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Abstract

Quantum control plays a key role in quantum technology, in particular for steer-
ing quantum systems. As problem size grows exponentially with the system size,
it is necessary to deal with fast numerical algorithms and implementations. We
improved an existing code for quantum control concerning two linear algebra
tasks: The computation of the matrix exponential and efficient parallelisation
of prefix matrix multiplication.

For the matrix exponential we compare three methods: the eigendecomposi-
tion method, the Padé method and a polynomial expansion based on Chebyshev
polynomials. We show that the Chebyshev method outperforms the other meth-
ods both in terms of computation time and accuracy. For the prefix problem
we compare the tree-based parallel prefix scheme, which is based on a recursive
approach, with a sequential multiplication scheme where only the individual
matrix multiplications are parallelised. We show that this fine-grain approach
outperforms the parallel prefix scheme by a factor of 2–3, depending on parallel
hardware and problem size, and also leads to lesser memory requirements.

Overall, the improved linear algebra implementations not only led to a con-
siderable runtime reduction, but also allowed us to tackle problems of larger size
on the same parallel compute cluster.

Key words: matrix exponential, Chebyshev polynomials, parallel prefix
problem, parallel matrix multiplication, quantum control algorithm

1. Introduction

Quantum computation and Hamiltonian simulation offers solutions to com-
putational problems which are hard to solve with a conventional device [5, 21,
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24]. In addition, the number of coherently controllable quantum systems is in-
creasing [18, 3, 12], so the question arises to steer these systems in an optimal
way to fight the limiting decoherence processes. For a small number of prob-
lems there exist analytical solutions [13, 14, 27], but for the vast majority only
numerical solutions are available [23, 25]. To get these numerical solutions, the
GRAPE (GRadient Ascent Pulse Engineering) algorithm was developed [15],
which provides a method for optimal quantum control based on gradient flows.
It is also used for NMR spectroscopy applications, such as the design of pulse
shapes for problems involving transfer of coherence between coupled spins or
the synthesis of unitary propagators in a network of coupled spins (see [15]).

To get a first impression about the complexity, the GRAPE algorithm is
listed in algorithm 1. It describes a step-wise optimisation in conjugate gradi-
ents: In each iteration step, we compute the Hamiltonian quantum evolution
which is given by the matrix exponentials at every time step k. Afterwards
we calculate the forward (step 2) and backward propagation (step 3) given by
a sequence of evolutions of the quantum system under M piecewise constant
Hamiltonians Hk. The gradient ∂h(U(tk))

∂uj
of the (real-valued) performance func-

tion h, which measures the deviation of the time evolution U(T ) from the desired
target W (T ), is given by the real part of trace evaluations (calculated in step 4)
and needed for the update of the controls in step 5. For the controls we may
specify an arbitrary initial value u(0)

j (tk) in step 1 (usually all values are chosen
equal to one), or initialise the controls with a suitable initial guess, if respective
previous calculations are available.

1: set initial controls u(0)
j (tk) for all times tk with k = 1, . . . ,M ;

2: starting from U0 = I, calculate the forward-propagation for all t1, . . . , tM
(for simplicity ∆t := tk+1 − tk uniform):

U(tk) = e−i∆tHke−i∆tHk−1 · · · e−i∆tH1 ;

3: likewise, starting with T = tM and W (T ) = const · UG compute the back-
propagation for all tM , tM−1, . . . , t1

W (tk) = ei∆tHkei∆tHk+1 · · · ei∆tHMW (T );

4: calculate ∂h(U(tk))
∂uj

= <
(
tr{WH(tk+1)(−iHj)U(tk)}

)
5: with u

(1)
j (tk) = u

(0)
j (tk) + ε ∂h∂uj |t=tk update all the piece-wise constant

Hamiltonians Hk and continue with step 2.

Algorithm 1: Gradient Flow Algorithm for Quantum Control

The computational effort for the GRAPE algorithm is dominated by

1. the computation of the matrix exponentials Uk := e−i∆tHk , where Hk

denotes a large and sparse Hermitian matrix,

2. the matrix multiplications in the prefix and postfix problems (steps 2 and
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3),

The trace evaluations in step 4 are about as expensive as the matrix exponen-
tials, but they offer no possibility for algorithmic improvement.

