
Multilevel Summation of Electrostatic Potentials Using Graphics
Processing Units*

David J. Hardya, John E. Stonea, and Klaus Schultena,b,*
aBeckman Institute, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL,
61801
bDepartment of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green, Urbana, IL,
61801

Abstract
Physical and engineering practicalities involved in microprocessor design have resulted in flat
performance growth for traditional single-core microprocessors. The urgent need for continuing
increases in the performance of scientific applications requires the use of many-core processors and
accelerators such as graphics processing units (GPUs). This paper discusses GPU acceleration of the
multilevel summation method for computing electrostatic potentials and forces for a system of
charged atoms, which is a problem of paramount importance in biomolecular modeling applications.
We present and test a new GPU algorithm for the long-range part of the potentials that computes a
cutoff pair potential between lattice points, essentially convolving a fixed 3-D lattice of “weights”
over all sub-cubes of a much larger lattice. The implementation exploits the different memory
subsystems provided on the GPU to stream optimally sized data sets through the multiprocessors.
We demonstrate for the full multilevel summation calculation speedups of up to 26 using a single
GPU and 46 using multiple GPUs, enabling the computation of a high-resolution map of the
electrostatic potential for a system of 1.5 million atoms in under 12 seconds.

Keywords
multilevel summation; electrostatics; molecular dynamics; molecular modeling; GPU computing

1 Introduction
The electrostatic fields surrounding biomolecules govern many aspects of their dynamics and
interactions. Three dimensional “maps” of these electrostatic fields are often used in the process
of constructing and visualizing molecular models, in analyzing their structure and function,
and as a means of accelerating molecular dynamics simulations of very large systems. The
computational requirements for evaluating electrostatic fields using the most efficient methods

*Supported by the National Institutes of Health, under grant P41-RR05969, and the University of Illinois through an IACAT grant.
© 2008 Elsevier B.V. All rights reserved.
*Corresponding author. Email addresses: dhardy@ks.uiuc.edu (David J. Hardy), johns@ks.uiuc.edu (John E. Stone),
kschulte@ks.uiuc.edu (Klaus Schulten).
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.
PACS: 31.15.xv

NIH Public Access
Author Manuscript
Parallel Comput. Author manuscript; available in PMC 2010 March 1.

Published in final edited form as:
Parallel Comput. 2009 March 1; 35(3): 164–177. doi:10.1016/j.parco.2008.12.005.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

scale linearly with problem size. It is becoming increasingly common for biomedical
researchers to construct and simulate biomolecular systems containing over 1 million atoms,
and recently, a 100-million-atom molecular dynamics simulation was specified as a model
problem and acceptance test for the upcoming NSF “Blue Waters” petascale supercomputer.
At these problem scales, even linear time algorithms become a computational constraint for
molecular modeling applications, and the use of novel accelerator devices and hardware
architectures becomes attractive.

As power and heat dissipation constraints have prevented microprocessor clock rates from
increasing substantially in the last several years, the high performance computing community
has begun to look to accelerator technologies as a means of achieving continued performance
growth for compute-bound applications. Graphics processing units (GPUs) have recently
emerged as an exciting new acceleration option and have gained particular interest due to high
performance, low cost, widespread availability, and the existence of the high-performance
graphics market which helps sustain continued research and development investments in GPU
technology.

The high performance of GPUs is primarily attributable to to their design as throughput-
oriented, massively parallel, highly multithreaded processor arrays. GPUs are designed as
parallel processors out of the necessity to perform rasterization and complex shading arithmetic
on large geometric models resulting in multi-million pixel images, typically rendered 30 to
120 times per second. State-of-the-art GPUs consist of hundreds of arithmetic processing units,
achieving peak floating point arithmetic performance levels approaching 1 trillion floating
point operations per second.

Several groups have recently reported GPU-accelerated algorithms that achieve 10- to 100-
fold speedups compared to current generation CPUs, providing commensurate application
performance increases up to the limits dictated by Amdahl’s law. Several of the early successes
with GPU acceleration have been algorithms and applications related to molecular modeling
[1–5].

In this paper we review the use of the multilevel summation method (MSM) for calculating
electrostatic potentials and compare the performance of an optimized CPU implementation of
the method with a newly-developed GPU-accelerated implementation, building upon our
previous work.

2 Background
Molecular modeling applications require the computation of potential energies and forces
between interacting atoms. The empirical potential functions employed for a classical
mechanics treatment of the physical behavior of bio-molecules introduce bonded terms,
describing spring and angle oscillations of the atoms in the molecular structure, and nonbonded
terms, describing the gradual attraction and hardcore repulsion between pairs of atoms (van
der Waals interactions) and the pairwise interaction due to the assignment of fixed partial
charges to the atoms (electrostatic interactions). In the advent of systems biology, we have the
means to use the computer as a computational microscope that permits investigation of atomic
level descriptions of increasing size and complexity, with a detailed view of the mechanical
behavior of molecules working together. As we progress to larger systems, the computation of
electrostatics is of paramount importance, providing the longer range forces that drive the
overall conformational changes.

Hardy et al. Page 2

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

2.1 Electrostatics and Multilevel Summation
The multilevel summation method (MSM) is a fast algorithm for computing electrostatics [6,
7], employing hierarchical interpolation of softened pair potentials to calculate an
approximation to the O(N2) pairwise interactions with just O(N) computational work. This
approach offers comparable accuracy and performance to the more commonly used particle-
mesh Ewald (PME) [8,9] calculation for atomic systems with periodic boundary conditions.
However, MSM is more flexible than PME since MSM is also applicable to non-periodic
boundaries. MSM also permits improved parallel scalability over PME, with a communication
structure for a spatial domain decomposition involving nearest neighbor communication with
a reduction operation followed by a broadcast. PME, on the other hand, requires performing
two many-to-many communication stages to compute two 3D FFTs over the reciprocal space
lattice points. Furthermore, MSM offers improved multiscale resolution due to calculation of
more slowly varying potentials on lattices of coarser spacing, making MSM better suited to
multiple time stepping than PME [10]. For non-periodic boundaries, the fast multipole method
(FMM) is better known and more widely used [11,12]. The spherical harmonics used for FMM
converge faster than the known interpolation schemes for MSM which allows very high
accuracy from FMM to be accomplished with less cost. However, FMM suffers from
computing discontinuous potentials and forces which are bad for dynamics [13], as they result
in heating that gradually destabilizes a simulation. If used for dynamics, FMM requires high
enough accuracy that it turns out to be much less efficient than MSM [6].

The use of hierarchical interpolation of softened pairwise potentials was initially introduced
for solving integral equations [14] and later applied to long-range charge interactions [15]. We
use the splitting and interpolation strategies introduced by Skeel, et al., [6] which compute
continuous forces for dynamics. Our application here is to compute electrostatic potential maps,

(1)

where each electrostatic potential Vi is computed at lattice point position ri, with the sum taken
over the atomic coordinates rj that have associated fixed partial charge qj. The factor ε0 is the
dielectric constant.

