology. For example, relative performance is likely to depend
on characteristics of the associated memory system, such as the number of memory banks.
That is, Mercury BLAST reduces the amount of data that is examined per query (after
preprocessing), but requires random access; TreeBLAST looks at the entire database, but does
this entirely with data streams.

We now describe some future work. Important is analyzing the biological implications of
increased sensitivity. The extension to parallel systems (i.e., for higher throughput and lower
response time) is immediate: queries and databases are partitioned across multiple PC/FPGA
components. The methods described here are also compatible with integrated approaches, as
is being carried out Muriki et al. [20], and with embedding directly into an I/O device [5].

Acknowledgments
We would like to thank A. Jacob and J. Lancaster for pointing out the significance of DP filtering, and for a very useful
discussion on various issues in accelerating BLAST with FPGAs. We also thank the anonymous referees for their
many helpful comments.

References
1. Altschul S, Gish W, Miller W, Myers E, Lipman D. Basic local alignment search tool. Journal of

Molecular Biology 1990;215:403–410. [PubMed: 2231712]
2. Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lippman D. Gapped BLAST and PSI-

BLAST: A new generation of protein database search programs. Nucleic Acids Research 1997;25(17):
3389–3402. [PubMed: 9254694]

3. Bluethgen, H-M.; Noll, T. A programmable processor for approximate string matching with high
throughput rate; Proc. ASAP; 2000. p. 309-316.

4. Borah, M.; Bajwa, R.; Hannenhalli, S.; Irwin, M. A SIMD solution to the sequence comparison problem
on the MGAP; Proc. ASAP; 1994. p. 336-345.

5. Chamberlain, R. Embedding applications within a storage appliance; Proc. HPEC; 2005.
6. Chang, C. BLAST Implementation on BEE2. 2004.

Herbordt et al. Page 14

Parallel Comput. Author manuscript; available in PMC 2008 December 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



7. Chow, E.; Hunkapiller, T.; Peterson, J. Biological information signal processor; Proceedings of the
International Conference on Application Specific Systems, Architectures, and Processors; 1991. p.
144-160.

8. Coulouris, G. BLAST benchmarks. NCBI/NLM/NIH Presentation. 2005 Jun.
9. Durbin, R.; Eddy, S.; Krogh, A.; Mitchison, G. Biological sequence analysis. Cambridge, U.K.:

Cambridge University Press; 1998.
10. Dydel, S.; Bala, P. Large scale protein sequence alignment using FPGA reprogrammable logic

devices; Proc. Field Prog. Logic and Applications; 2004.
11. Guccione, S.; Keller, E. Gene matching using JBits; Proc. Field Prog. Logic and Applications; 2002.

p. 1168-1171.
12. Gusfield, D. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational

Biology. Cambridge, U.K.: Cambridge U. Press; 1997.
13. Herbordt, M.; Model, J.; Sukhwani, B.; Gu, Y.; VanCourt, T. Single pass, BLAST-like, approximate

string matching on FPGAs; Proc. Field Prog. Custom Computing Machines; 2006.
14. Hoang, D. Searching genetic databases on SPLASH 2; Proc. FCCM; 1993. p. 185-191.
15. Jacob, A.; Lancaster, J.; Buhler, J.; R, C. FPGA-Accelerated seed generation in Mercury BLASTP;

Proc. Field Prog. Custom Computing Machines; 2007.
16. Korf, I.; Yandell, M.; Bedell, J. BLAST: An Essential Guide to the Basic Local Alignment Search

Tool. O’Reilly and Associates; 2003.
17. Krishnamurthy, P.; Buhler, J.; Chamberlain, R.; Franklin, M.; Gyang, K.; Lancaster, J. Biosequence

similarity search on the Mercury system; Proceedings of the International Conference on Application
Specific Systems, Architectures, and Processors; 2004. p. 365-375.

18. Liptov, R.; Lopresti, D. Comparing long strings on a short systolic array. In: Moore, W.; McCabe,
A.; Uquhart, R., editors. Systolic Arrays. Adam Hilger; 1986.

19. Lopresti D. P-NAC: A systolic array for comparing nucleic acid sequences. IEEE Computer 1987;20
(7):98–99.

20. Muriki, K.; Underwood, K.; Sass, R. RC-BLAST: Towards an open source hardware implementation;
Proceedings of the International Workshop on High Performance Computational Biology; 2005.

21. Poznanovic, D. SRC-7 system characteristics and design considerations. Presentation, Reconfigurable
Systems Summer Institute; 2006 Jul.

22. Roberts L. New chip may speed genome analysis. Science 1989;244(4905):655–656. [PubMed:
2717944]

23. Silicon Graphics, Inc. SGI RASC RC100 Blade. 2007. www.sgi.com/pdfs/3920.pdf
24. Time Logic Corp. 2007. Web Site. www.timelogic.com
25. VanCourt T, Herbordt M. Families of FPGA-based accelerators for approximate string matching.

Microprocessors and Microsystems 2007;31(2):135–145.
26. XtremeData, Inc. XD1000 Development System. 2007. www.xtremedata.com
27. Yu, C.; Kwong, K.; Lee, K.; Leong, P. A Smith-Waterman systolic cell; Proc. Field Prog. Logic and

Applications; 2003. p. 375-384.

Herbordt et al. Page 15

Parallel Comput. Author manuscript; available in PMC 2008 December 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.sgi.com/pdfs/3920.pdf
http://www.timelogic.com
http://www.xtremedata.com


Figure 1.
Alignment example: Indels are indicated by hyphens; mismatches by lower case.
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Figure 2.
Shown is a tableau formed by all-to-all character matching, and used in DP-based methods.
Matches tend to cluster along alignments of biological interest (after Figure 5.5 in Korf, et al.
[16]).
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Figure 3.
Shown is a dynamic programming based computation array. (A) 2D structure of the
computation, showing the order in which grid cells can be evaluated. (B) Linear computation
structure corresponding to the evaluatable cells at one time step.
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Figure 4.
Alignment tableau showing distinction between DP and BLAST systolic arrays. While both
hold the query string, and traverse the tableau one character at a time, the flow of the database
through the array is reversed.
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Figure 5.
Shown is the SimpleScoring2 algorithm. The systolic array holds the query string while the
database flows through systolically. Each alignment is scored by one of the queue/processor
units.
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Figure 6.
Shown is the TreeBLAST algorithm. The systolic array holds the query string while the
database flows through systolically. Scores are evaluated by pipelined, level-by-level, tree
traversal.
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Figure 7.
Shown are the two possible non-trivial terms for computing the LeftRunScore.
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Figure 8.
Shown are the three possible non-trivial terms for computing the MaxScore.
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Figure 9.
Shown is the mechanism for extracting results from the DP appended to the DP systolic array.
The highest local alignment scores percolate towards the root where they are entered into a
priority queue.
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Table 1
Results in seconds of TreeBLAST assuming an FPGA-bound configuration for various query sizes and FPGAs with
respect to the nr database. NCBI BLAST is end-to-end; for comparison less than 10% needs to be added to the FPGA
numbers (see text).

query length

platform 200 500 1000 2000

Xilinx Virtex-II Pro VP70 8 16 32 64
Xilinx Virtex-II Pro VP100 4 8 16 32
Xilinx Virtex-4 LX160 2.5 5 10 20
NCBI BLAST on a PC 49±3 110±6 163±7 324±9
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