The previously existing code, developed in 2006 ([4]), was restricted to treat-
ing quantum systems with up to 10 spins, because of runtime and storage limi-
tations. Our goal for the present work was to improve the existing code in order
to deal with systems of higher dimensions (11–15 spins).

In section 2 we present structure and properties of the matrices Hk, and
we investigate three different methods for the computation of the exponentials.
We compare the three methods in terms of accuracy and efficiency. In sec-
tion 3 we focus on two approaches to compute the prefix problem (steps 2 and
3 of algorithm 1): The original method, as presented in [4], used parallel prefix
multiplication, i.e. an approach based on a recursive tree scheme. We com-
pare this approach with a sequential prefix scheme, where the individual matrix
multiplications are parallelised, instead. The respective, more fine-grain paral-
lelisation reduced both memory requirements and the total computational work,
and therefore proved to be advantageous despite not achieving full speedup. In
section 4 we show parallel performance results for our implementation of the
entire GRAPE algorithm.

2. Computation of Matrix Exponentials

In this section we consider several methods for the computation of the matrix
exponentials Uk = e−i∆tHk appearing in steps 2 and 3 of algorithm 1. The so-
called Hamiltonians Hk are of the form Hk = H(drift) + ukH

(control)
k , where

H(drift) describes the constant and time-independent drift matrix and H(control)
k

denotes a Hermitian matrix, which is given by a sum of tensor products involving
the identity matrix I and the Pauli matrices σx and σy. In our applications,
H(drift) is real, diagonal and persymmetric and the H(control)

k matrices can be
brought to real-symmetric and persymmetric matrices by a diagonal and unitary
transform Dk. The transformed matrix Ĥk = DH

kHkDk is real, symmetric,
persymmetric and has the same sparsity pattern than Hk. Therefore, Ĥk can
be brought to block diagonal form by a second linear transform Vk:

V T
k D

H
kHkDkVk =

(
H

(1)
k 0
0 H

(2)
k

)

Figure 1 illustrates the sparsity patterns of the original and transformed matri-
ces.

In this manner, the problem of computing Uk = e−i∆tHk can be reduced to
two problems e−i∆tH

(l)
k of half size:

Uk = DkVk

(
e−i∆tH

(1)
k 0

0 e−i∆tH
(2)
k

)
V T
k D

H
k . (1)
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(a) Original Hamiltonian (b) Hamiltonian after linear transform

Figure 1: The sparsity pattern of the matrices to be exponentiated. In (a) the original matrix
is illustrated, in (b) the pattern after the linear transform. As the matrices are given by tensor
products of Pauli and identity matrices, we get the illustrated multi-level Toeplitz structure.

Hence, we gain a speedup of 4 by halving the matrix sizes (the application of the
transformations Dk and Vk can be neglected), and – depending on the method
used to compute the exponentials – gain an additional performance advantage
from using real instead of complex arithmetics.

According to these considerations, we have to compute exponentials eiA,
where the matrix A = −∆tH(l)

k , according to equation (1), is real-symmetric and
sparse (the sparsity pattern is illustrated in figure 1b). There is a rich collection
of algorithms to compute matrix exponentials ([19, 20, 9, 8], e.g.), however, as
pointed out in [19, 20], the method of computation has to be carefully chosen for
each individual problem setting. For the scenario in algorithm 1 (“compute eiA

for a given matrix A”), this leaves us three efficient methods for computation:
the eigendecomposition method, the Padé approximation, and the Chebyshev
expansion.