We have previously introduced [1] the use of MSM for computing electrostatic potentials but
provide here a brief summary of the mathematical description for completeness. MSM
approximates the sums in Eq. (1) by first exactly splitting the 1/r factor into a series that contains
a leading short-range part g* followed by ℓ smoothed potentials,

(2)

where each successive potential is more slowly varying. We do this by defining the potentials
in terms of an inter-atom cutoff distance a and an unparameterized smoothing γ of the function
1/ρ,

(3)

Hardy et al. Page 3

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

We choose γ using the second order Taylor expansion of s−1/2 about s = 1,

(4)

so that each of the potentials g*, g0,…,gℓ−2 smoothly vanish for pairwise distances beyond
cutoffs a, 2a,…,2ℓ−1a, respectively.

We also define interpolation operators,

(5)

where the positions are defined on a uniform lattice of spacing 2kh with corresponding nodal

basis functions defined by

(6)

in terms of a finest lattice spacing h and a dimensionless basis function Φ of unit spacing and
having local support. We choose Φ to be the linear blending of quadratic interpolating
polynomials,

(7)

providing a continuously differentiable approximation. The nested interpolation of Eq. (2),

(8)

yields a multilevel approximation on ℓ progressively coarser lattices containing just O(N)
terms, where the amount of work at each successive lattice level is reduced by about a factor
of 1/8. A detailed theoretical analysis of Eq. (8) has been done [7] to determine constants for
an asymptotic error bound of the form

(9)

where p is the degree of the interpolant (in this case p = 3). The experiments in this paper use
cutoff a = 12 Å and finest lattice spacing h = 2 Å, parameter choices demonstrated to calculate
the electrostatic potentials to about 2.5 digits of accuracy.

Hardy et al. Page 4

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

2.2 MSM Algorithm and Parallelization
Replacing the 1/r-term in Eq. (1) with the multilevel approximation from Eq. (8) produces the
following algorithm [1]. The electrostatic potential is computed as the sum of scaled short- and
long-range parts,

(10)

with an exact short-range part computed using a cutoff pair potential,

(11)

and a long-range part approximated on the lattices. The nested interpolation performed in the
long-range part is further subdivided into steps that assign charges to the lattice points, compute
cutoff potentials on each lattice level, sum together contributions from previous levels, and
finally interpolate the long-range contributions from the finest level lattice. The ordered steps
of the long-range algorithm can be defined as follows:

(12)

(13)

(14)

(15)

(16)

(17)

We note that the sums shown for anterpolation, restriction, prolongation, and interpolation are
quite small due to the local support of the nodal basis functions, with the number of terms for
each on the order of (p+1)3, for pth degree polynomial interpolation. The lattice cutoff
summations contain a larger number of terms, on the order of (4/3)π(2a/h)3, i.e., the volume

Hardy et al. Page 5

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

of the sphere of radius (2a/h) measured in lattice cells. The top level (for non-periodic
boundaries) is an all pairs computation, but has been reduced to a constant number of lattice
points.

Figure 1 depicts some of the concurrency available to the MSM algorithm: the short-range part
can be computed concurrently with the long-range part, and, moreover, a similar splitting of
the problem is available between the restriction and lattice cutoff at each level, with the two
parts joined together in the corresponding prolongation part. There is also a sequence of
dependent steps, e.g., anterpolation must precede lattice cutoff on level 0, restriction to level
1 must precede lattice cutoff on level 1, interpolation must be proceeded by prolongation to
level 0, and so on, with the critical path requiring O(log N) steps. A scalable distributed memory
parallelization strategy would employ spatial decomposition of the domain, as done by the
molecular dynamics program NAMD [16,17]. The summations in Eqs. (11)–(17) involve
nearby atoms and lattice points, so the parallel communication pattern resembles a reduction
operation followed by an accumulating broadcast operation. A typical shared-memory multi-
threading approach is able to take advantage of the fine degree of parallelism available at every
step. Achieving good parallelization through the application of a massively multi-threaded
architecture offered by GPUs is much more challenging. The successful acceleration of MSM
on the GPU requires that the calculation be formulated as a data parallel problem, such that
thousands of threads can concurrently execute the same instruction streams on independent
data.

Table 1 shows the sequential performance profile for the MSM calculation of the electrostatic
potential of a 1,534,539 atom system to a map resolution of 0.5 Å. The percentages of total
runtime justify our initial parallelization of just the short-range part [1,5]. However, without
also treating the lattice cutoff computation that collectively requires over 10% of the runtime,
we would by Amdahl’s Law be restricted to a maximum speedup of less than 10. Our present
work shows speedups of up to 36 on the lattice cutoff computation, with speedups of up to 26
for the full MSM calculation.

2.3 GPU Hardware Background
Commodity graphics hardware has evolved tremendously over the past two decades,
incorporating more computational capability and programmability in order to address the
growing demands of multimedia, gaming, engineering, and scientific visualization
applications. Early graphics processors were essentially fixed-function devices that
implemented a dedicated graphics rasterization pipeline. Modern GPUs are highly
programmable devices that execute software in much the same way a CPU does, with each
generation increasingly relying on large arrays of fully programmable processing units in place
of the fixed-function hardware used in previous generation devices.

In the past two years, significant advances have been made in adapting GPU hardware
architecture to better support general purpose computation in addition to the existing graphics
workloads. The increasing requirement for software programmability for geometric processing
and other operations beyond shading led modern GPUs to transition away from using special-
purpose numeric formats toward standard machine representations for integers and floating
point numbers, along with single- and double-precision IEEE-754 floating point arithmetic
capabilities comparable to that provided by CPU instruction set extensions such as SSE and
AltiVec.

State-of-the-art GPUs contain hundreds of processing units, and are capable of performing
single-precision floating point arithmetic at rates approaching one trillion floating point
operations per second (TFLOPS), with on-board memory systems that provide bandwidths of
over 140GB/sec. Unlike CPUs, which have historically been designed to optimize the

Hardy et al. Page 6

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

performance of applications with largely sequential code paths, GPUs are designed as
throughput-oriented processing units that use sophisticated hardware to schedule the execution
of tens of thousands of threads concurrently on a large pool of processing units. CPUs are
designed with large cache memories to reduce the latency for frequently accessed memory
locations in main memory. Caches consume a large portion of the die area of CPU designs,
area that could be used for additional arithmetic processing units. GPUs take a very different
approach and employ hardware multithreading to hide memory access latency by context
switching to another runnable thread when the active thread encounters a dependency on a
pending global memory operation. With a sufficient number of threads multiplexed onto each
of the GPU processing units, latency is effectively hidden, and the device achieves high
performance without the need for a cache. GPUs use the die area that would have been
consumed for cache memory for additional arithmetic units, yielding a throughput-oriented
architecture with extremely high peak arithmetic performance. GPUs further optimize their
use of die area with variations of single-instruction multiple-data (SIMD) control logic feeding
an identical instruction stream to a group of processing units, thereby reducing the die area and
power consumed by instruction decoding logic.

2.4 Architecture of the NVIDIA GT200 GPU
The GT200 GPU is the newest generation of NVIDIA’s Tesla GPU architecture [18],
incorporated in the GeForce GTX 2×0 series graphics cards and the compute-specific Tesla
C1060 and S1070 products. The GT200 GPU architecture is similar in many respects to its
predecessors G80 and G92, which were the first with support for NVIDIA’s Compute Unified
Device Architecture (CUDA) for GPU computing [19,20]. As with the previous generation
designs, GT200 is composed of a large pool of programmable processing units that are clustered
into groups that share resources. The top level of this hierarchy, referred to as the streaming
processor array, is composed of up to ten identical texture processor clusters, each containing
three streaming multiprocessors, and with each of these consisting of a group of eight streaming
processors, for a grand total of up to 240 streaming processors. The streaming multiprocessors
within a texture processor cluster execute completely independently of one another, though
they share some resources. The streaming multiprocessors of the GT200 and its predecessors
implement a single-instruction multiple-thread (SIMT) instruction unit to achieve efficient use
of die area and power while hiding global memory latency [18]. The instruction unit in the
streaming multiprocessor drives the eight scalar streaming processors with a single instruction
stream that is 32 threads wide, known as a warp. When executing data-dependent branch
instructions, the hardware serializes execution of both sides of the branch until all of the threads
within the warp have converged. Branch divergence only penalizes the performance of warps
in which it occurs.

Figure 2 illustrates the groupings of GT200 processing units and the class of functions they
perform. The replicated nature of this type of hardware design often makes it possible to recover
partially functional GPU chips by disabling non-functional hardware units, allowing such
devices to be sold as part of a lower cost product with a minor reduction in performance while
effectively increasing the overall GPU semiconductor fabrication yield.

A key architectural trait of modern GPUs is the use of multiple high-bandwidth memory
systems to keep the large array of processing units supplied with data. The GT200 architecture
supports a high bandwidth (140 GB/sec), high latency main or “global” memory. The main
memory system is supplemented with dedicated hardware texturing units which provide read-
only caching with hardware support for multi-dimensional spatial locality of reference,
multiple filtering and interpolation modes, texture coordinate wrapping and clamping, and
support for multiple texture data formats. A 64-kB constant cache provides an efficient means
of broadcasting identical read-only data elements to all threads within a streaming

Hardy et al. Page 7

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

multiprocessor at register speed. The constant memory can be an effective tool in achieving
high performance for algorithms requiring all threads to loop over identical read-only data. As
with its predecessors, the GT200 architecture incorporates a 16-kB shared memory area in each
streaming multiprocessor. Threads running on the same multiprocessor can cooperatively load
and manipulate blocks of data into this fast register-speed shared memory, avoiding costly
accesses to the larger global memory. Accesses to the shared memory area are coordinated
through the use of a thread barrier synchronization primitive, guaranteeing all threads have
completed their shared memory updates before other threads begin accessing results. The
shared memory is often effectively utilized as a software-managed cache, reducing bandwidth
utilization and latency that repetitive loads and stores to the global memory system would
otherwise incur.

Some of the key differences between the GT200 architecture and its predecessors include native
support for double-precision floating point arithmetic, a 1.88× increase in the number of
streaming processors (240), a doubling in the register file size for each streaming
multiprocessor, improved hardware for coalescing global memory accesses, support for atomic
operations to shared memory, “warp vote” boolean reduction operations for threads within the
same warp, support for directed rounding modes for double-precision floating point operations,
and bidirectional overlapping of asynchronous I/O and GPU kernel execution. The present
work benefits primarily from the aggregate increase in the number of streaming processors,
the doubled register file size, and improved asynchronous I/O and kernel execution.

2.5 GPU Programming Models
GPU software development tools have closely tracked advances in hardware architecture and
the general evolution of GPU technology toward increased programmability and acceleration
of general purpose computation. Early compute-specific GPU programming tools such as
BrookGPU [21] and Sh [22] were layered on top of graphics-specific programming interfaces
and provided a stream programming abstraction, laying the foundation for early GPU
acceleration successes in computational biology [23–25]. With hardware level support for
standard data types, arithmetic operations, and flow control instructions, the remaining barriers
to the development of GPU-targeted compilers for dialects of popular programming languages
have been removed. Recently, commercially supported compilers and runtime systems for the
development of GPU-accelerated computational applications have become available,
eliminating the necessity for application developers to work within the constraints imposed by
graphics-specific programming languages and interfaces. At the present time, CUDA [19],
RapidMind [26], and Brook+ [27] are already available to developers, and OpenCL [28] has
recently been announced.

The work described in this paper is based on the CUDA GPU programming toolkit developed
by NVIDIA [19]. CUDA is a dialect of the C and C++ programming languages with extended
syntax supporting multiple memory address spaces and GPU kernel launch, while eliminating
language features, such as recursion, that do not map well to the many-core GPU hardware. A
full overview of the CUDA programming model is beyond the scope of this paper, but it is
worth mentioning a few of its key characteristics to improve the clarity of subsequent
discussions. An excellent overview of the CUDA programming model is provided in [20].
Discussions of the CUDA programming model as it relates to molecular modeling applications
are provided in [2,1,3,5].

The CUDA programming model decomposes work into a grid of thread blocks that are
concurrently executed by a pool of SIMT multiprocessors. Each thread block normally contains
64 to 512 threads, which are executed by the processing units within a single multiprocessor.
Each SIMT multiprocessor executes a group of threads, known as a warp, in lockstep. CUDA
kernels are written as serial code sequences, with barrier synchronizations to enforce ordering

Hardy et al. Page 8

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

of operations among peer threads within a thread block. The expansion of a kernel into a grid
of thread blocks is determined by the kernel launch parameters specified at runtime, and may
be varied dynamically according to problem size or other attributes. Data-dependent branch
divergence is handled in the hardware by serializing execution of both sides of the branch until
all of the processing units have converged on the same instruction. The virtualization of
processing resources provided by the CUDA programming model allows applications written
with existing GPUs to scale up with future hardware designs.

The key issues that must be considered when designing CUDA kernels involve the
decomposition of work into tiles that can be mapped to thread blocks, further decomposed into
warps and individual threads. The selection of work decomposition strategy is a particularly
important decision for CUDA, as current GPU hardware favors specific access patterns for
each of the memory systems which must be explicitly taken into consideration in order to
achieve peak performance. The process of designing kernels to meet these requirements can
be somewhat complex but is comparable to the difficulty of writing high performance
algorithms for multi-core processors with instruction set extensions. The data alignment
requirements that must be met for high performance global memory operations in CUDA are
no more onerous than one would encounter in developing software to take advantage of the
Intel x86 SSE SIMD instruction set extensions, for example.

The CUDA programming interface allows streams of kernels and I/O operations to be queued
and processed asynchronously from the host CPU. This facility enables applications to
completely overlap GPU operations with operations on the host CPU, allowing both resources
to be utilized concurrently with high efficiency. An additional event notification system
provides a mechanism for the host CPU to monitor ongoing progress of asynchronously
executing GPU kernels and I/O operations through occasional polling. Beyond its use for
overlapping operations on the host and GPU, the asynchronous interface can also be used to
overlap GPU I/O operations for one stream with GPU kernel computations in a different stream,
on devices with appropriate hardware support. By submitting independent work into multiple
stream queues, an application can take maximum advantage of the host-GPU I/O bandwidth,
and computational capabilities of the GPU at the same time.