2.1. Eigendecomposition
This method was used in the original code [4]. As the matrix A is normal,

we can diagonalise it by a unitary linear transform:

A = V diag(λ1, . . . , λn)V T. (2)

After computing this decomposition we simply get

eiA = V diag(eiλ1 , . . . , eiλn)V T. (3)

The most costly operations in this approach are the computation of the eigen-
decomposition of A (which can be done with non-complex arithmetic) in (2)
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and one matrix-multiplication in (3). In our concrete implementation, LA-
PACK’s dsyev routine was used for the real-symmetric eigenproblem. The
performance of this method is not optimal: Although the matrix is sparse, a
complete eigendecomposition is required. In other words the eigendecomposi-
tion method doesn’t let us exploit the sparsity of A. The performance results
in section 2.4 attest these considerations.

2.2. Padé approximation

The Padé approximation is a rational expansion of the form rst(x) = pst(x)
qst(x) ,

where pst and qst denote polynomials of degree s and t respectively. In the case
of the exponential function x 7→ ex these polynomials are given by

pst(x) =
s∑
j=0

(s+ t− j)!s!
(s+ t)!(s− j)!

xj

j!
,

qst(x) =
t∑

j=0

(s+ t− j)!t!
(s+ t)!(t− j)!

(−x)j

j!
.

(4)

We can generalize (4) to any quadratic matrix A, and obtain the formula

eiA ≈ rst(iA) := (qst(iA))−1
pst(iA), (5)

where pst(iA) and qst(iA) denote the accordant matrix polynomials.
In practice, the diagonal Padé approximants (i.e. s = t) are used, because

in this case the polynomial evaluation of pt(iA) := ptt(iA) and qt(iA) := qtt(iA)
can be done in a very efficient way (see e.g. [8]). The approach

rt(iA) = (qt(iA))−1
pt(iA), (6)

then forms a good approximation for matrices A near the origin, i.e. with small
norm ‖A‖. The so-called scaling & squaring technique provides us a simple
means to reduce the norm of A.

Scaling and squaring
The scaling & squaring method exploits the relation eA =

(
eA/β

)β
and is

therefore a helpful method to reduce the matrix norm of the exponent. The
idea is to choose β as an integral power of 2, say β = 2γ , to compute eA/β ,
and then to undo the effect of the scaling by a repeated squaring procedure
(γ squaring steps). Altogether, the Padé method computes eiA via the formula

[rt(iA/2γ)]2
γ

. (7)

The most time-consuming parts within this method are the evaluation of the
matrix polynomials pt and qt in (6), the computation of the LU decomposition
to solve equation (6), and the γ multiplications in the final squaring steps (7).
Throughout the evaluation of the matrix polynomials, the sparsity pattern of
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A is destroyed. Therefore, this evaluation had to be implemented using dense
matrix library calls. In addition, the LU decomposition of qt(iA) and the final
squaring steps are also computed for dense matrices. Hence, the sparsity pattern
of A cannot be exploited with the Padé approximation method.

2.3. Chebyshev series expansion
In this section we investigate a method based on a polynomial expansion of

the exponential function. This approach leads to the most efficient way for the
computation of our matrix exponentials, also because it can exploit sparsity of
the matrices.

For this method, we need the Chebyshev polynomials of the first kind, which
are given by the formula

Tk(x) = cos(k arccos(x)) (8)

and can be described by the three-term-recurrence formula

T0(x) = 1,
T1(x) = x,

Tk+1(x) = 2xTk(x)− Tk−1(x).
(9)

With respect to the weight function ω(x) = (1 − x2)−1/2, these polynomials
are orthogonal. In this sense, a function f(x) with arguments |x| ≤ 1 can be
represented by an infinite Chebyshev series according to

f(x) =
∞∑
k=0

akTk(x), with ak =
2
π

1∫
−1

f(x)Tk(x)
dx√

1− x2
. (10)

Details can be found in [22]. In our case f(x) = ex and the coefficients then take
the special form ak = 2ikJk(−i) with the Bessel functions Jk. For |x| ≤ 1 this

leads to ex = J0(i) + 2
∞∑
k=1

ikJk(−i)Tk(x). Therefore, the matrix exponential of

iA, provided that the normalisation condition ||A|| ≤ 1 is satisfied, is given by

eiA = J0(i)I + 2
∞∑
k=1

ikJk(−i)Tk(iA). (11)

For dealing with matrices A of arbitrary finite norm, the scaling and squaring
technique is applied once again (as for the Padé approximation).