Although it was designed for programming GPUs, many of the abstractions provided by CUDA
are well suited to multi-core CPUs. The tiled work decomposition and explicit requirement for
high data locality that programmers satisfy when creating a high performance CUDA kernel
are often an excellent starting point for a cache-based multi-core processor as well. Stratton,
et al., [29] recently demonstrated a compiler and runtime framework for retargeting CUDA
kernels to multi-core CPUs, achieving performance within 30% of hand-coded multi-core
versions of the same kernels.

3 Algorithmic Details
We have developed CUDA kernels for accelerating the most demanding parts of the MSM
calculation of electrostatic potential maps: the short-range part given by Eq. (11), which for
finely spaced maps dominates the entire computation, and the lattice cutoff part given by Eq.
(14), which is the lattice-based analog of the short-range calculation that dominates the long-
range part of MSM. Recall the MSM sequential time profile in Table 1 and the algorithm
decomposition diagrammed in Figure 1 showing the computational elements of MSM along
with the workload division between GPU and CPU.

3.1 Parallelizing the short-range part
Efficient algorithms for computing short-range atomic interactions generally perform
geometric hashing of atoms to bins so that interactions need only be considered between atoms

Hardy et al. Page 9

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

in nearby bins [30]. This approach guarantees for molecular modeling applications an
algorithm that scales linearly with the number of atoms since the density of atoms is bounded.

We have investigated two approaches for GPU acceleration of the MSM short-range part, both
using geometric hashing. The earlier approach [1] features the CPU performing a geometric
hashing of atoms into large bins. Multiple GPU kernel calls are made to calculate large cubic
blocks of the potential lattice, with the atom data read from the constant memory cache. Bin
sizes of twice the cutoff distance are necessary to provide the GPU with enough computation.
However, experiments on a system of water exhibited only a 6% success rate for interactions
to be within the cutoff. The wasted pairwise distance evaluations combined with the repeated
number of small (< 64 kB) memory transfers from CPU to GPU limits the large-bin approach
to a speedup of 11 for the problem sizes studied in this paper. A substantial improvement is
obtained by using small bins, where the neighborhood of surrounding atom bins are streamed
from the GPU global memory into shared memory. Our initial investigation using small bins
tackled just the isolated problem of computing a cutoff pair potential on a lattice and presented
details of a CUDA implementation [5]. We summarize below the main algorithmic ideas and
show in Section 4 a speedup of 32 using the small-bin approach for computing the MSM short-
range part given by Eq. (11).

For the small-bin approach, the CPU performs geometric hashing of atoms into bins which are
then copied to the GPU global memory. The thread blocks are assigned sub-cubes of lattice
potential points to calculate, and the thread blocks loop over the surrounding bins of atoms,
cooperatively loading each into shared memory for processing. The threads determine from
their block index which atom bins overlap their region and then determine the nearby bins by
reading from a table of offsets stored in constant memory. The surrounding bins are streamed
through shared memory, effectively using shared memory as a self-managed cache. Tests for
this approach show an improved 33% success rate for interactions to be within the cutoff
distance. After the atom data has been initially loaded into the device memory, the kernel
executions read all memory over the high speed bus in the device. Coalesced global memory
reads for the atom bins are accomplished by choosing a fixed depth of 8 atoms, stored in x/y/
z/q form, with each thread in a warp collectively reading one of the 32 floats.

The CPU regularizes the problem in the small-bin approach for the GPU by padding the
surrounding domain with empty bins to avoid exceptional boundary cases and also by
processing the contributions of any extra atoms remaining from completely full bins. This
provides the CPU with useful work to overlap with the asynchronous GPU kernel. For most
efficient computation, we can keep the CPU and GPU almost equally occupied by controlling
the spatial size of the bins, where the optimal bin size would give the CPU enough extra atoms
so that it takes almost as much time as the GPU to complete. We find that setting the bin size
to 4 Å is near-optimal for our test cases.

3.2 Parallelizing the lattice cutoff part
The lattice cutoff part computes a cutoff pair potential between points on a lattice, where the
potential at a given lattice point is the distance-weighted sum of the surrounding charges, as
illustrated by Figure 3. The computation involves the evaluation, between point charges on a
lattice of spacing 2kh, of the smoothed potential function gk having cutoff distance 2k+1a, as
defined in Eq. (3) for k = 0, 1,…,ℓ − 2. At each level k, the spheres of charge contributions
enclosed by the cutoff distance contains the same number of lattice points. Defining ε = [2a/
h] − 1 to be the radius (measured in lattice points) of these spheres, the summation of the lattice
point potentials in Eq. (14) can be expressed as

Hardy et al. Page 10

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

(18)

where we use a three-dimensional indexing of the charge and potential lattices. The cube of
weights bounding the sphere is computed a priori,

(19)

since the gk are defined in terms of the unparameterized smoothing function γ from Eq. (4) and
since the relative distances are the same between points on a uniform lattice.

The strategy for the GPU parallelization of Eq. (18) is similar to the small-bin approach, with
each thread block assigned to calculate potentials for a sub-cube of lattice points. We choose
a sub-cube size of 43 = 64 and assign one thread per lattice point, which is the minimal possible
thread block size. The implementation described here successfully uses the GPU shared
memory area as a kernel-managed cache for streaming the surrounding sub-cubes of charge
and the constant memory cache as fast access storage for the cube of weights.

The size of the constant memory cache is constrained to just under 64 kB available to user
kernels. Practical application of MSM for molecular modeling uses a cutoff distance a of up
to 12 Å with a lattice spacing h no smaller than 2 Å. The upper bound on the ratio a/h = 6 gives
233 weights which, when padded to 243 to be a multiple of the sub-cube size, is still small
enough to fit the entire cube into constant memory.

The constant memory cache is read at register speed when all of the threads in the warp
collectively read the same value, which is accomplished if every thread in the thread block
simultaneously applies the same weight. We achieve this by using the “sliding window”
diagrammed in Figure 4. The working set of charges read into shared memory is a cubic region
of 23 sub-cubes, containing 83 charges. The window is of size 43 charges, corresponding to
one sub-cube. Within a triply-nested loop, the window is shifted four steps in the x-, y-, and
z-dimensions (for a total of 64 shifts), and at each shift every thread applies the single weight
value to its respectively located charge to accumulate to its potential.

The sliding window loops are embedded within another triply-nested loop that iterates over
the sub-cube neighborhood. We define the “radius” of the neighborhood to be εs = [ε/4] ≤ 3
(assuming the bound a/h ≤ 6), so that the neighborhood consists of (2εs + 1)3 sub-cubes. We
avoid wasted computation by clipping the edges of this neighborhood so as to be contained
within the domain of sub-cubes. Correctness of the sliding window technique at the edges of
the domain of sub-cubes requires that we pad the entire domain with a single layer of sub-cubes
containing zero charge.

The streaming of the sub-cubes of charge through shared memory is made optimal by
performing coalesced reads from global memory. We achieve memory coalescing by
transposing the lattice points within each sub-cube. Instead of storing each lattice level in row-
column-depth ordering, as would be most natural for a sequential implementation, we store
each sub-cube contiguously in memory in its x-y-z ordering, and arrange the block of sub-
cubes in its row-column-depth ordering. Doing so produces memory-aligned reads when the
(64) threads in a thread block collectively read a sub-cube.

Hardy et al. Page 11

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

The amount of work available to the lattice cutoff part decreases by almost a factor of 1/8 for
each successive level, so we run out of sufficient work for the GPU if we try to compute each
level with a separate kernel call. Instead, we note from Eq. (18) that the only distinction between
the levels is the scaling factor 1/2k applied after the summation is calculated. This observation
means that, not only can the work depicted in Figure 1 by the horizontal arrows all be done in
parallel, but we can expressly schedule all of the intermediate levels (the lattice cutoff parts)
together on the GPU. The top level calculation depicted in Figure 1 uses a different set of
weights than those used for the lattice cutoff calculation, so cannot be as conveniently
scheduled on the GPU. Instead, the CPU can calculate this part concurrently with the GPU.
Although the optimal balance of work between CPU and GPU might involve assigning just
the first two or three lattice levels to the GPU and the rest to the CPU, it is much better to under-
load the CPU than overload it. The upper levels account for a vanishingly small amount of
work on the GPU so will have little impact on the speedup, whereas overloading the CPU and
forcing the GPU to wait will severely diminish the speedup.

The CPU first computes the anterpolation and restrictions to attain the charges at all lattice
levels. The charge lattices are padded to a multiple of the sub-cube size plus a surrounding
layer of zero-charge sub-cubes, with the lattices transposed so that the charges in each sub-
cube are contiguous in memory. These charge sub-cubes for all intermediate levels are arranged
consecutively in a single 1-D array that is transferred to the GPU main memory. The lattice
cutoff kernel is then invoked on the GPU to execute a 1-D grid of thread blocks that correspond
to the inner sub-cubes of charge (i.e., not the padded sub-cubes). Each thread first determines
which lattice potential within the hierarchy that it is responsible for calculating by using its
thread block ID and thread index within the block, along with a small “map” stored in the GPU
constant memory indicating the sub-cube dimensions of each lattice level. Then the threads in
each thread block cooperatively iterate over the sub-cube neighborhoods as described above,
using the sliding window approach to optimally read the weights stored in constant memory.
The CPU concurrently performs the top level calculation. After the GPU kernel completes, the
CPU transfers a similarly structured 1-D array of sub-cubes of potential back from the GPU
main memory and then reverses the earlier transformations to obtain the potential lattices for
each level. The CPU then computes the prolongation and interpolation parts to finish the MSM
long-range calculation.

The basic version of the lattice cutoff algorithm just described is shown in Section 4 below to
produce good speedup to the CPU implementation over a wide range of problem sizes. We
discovered some optimizations to the basic algorithm that produce better speedup. The
innermost loop that moves the sliding window (in our implementation, four shifts in the x-
direction) can be unrolled. Also note that half of the working set of charge (four of eight sub-
cubes) is used again as we iterate over the sub-cube neighborhood in the innermost loop. The
basic algorithm implements the loading of charge sub-cubes from global memory in a triply-
nested loop of 2 × 2 × 2 iterations. If within the inner loop over the sub-cube neighborhood we
copy the second half of the shared memory (4×8×8 charges) to the first half, and combine this
with unrolling the resulting loops that move the four sub-cubes within shared memory and
copy four new sub-cubes from global memory, we exhibit additional performance
improvement. We observed that just reducing the global memory reads without also unrolling
the loops that perform the reading did not improve performance, but that using both
optimizations together does. When the unrolling optimization is used by itself, the deleterious
effects of register pressure can hamper the performance of a kernel by limiting the SIMT
hardware’s ability to hide global memory latency. By halving the number of global memory
accesses through the use of the shared memory copy, we have reduced the kernel’s dependence
on global memory latency hiding, and the pair of optimizations applied together give a
substantial performance boost. Both the basic and optimized kernels use a lot of registers (40

Hardy et al. Page 12

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

for the basic and 58 for the optimized), but this high register count appears to be balanced by
using the smallest number of threads possible (64) per thread block.

Imposing the bound a/h ≤ 6 is necessary for being able to fit the entire padded cube of weights
into constant memory. It is also possible to implement versions of the kernel that can handle
larger bounds on a/h by storing as little as 1/8th of the cube of weights and exploiting the
symmetry of this cube, since these weights are a function of the lattice spacings in the three
dimensions. However, exploiting symmetry will complicate the index calculations for reading
the weight values, which we would expect to be more costly and would likely consume more
registers.

3.3 Extension to periodic boundary conditions
The multilevel summation method is applied to periodic boundaries by wrapping around the
edges of the lattice. The GPU algorithms discussed here can be extended to periodic systems.
For the short-range algorithm, in particular the small-bin approach, the bin sizes in x-, y-, and
z- directions can be determined as integer divisions of the respective periodic cell lengths.
Instead of padding the edges with empty atom bins, the edges are padded with periodic image
atoms. For the lattice cutoff algorithms, instead of padding with one layer of empty sub-cubes,
the lattice levels must all be padded with εs layers of image lattice points (where εs is the radius
of the sub-cube neighborhood). Note that depending on the relative periodic cell lengths and
lattice spacings in the three dimensions, the radius values εs and ε discussed above might
actually differ in the three dimensions (the semi-principal axes of an ellipsoid), but these
modifications are straightforward. Also note that these implementations can also be extended
to handle non-orthogonal periodic cells; the necessary modifications to MSM have been
previously discussed [7] and are essentially already handled by the CUDA kernels here
extended to orthogonal periodic cells.

4 Experimental Evaluation
The performance of the multilevel summation method for computing electrostatic potentials
was evaluated for a range of problem sizes. Each of the performance tests shown in Table 2,
Table 3, and Table 4 were conducted on a 1.5×107 Å3 water box containing 1,534,539 atoms.
Potential maps were computed with a 0.5 Å lattice spacing, using MSM cutoff distance a = 12
Å and finest lattice spacing h = 2 Å. The water box was created using the solvate plugin included
with VMD [31], with a volume and atom density representative of the biomolecular complexes
studied by large scale molecular dynamics simulations [32].

The specification of a 100-million-atom molecular dynamics simulation as a model problem
for the NSF Blue Waters Track 1 petascale supercomputer provides a strong motivation for
the development of software tools capable of operating in this regime. The 1.5 million atom
test case is small enough to run in one pass on a single GPU, and large enough to yield accurate
timings and to provide performance predictions for much larger problems.