The Chebyshev method requires the computation of only one matrix poly-
nomial per matrix exponential, and the update formula is of the form

Tk+1 ← −Tk−1 + 2iATk. (12)

This rule can simply be implemented by using the BLAS routine for gen-
eral matrix multiplication, C ← αC + βAB. Moreover, in every summand
of the Chebyshev series, the matrix product ATk in equation (12) is of the
form sparse × dense (as A is sparse), and can be computed by Sparse BLAS li-
braries. Therefore, within the Chebyshev method, matrix products of the form
dense × dense only occur in the squaring steps, if scaling & squaring is necessary.
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2.4. Performance results
In this paragraph we present numerical results which reveal our theoretical

analysis in the last section. We compare the eigendecomposition method (see
2.1), the Padé approximation (see 2.2), and the Chebyshev expansion (see 2.3)
in terms of computing time (see 2.4.1), but also in terms of accuracy (see 2.4.2).
When dealing with the Padé or Chebyshev expansion methods, we have to
choose two parameters: the length of the expansion series and the number of
scaling & squaring steps. For the implementation of the Padé approximation
method, we employed the parameter pairs given in [8]. Accordingly, we selected
the parameters for the Chebyshev expansion such that we guarantee the same
accuracy: For the number of scaling & squaring steps we take the smallest integer
γ such that the 1-norm of the exponent is less or equal 1; the Chebyshev series
itself is chosen of order 17.

2.4.1. Computing time
As pointed out in the introduction, the computation of the matrix expo-

nentials is one of the three time-critical parts of the GRAPE algorithm. Due
to the exploitation of the sparsity of the exponent matrices, we were to expect
that the Chebyshev method would outperform both eigendecomposition and
Padé method. This was backed up by the performance measurements plotted in
figure 2. The respective measurements were obtained on an Intel Itanium2 pro-
cessor (Montecito, 1.6 GHz). Figure 2 illustrates that all considered methods are
of the same time complexity. Furthermore, we see that the Chebyshev method
is more than two times faster than the eigendecomposition method which was
used before.

Figure 2: Comparison of the CPU times required for calculating one matrix exponential as
a function of the system size, where n spins translate into a complex matrix of dimension
2n × 2n. The numbers in the plot denote the time reduction for the Chebyshev method
compared to the eigendecomposition approach.

In terms of memory requirements, the Chebyshev method also gives a cer-
tain improvement: For the resummation of the matrix polynomial (11) only one
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additional matrix is needed for temporary storage. In contrast, both eigende-
composition method and Padé approximation request the storage of three dense
matrices for each matrix exponential. However, this is of minor influence, as
the most storage-consuming part of the GRAPE algorithm is caused by the
computation of the prefix problem described in chapter 3.

2.4.2. Accuracy
The accuracy of the approximations Ũ ≈ eiA, with sparse A = −∆tHk, can

be measured in two different ways:

• deviation from unitary: With A being complex Hermitian, the expo-
nential eiA fulfills the equation eiA

(
eiA
)H = eiAe−iA

H
= eiAe−iA = e0 = I

and is therefore unitary. An appropriate error measure for Ũ = eiA is thus
given by ‖Ũ ŨH − I‖.

• deviation from exact solution: If the drift term H(drift) of the Hamil-
tonian is set to zero, the eigendecomposition of H is analytically given by
the Fourier transform matrix (see [7]). In this manner, we can apply our
methods on specially constructed Hamiltonians H with exactly known ex-
ponential U = e−iH , and then measure the approximation error ‖Ũ − U‖
in a specific matrix norm.

Figure 3 illustrates the behaviour of the different methods in terms of accuracy.
Again, the Chebyshev method performs best. Compared to the previously used
eigendecomposition method, we gain a factor of 10−2 in both accuracy measures.

(a) deviation from unitary (b) deviation from exact solution

Figure 3: Comparison of the accuracy of different methods subject to the system size: (a) de-

viation from unitarity measured by ‖ŨŨH − I‖ and (b) errors ‖Ũ − U‖.