The experiments were run on a quiescent test platform with no windowing system running,
using a 2.6 GHz Intel Core 2 Extreme QX6700 quad core CPU running 64-bit Red Hat
Enterprise Linux version 4 update 5. (The final test platform in Table 4 features the same
software running on a 2.4 GHz Intel Core 2 Q6600 quad core CPU.) The CPU code was
compiled using the Intel C/C++ Compiler (ICC) version 9.0. Experiments were performed
using the NVIDIA CUDA programming toolkit version 1.1, except for the data-parallel
experiment which used version 2.0. The G80-series GPU benchmarks were performed on a
deskside NVIDIA Tesla D870 GPU using either one or both internally contained Tesla C870
GPUs. The GT200-series GPU benchmarks were performed using an NVIDIA GeForce GTX
280 GPU.

Hardy et al. Page 13

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

The performance results listed in Table 2 compare the performance of the the short-range cutoff
portion of MSM on the CPU and GPU. The benchmarked implementation is an improved
variant of the small-bin short-range cutoff kernel [5] summarized in Section 3.1. The version
presented here has been modified to avoid filling the CUDA asynchronous stream queue with
too many outstanding requests, which could otherwise cause blocking behavior when
computing large potential maps. The short-range cutoff computation consumes the vast
majority of the runtime for problems with fine lattice spacing, approximately 90% of the
runtime for the CPU version of the code, and approximately 75% of the runtime for the GPU
version code running on the C870 and GTX 280.

Table 3 presents benchmark results for the long-range lattice cutoff portion of MSM on the
CPU and GPU. Two GPU algorithm variations are reported. The “Latcut-basic” algorithm is
a direct implementation of the lattice cutoff algorithm described earlier in Section 3.2. The
“Latcut-optimized” algorithm eliminates almost half of the global memory reads by shifting
and copying previously-loaded lattice data within GPU shared memory, and uses loop unrolling
and code hoisting techniques to improve the performance of the innermost loop. The resulting
runtimes for the lattice cutoff kernels place them at 9% (CPU) and 8% (GPU) of the runtime
of the complete MSM computation.

The results shown in Table 4 summarize the performance of the full MSM calculation on the
host CPU, with GPU acceleration on a first-generation G80-based Tesla C870 GPU and a
second-generation GT200-based GTX 280 GPU. The runtimes listed are for the full MSM
electrostatics calculation, including all algorithm components on both the CPU and GPU, and
all host-GPU I/O. The results for the D870 task-parallel approach utilize two CPU cores and
two GPUs to simultaneously compute the short-range and long-range kernels on separate
devices and CPU cores. The results for the three G80 devices combine task- and data-parallel
approaches: the long-range part is computed using one CPU core with the GeForce 8800 GTX
GPU, while the short-range part is partitioned into two equal pieces and computed
simultaneously using two additional CPU cores with the two GPUs of the D870. The testing
platform for this final configuration uses a slower 2.4 GHz Intel Core 2 Q6600 quad core CPU,
while the speedups are calculated relative to a faster CPU.

A plot of speedup versus problem size for the full MSM calculation is shown in Figure 5. The
GPU-accelerated MSM implementation performs well for a wide range of problem sizes,
achieving 50% of its peak speedup for a test case with only 26,247 atoms, and 77% of its peak
speedup for a test case containing 167,877 atoms.

Table 5 shows a detailed performance profile for the full GPU-accelerated MSM calculation
running on the GeForce GTX 280, summarized in Table 4. Comparing these results to the
sequential CPU performance profile in Table 1, we see that the largest sequential bottleneck
now remaining, the interpolation of the finest level MSM lattice to the electrostatic potential
map, is still less than one quarter of the accelerated short-range part, and its acceleration would
permit a speedup of no more than 31. The “device setup” measures the time required to attach
a host thread to a GPU device, a fixed cost that becomes inconsequential for longer calculations.
The “summing short- and long-range maps” measures the time for the host CPU to add together
the two electrostatic potential maps of size 5413 (604 MB) for the final result. We note that
the performance of this summation step is limited by the memory bandwidth of the host CPU.

5 Discussion
MSM is an efficient and flexible algorithm that can be applied to different boundary conditions
and can even be generalized to other (i.e., non-Coulombic) pairwise potentials, although
molecular modeling benefits the most from approximating the long-range contribution from a

Hardy et al. Page 14

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

1/r dependence. While Eq. (9) shows that the accuracy of MSM can be improved by increasing
the cutoff distance a or decreasing the finest lattice spacing h, it turns out that increasing the
ratio a/h quickly degrades performance, increasing the computational complexity of the short-
range part as O(a3) and of the long-range part as O(a3/h6). A better choice is to increase the
order of accuracy p by using a higher degree interpolating polynomial to construct basis
function Φ than given by Eq. (7). A higher degree interpolating polynomial increases the cost
of the anterpolation, restriction, prolongation, and interpolation parts, although these do not
dominate the overall cost. The use of higher order interpolation also warrants increasing the
continuity of the smoothing function γ, an issue that has already been examined in detail [7].
With respect to our GPU implementation of MSM, we note that the small-bin kernel depends
on γ, but is easily modified to accommodate a higher continuity smoothing function. The lattice
cutoff kernel does not depend explicitly on γ, rather on the CPU to compute the weights that
depend on γ. Neither kernel depends on Φ.

The experimental test results presented in Section 4 demonstrate the performance of the GPU
implementation of MSM. Several observations about these results and our experiences in
developing and testing the implementation are generally applicable when designing other GPU-
accelerated codes. In the initial state of algorithm design, we began with a profile of the runtime
of the various algorithmic components for an existing CPU implementation. From this point,
we observed Amdahl’s Law and selected the most time consuming portions of the full MSM
calculation for detailed study. The effective use of heterogeneous accelerator devices such as
GPUs hinges upon balancing the tasks of transferring data to and from the accelerator,
launching and managing kernel execution, and integrating results back into the main host
program, along with any other computations that can only be run on the host CPU.

Many of the earliest successes with GPU acceleration were achieved for algorithms with
quadratic complexity in arithmetic operations relative to the input problem size. Algorithms
with quadratic arithmetic complexity easily cover the costs of I/O transfers and other associated
sources of overhead, and often perform well even for very small problem sizes. Algorithms
with linear arithmetic complexity can be more challenging to accelerate, as sufficient work
must be assigned to the accelerator to amortize the I/O overhead. The ratio of arithmetic
complexity relative to the I/O is of fundamental concern when designing GPU algorithms. If
it is not immediately clear that arithmetic will dominate I/O overhead, then one must take steps
to reduce I/O or eliminate it altogether by performing consecutive algorithmic steps solely on
the GPU. The optimized MSM lattice cutoff kernel described in this paper uses shared memory
to reduce redundant global memory operations and takes advantage of constant memory to
broadcast the weight values to all threads in the same thread block. Both of these strategies
amplify the effective bandwidth of operands to the GPU arithmetic units and help make the
kernel arithmetic bound. Another strategy for achieving high performance with GPU
acceleration is to target the GPU-accelerated computations on a regularized problem, using the
host CPU to “clean up” or handle exceptional cases that might otherwise reduce the
performance of the GPU. This strategy is employed very effectively in the small-bin kernel for
the MSM short-range part.

Our initial MSM implementation decomposed the entire problem into a single CPU-GPU pair
for each stage of the algorithm. We next attempted to improve performance by executing the
independent short- and long-range parts of MSM on multiple CPU-GPU pairs. While effective,
the benefit from such a task-parallel approach is limited by the imbalance between the two
parts, offering just a 27% speed increase on our largest test case. The more computationally
demanding short-range part readily lends itself to a data-parallel decomposition, accomplished
by partitioning the electrostatic potential map into equally sized slabs to be computed
concurrently. Our test case combining task- and data-parallel approaches, using two CPU-GPU
pairs on the short-range part concurrently with another CPU-GPU pair on the long-range part,

Hardy et al. Page 15

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

provides a 133% speed improvement over the single C870 GPU. The performance profile in
Table 5 reveals a ratio between the short- and long-range timings of almost 3:1, suggesting
that a platform with four GPUs could use our present implementation to achieve 80–90×
speedups for the largest test case. More importantly, the data-parallel decomposition of the
short-range part removes the primary memory constraint on our initial GPU-accelerated MSM
implementation, permitting the calculation of electrostatic potential maps for system sizes
approaching 100 million atoms.

6 Conclusions
We have described algorithms and techniques for efficiently implementing multilevel
summation method for computing electrostatic potential maps heterogeneous processing
resources with GPU-accelerated computation. Our experimental results demonstrate the
feasibility of algorithmic approaches that use the CPU to regularize the work assigned to GPU
accelerator devices achieve high performance, and show the ability of the GPU runtime system
to perform operations asynchronously from the host to be a key enabling technology for this
purpose.

The ability to calculate maps of the electrostatic potential for 1-million-atom systems within
seconds enables interactive analysis previously unavailable. The implementation described in
this paper is included in the cionize ion placement tool distributed with VMD [31]. We also
plan to incorporate the algorithm directly into a future version of VMD itself, bringing a
significant performance increase to other visualization and analysis tasks, such as the
calculation of mean field potential maps for molecular dynamics simulations. Work is in
progress to develop GPU-accelerated kernels for the multilevel summation short-range force
calculation necessary for dynamics, with the implementation being done initially in the
NAMD-Lite framework and ultimately for NAMD [16,17].

Acknowledgments
We are grateful to Purdue University Professor Robert D. Skeel for introducing us to the multilevel summation method
and providing valuable insight into its use for molecular dynamics. We are also grateful to University of Illinois
Professor Wen-mei Hwu and to NVIDIA Chief Scientist David Kirk for introducing us to the CUDA technology and
for many valuable discussions since. We would also like to thank Chris Rodrigues and John Stratton of the IMPACT
group at University of Illinois for their insights. Performance experiments on the Tesla D870, an engineering sample
prototype T10P GPU, and the GeForce GTX 280 were made possible by a generous hardware donation by NVIDIA.
This work was supported by the National Institutes of Health under grant P41-RR05969.

References
1. Stone, John E.; Phillips, James C.; Freddolino, Peter L.; Hardy, David J.; Trabuco, Leonardo G.;

Schulten, Klaus. Accelerating molecular modeling applications with graphics processors. J. Comp.
Chem 2007;28:2618–2640. [PubMed: 17894371]

2. Owens, John D.; Houston, Mike; Luebke, David; Green, Simon; Stone, John E.; Phillips, James C.
GPU computing. Proceedings of the IEEE 2008;96:879–899.

3. Anderson, Joshua A.; Lorenz, Chris D.; Travesset, A. General purpose molecular dynamics simulations
fully implemented on graphics processing units. J. Chem. Phys 2008;227(10):5342–5359.

4. Ufimtsev IS, Martinez TJ. Quantum chemistry on graphical processing units. 1. strategies for two-
electron integral evaluation. Journal of Chemical Theory and Computation 2008;4(2):222–231.

5. Rodrigues, Christopher I.; Hardy, David J.; Stone, John E.; Schulten, Klaus; Hwu, Wen-Mei W. GPU
acceleration of cutoff pair potentials for molecular modeling applications; CF’08: Proceedings of the
2008 conference on Computing frontiers; New York, NY, USA: ACM; 2008. p. 273-282.

6. Skeel, Robert D.; Tezcan, Ismail; Hardy, David J. Multiple grid methods for classical molecular
dynamics. J. Comp. Chem 2002;23:673–684. [PubMed: 11939600]

Hardy et al. Page 16

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

7. Hardy, David Joseph. PhD thesis, Univ. of Illinois at Urbana-Champaign, 2006. Also Department of
Computer Science Report No. UIUCDCS-R-2006-2546. 2006 May. Multilevel Summation for the
Fast Evaluation of Forces for the Simulation of Biomolecules. Available online at
http://www.cs.uiuc.edu/research/techreports.php

8. Darden TA, York DM, Pedersen LG. Particle mesh Ewald. An N·log(N) method for Ewald sums in
large systems. J. Chem. Phys 1993;98:10089–10092.

9. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald
method. J. Chem. Phys 1995;103:8577–8593.

10. Barash D, Yang L, Qian X, Schlick T. Inherent speedup limitations in multiple time step/particle
mesh Ewald algorithms. J. Comput. Chem 2003;24:77–88. [PubMed: 12483677]

11. Greengard L, Rokhlin V. A fast algorithm for particle simulation. J. Comp. Phys 1987;73:325–348.
12. Board, John A., Jr; Causey, JW.; Leathrum, James F., Jr; Windemuth, Andreas; Schulten, Klaus.

Accelerated molecular dynamics simulation with the parallel fast multipole algorithm. Chem. Phys.
Lett 1992;198:89–94.

13. Bishop, Thomas C.; Skeel, Robert D.; Schulten, Klaus. Difficulties with multiple time stepping and
the fast multipole algorithm in molecular dynamics. J. Comp. Chem 1997;18:1785–1791.

14. Brandt A, Lubrecht AA. Multilevel matrix multiplication and fast solution of integral equations. J.
Comput. Phys 1990;90:348–370.

15. Sandak, Bilha. Multiscale fast summation of long range charge and dipolar interactions. J. Comp.
Chem 2001;22(7):717–731.

16. Kalé, Laxmikant; Skeel, Robert; Bhandarkar, Milind; Brunner, Robert; Gursoy, Attila; Krawetz, Neal;
Phillips, James; Shinozaki, Aritomo; Varadarajan, Krishnan; Schulten, Klaus. NAMD2: Greater
scalability for parallel molecular dynamics. J. Comp. Phys 1999;151:283–312.

17. Phillips, James C.; Braun, Rosemary; Wang, Wei; Gumbart, James; Tajkhorshid, Emad; Villa,
Elizabeth; Chipot, Christophe; Skeel, Robert D.; Kale, Laxmikant; Schulten, Klaus. Scalable
molecular dynamics with NAMD. J. Comp. Chem 2005;26:1781–1802. [PubMed: 16222654]

18. Lindholm, Erik; Nickolls, John; Oberman, Stuart; Montrym, John. NVIDIA Tesla: A unified graphics
and computing architecture. IEEE Micro 2008;28(2):39–55.