Hence, the Chebyshev method outperforms the other methods both in terms
of accuracy and efficiency and therefore allows us to speedup the GRAPE algo-
rithm without losing accuracy.
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3. Parallel Prefix Multiplication

After the computation of the matrix exponentials Uk := e−i∆tHk , the GRAPE
algorithm will compute the sequence of evolutions U(tk), where

U(tk) = e−i∆tHke−i∆tHk−1 · · · e−i∆tH1 (13)

(step 2 of algorithm 1). Similar, the reverse products will be computed (step 3).
Both the computation of the U(tk) and the computation of the reverse products
W (tk) are instances of the so-called prefix problem, i.e. to compute all matrix
products U1U2 · · ·Uk for k = 1, . . . ,M for a given set of matrices Uk. In the
following, we will focus on the parallel computation of the forward sequence, as
the computation of the backward sequence works in exactly the same way.

Our total problem size is determined by the size n of the matrices, which
grows exponentially with the number q of spins (n = 2q), and by the number M
of matrices, which is determined by the choice of the time step. Typical values
of M are in the range of 100–1000. Hence, for simulations that can treat more
than 10 spins – currently, system simulations with 10–15 spins are desired –,
parallel implementation of the prefix computation on compute clusters or even
supercomputers is necessary.

3.1. Coarse-grain vs. fine-grain parallelisation
The prefix problem offers both a fine-grain and a coarse-grain approach

for parallelisation. The fine-grain approach is to simply compute the products∏k
j=1 Uj sequentially for k = 1, . . . ,M in a loop over k, but to parallelise the

individual matrix multiplications. The coarse-grain approach, in contrast, re-
organises the multiplications using the following divide-and-conquer approach
to compute a product Uk1:k2 :=

∏k2
j=k1

Uj :

1. Compute the products Uk1:κ for all κ = k1, . . . , k̂−1, with k̂ =
⌈

1
2 (k1 + k2)

⌉
.

2. Compute the products Uk̂:κ for all κ = k̂, . . . , k2.
Steps 1 and 2 can be executed in parallel.

3. Compute the products Uk1:κ := Uk1:(k̂−1)Uk̂:κ for all κ = k̂, . . . , k2. All
(k2 − k1 + 1) products of this step can be computed in parallel.

Recursive extension of this scheme leads to a tree-like multiplication scheme as
given in figure 4. This so-called parallel prefix scheme was first presented in [17].
To compute the products U1:k for k = 1, . . . ,M , at most M

2 parallel processes
can be used. For larger numbers of available processor cores, as might be the
case on a massively parallel system, the individual matrix multiplications would
therefore need to be parallelised, as well.

The coarse-grain, parallel prefix scheme features a simpler communication
pattern than the fine-grain, parallel matrix multiplication. In addition, the
individual matrix multiplications in the tree-scheme are heavy-weight sequential
work units, such that good parallel speedups of the tree algorithm are to be
expected, and were also achieved in the existing code [4]. However, the tree
scheme increases the total computational work by a logarithmic factor: note
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U1 U2

U1:2

U3 U4

U3:4

U1:3 U1:4

U1:6U1:5

U5:7

U87U

U7:8

U5:8

U1:8U1:7

7U

U5:6U5

U5

U5:6

U6

U3

Figure 4: Divide-and-conquer scheme for the parallel prefix computation. The dashed lines
define the processor scopes; solid lines denote communication between processors, and dotted
lines and boxes indicate where matrices have to be retained for next-level computations. Note
that the result matrices (grey boxes) are not balanced among the processes.

that the parallel computation requires O(logM) subsequent steps (given by the
horizontal levels in figure 4). This additional logarithmic factor is saved in the
fine-grain approach, where the individual matrix multiplications are parallelised.
On the other hand, for the comparably small matrix sizes (1024 × 1024, e.g.),
it is difficult to achieve good parallel speedups on large numbers of processors.

In a previous performance study [1], we compared the overall parallel ef-
ficiency for fine-grain, coarse-grain, and hybrid parallelisation. In the hybrid
approach, evaluation of the parallel prefix tree is restricted to the lower levels,
whereas the products of the upper levels are computed via fine-grain, parallel
matrix multiplication. We especially focused on the increased amount of total
work for the parallel prefix scheme, and for hybrid schemes. We found that
the coarse-grain parallel prefix scheme and also hybrid implementations, even
when using a more efficient memory distribution than given in figure 4, are
only advantageous for matrix sizes of 512× 512 or smaller, which correspond to
systems of up to 9 spins. The fine-grain approach with parallel matrix multipli-
cation was consistently faster for matrices of size 1024× 1024, or higher (i.e. 10
spins, or more), with the advantage growing for larger systems. Therefore, in
the present work we switched to a fine-grain parallelisation approach, and used
a 3D block-oriented method for parallel matrix multiplication.

3.2. 3D block-oriented parallel matrix multiplication
Parallel matrix multiplication is a problem that offers a multitude of well-

established algorithms, e.g. [2, 26, 16]. Nevertheless, our problem setting poses
a set of challenges that makes it important to choose the adopted approach
carefully:

• For the forward and backward propagation, we need to compute many
matrix products in sequence, but the size of the individual matrices is too
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small to achieve good speedups on many processors (such as on the 128
CPUs of our compute cluster used in section 4). Hence, we require an
algorithm that scales well for small matrices, in particular.

• After computation of the matrix exponentials – where each individual
exponential is computed sequentially, but all exponentials are computed
concurrently – the matrices will already be distributed over all available
processors. However, each individual matrix is stored on a single pro-
cessor. Hence, our algorithm will either need to work directly on such a
distribution, or require only a comparably cheap redistribution of matrices
to several or all processors.

In its most general form, matrix multiplication, for example C = AB, can be
formulated via the algorithm

1: for all (i, j, k) ∈ {1, . . . , N} × {1, . . . , N} × {1, . . . , N} do
2: Cik ← Cik +AijBjk
3: end for

(assuming C is initialised to zero), where the Cik, Aij , and Bjk may be elements
or matrix blocks, and where the body of the for loop, i.e. all block operations of
step 2, may be executed entirely in parallel. If we visualise the block operations
as a cube of sizeN×N×N , then the projections in k-, i-, and j-direction indicate
which matrix blocks Aij , Bjk, and Cik are to be accessed, respectively – compare
also figure 5. Depending on the data distribution and also the distribution of
the block operations to the available processors, algorithms for parallel matrix
multiplication are often classified into the following types:

1D algorithms parallelise the block operations into planes in the cube, which
corresponds to column-wise computation of the result matrix.

2D algorithms distribute the block operations into columns; usually these
columns work on individual blocks in the result matrix, such that all com-
putations on that result block are executed by a single processor (“owner
computes”).

3D algorithms define a blocking on the three nested main loops of the algo-
rithm. Hence, the parallelisation is then purely work-oriented in the sense
that a 3D subblock of block operations is assigned to each processor. Both
result and operand matrices may be distributed over several processors.

Naturally, the three classes lead to different performance properties of the al-
gorithms. 3D algorithms, most important, feature the lowest communication
effort – O(n2p1/3) vs. O(n2p1/2) for 2D, and O(n2p) for 1D algorithms (com-
pare [6, 11]). The resulting lower bandwidth requirements are of particular
importance in our problem setting, because we expect scalability problems due
to the small matrix sizes. In addition, a 3D algorithm will produce larger block
multiplications as sequential work units. For most matrix multiplication li-
braries, the sequential performance grows for increasing matrix size, especially
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Figure 5: Block operations in the 3D block multiplication algorithm. The projections onto
the planes below and right illustrate the accessed matrix blocks of the result matrix C and of
one of the operand matrices, respectively.

within the range of small to moderate matrix sizes, which will be the dominant
case in our problem setting.