19. NVIDIA CUDA Compute Unified Device Architecture Programming Guide. Santa Clara, CA, USA:
NVIDIA; 2007.

20. Nickolls, John; Buck, Ian; Garland, Michael; Skadron, Kevin. Scalable parallel programming with
CUDA. ACM Queue 2008;6(2):40–53.

21. Buck, Ian; Foley, Tim; Horn, Daniel; Sugerman, Jeremy; Fatahalian, Kayvon; Houston, Mike;
Hanrahan, Pat. SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers. New York, NY, USA: ACM Press;
2004. Brook for GPUs: Stream Computing on Graphics Hardware; p. 777-786.

22. McCool, Michael; Du Toit, Stefanus; Popa, Tiberiu; Chan, Bryan; Moule, Kevin. Shader algebra.
ACM Transactions on Graphics 2004 August;23(3):787–795.

23. Charalambous, Maria; Trancoso, Pedro; Stamatakis, Alexandros. Initial experiences porting a
bioinformatics application to a graphics processor; Panhellenic Conference on Informatics; 2005. p.
415-425.

24. Horn, Daniel Reiter; Houston, Mike; Hanrahan, Pat. ClawHMMER: A streaming HMMer-search
implementation; SC ’05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing;
Washington, DC, USA: IEEE Computer Society; 2005. p. 11

25. Elsen, Erich; Vishal, V.; Houston, Mike; Pande, Vijay; Hanrahan, Pat; Darve, Eric. N-body
simulations on GPUs. Technical report. Stanford, CA: Stanford University; 2007 Jun.
http://arxiv.org/abs/0706.3060

26. McCool, Michael. Data-parallel programming on the Cell BE and the GPU using the RapidMind
development platform; GSPx Multicore Applications Conference; 2006 October/November.

27. Advanced Micro Devices Inc.. Brook+ SC07 BOF session; Supercomputing 2007 Conference; 2007
Nov.

28. Apple Computer Inc.. OpenCL; Apple Worldwide Developer’s Conference; 2008 Jun.

Hardy et al. Page 17

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.cs.uiuc.edu/research/techreports.php
http://arxiv.org/abs/0706.3060

29. Stratton, John A.; Stone, Sam S.; Hwu, Wen mei W. MCUDA: An effective implementation of CUDA
kernels for multi-core cpus; Proceedings of the 21st International Workshop on Languages and
Compilers for Parallel Computing, LNCS 5335; 2008. p. 16-30.

30. Fox, GC.; Johnson, MA.; Lyzenga, GA.; Otto, SW.; Salmon, JK.; Walker, DW. Solving Problems
on Concurrent Processors. Vol. volume 1. Englewood Cliffs, NJ: Prentice Hall; 1988.

31. Humphrey, William; Dalke, Andrew; Schulten, Klaus. VMD – Visual Molecular Dynamics. J. Mol.
Graphics 1996;14:33–38.

32. Freddolino, Peter L.; Arkhipov, Anton S.; Larson, Steven B.; McPherson, Alexander; Schulten, Klaus.
Molecular dynamics simulations of the complete satellite tobacco mosaic virus. Structure
2006;14:437–449. [PubMed: 16531228]

Hardy et al. Page 18

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 1.
Algorithmic steps for MSM. The short-range part is computed together with the GPU and CPU.
The lattice cutoff parts are computed collectively by the GPU. The remaining parts are
computed by the CPU.

Hardy et al. Page 19

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 2.
NVIDIA GT200 GPU block diagram.

Hardy et al. Page 20

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 3.
Schematic of the lattice cutoff calculation, showing the regularity of calculating potentials on
each lattice level.

Hardy et al. Page 21

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 4.
Schematic of the sliding window technique that produces optimal reading of distance-based
weights from GPU constant memory.

Hardy et al. Page 22

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 5.
Speedup over varying problem sizes for the full GPU-accelerated MSM potential map
calculation relative to an optimized CPU implementation.

Hardy et al. Page 23

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Hardy et al. Page 24

Table 1

CPU execution time profile of sequential MSM used to calculate electrostatic potential for 1,534,539 atom
system. The long-range calculation is decomposed into its constituent parts.

Time in seconds Percentage of total

short-range part 480.07 89.98

 anterpolation 0.18 0.03

 restriction, levels 0, 1,…,7 0.16 0.03

 lattice cutoff, level 0 43.14 8.09

 lattice cutoff, level 1 5.55 1.04

 lattice cutoff, level 2 0.68 0.13

 lattice cutoff, levels 3, 4,…,8 0.10 0.02

 prolongation, levels 7, 6,…,1 0.17 0.03

 interpolation 3.47 0.65

long-range part 53.45 10.02

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Hardy et al. Page 25

Table 2

Comparison of performance for the short-range cutoff small-bin kernel tested with a 1.5 × 107 Å3 water box
containing 1,534,539 atoms.

Kernel Runtime (s) Speedup

CPU Intel QX6700 480.07 1.00

CUDA C870 (G80) 20.02 23.98

CUDA GTX 280 (GT200) 14.86 32.30

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Hardy et al. Page 26

Table 3

Comparison of performance for long-range lattice cutoff kernels tested with a 1.5 × 107 Å3 water box containing
1,534,539 atoms.

Kernel Runtime (s) Speedup

CPU Intel QX6700 49.47 1.0

CUDA C870 (G80) Latcut-basic 2.96 16.7

CUDA C870 (G80) Latcut-optimized 2.19 22.5

CUDA GTX 280 (GT200) Latcut-basic 1.45 34.1

CUDA GTX 280 (GT200) Latcut-
optimized

1.36 36.4

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Hardy et al. Page 27

Table 4

Comparison of performance for the full multilevel summation calculation tested with a 1.5 × 107 Å3 water box
containing 1,534,539 atoms.

Test platform Runtime (s) Speedup

CPU Intel QX6700 CPU 533.67 1.0

CUDA C870 (G80) 26.52 20.1

CUDA D870 (2 × G80) task-parallel 20.81 25.6

CUDA GTX 280 (GT200) 20.50 26.0

CUDA GeForce 8800 GTX (G80) and
D870 (2 × G80) task- and data-parallel

11.53 46.3

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Hardy et al. Page 28

Table 5

Time profile of GPU-accelerated MSM potential map calculation for 1,534,539 atom system. The overall time
with the GT200-based GTX 280 GPU was 20.51 seconds. The long-range part is decomposed into its sequential
dependencies.

Time in seconds Percentage of total

device setup 0.15 0.73

short-range part (GPU+CPU) 14.87 72.50

 anterpolation 0.18 0.88

 restriction, levels 0, 1,…,7 0.16 0.78

 lattice cutoff (GPU+CPU) 1.36 6.63

 prolongation, levels 7, 6,…,1 0.17 0.83

 interpolation 3.47 16.92

long-range part (GPU+CPU) 5.34 26.04

summing short- and long-range maps 0.15 0.73

Parallel Comput. Author manuscript; available in PMC 2010 March 1.