For our application of prefix computation, a 1D algorithm had already been
considered in the original work by Gradl et al. [4]. However, it was found to be
inferior to the coarse-grain parallel prefix scheme, both with respect to runtime,
and also due to increased memory and communication requirements. The use
of 2D and 3D algorithms was examined in our performance study [1], were 3D
algorithms showed the best runtime performance for our problem setting. The
improved performance comes at the cost of a slightly higher memory require-
ment: O(n2p1/3) additional matrix elements distributed on p processors, which
is less than an additional matrix per processor. As we typically store several
matrices (up to 8 in our examples in section 4) on each CPU, this additional
requirement is easily affordable.

We therefore implemented a 3D block algorithm, which compared to the
performance study in [1] was tuned for our available hardware. The algorithm
extends the classical 2D owner-computes idea in the sense that a given block
of the result matrix may be computed by several processes. The number D of
blocks per index dimension is chosen such that D is the smallest power of 2 with
D3 ≥ p (p the number of processes). Hence, each of the D2 blocks of the result
matrix C is computed by p/D2 processes, and each processor performs D3/p
block operations, all of which work on a single matrix block Cik. Altogether,
each process will perform the following two steps:

for all local blocks operations (i, j, k) do
Fetch Aij and Bjk from remote processes
Cik ← Cik +AijBjk

end for
Accumulate all results for block Cik (group-collective operation)

12



process 0 process 1 process 2 process 3

step 1:

step 2:

Figure 6: Communication pattern during the accumulation of results within a single matrix
block Cik. In each successive step, pairs of processes exchange and accumulate their partial
results: the number of exchanged rows is halved and the distance between two communicating
processes is doubled. Gray boxes represent rows that are sent to the corresponding process,
black boxes represent rows that are received and accumulated to local data.

The accumulation of the results in Cik is a group-collective procedure, which is
performed in parallel by all p/D2 processes that compute the same block Cik.
The accumulation is organised as a pairwise accumulation of data, as illustrated
in figure 6.

After log2(p/D2) subsequent steps, each process has computed one part of
the block Cik – these parts are then broadcasted to the other processes. Note
that, within the for-loop to compute the block operations, communication and
computation may be overlapped to hide communication costs.

During a computation U1:k = U1:k−1Uk, only blocks of the matrices U1:k−1

and Uk are accessed. Hence, if U1:k−1 and Uk would be stored on only one pro-
cess each, we would obtain a communication bottleneck. We therefore distribute
each matrix onto all available processes before starting the prefix computation.
The granularity of this distribution is given by the subblocks used in the accu-
mulation step (compare figure 6). Subblock l of a matrix Uk will be stored on
process (l + k) mod p (p the number of processes). After each accumulation
process, the computed matrix U1:k will be correctly distributed to all processes.
After the entire prefix loop, the result matrices U1:k will be assembled in a final
global communication step, such that again all matrices are stored on a separate
process.

3.3. Performance results
The performance of the 3D parallel matrix multiplication was evaluated on

an Infiniband cluster with 32 Opteron nodes; each node contains four AMD
Opteron 850 processors (2.4 GHz) connected to 8 GB or 16 GB of shared mem-
ory. Each node is equipped with one MT23108 InfiniBand Host Channel Adapter
card, which is thus shared by 4 processors for communication. The sequential
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Figure 7: Speedup depending on matrix size for the 3D parallel matrix multiplication on 8
and 64 processes of the Infiniband cluster.

block multiplications were executed by the dgemm implementation of AMD’s
Core Math Library (ACML, v. 3.5.0).

Figure 7 shows the achieved speedups, when using 8 or 64 processors (on 2 or
16 nodes, respectively), for matrix sizes from 128×128 (7 spins) up to 8192×8192
(13 spins). We see that good speedups are only achieved for comparably large
matrix sizes. For matrices of size 1024 × 1024, the achieved parallel efficiency
is only about 50 % for 8 processes and about 30 % for 64 processors. This is
both due to communication overhead and due to decreased performance of the
sequential matrix multiplication for very small matrix blocks.

Despite the less-than-optimal speedups, the 3D block multiplication outper-
forms the parallel prefix scheme, which can be seen from Table 1. There, the
runtimes to execute the prefix multiplications of the forward propagation are
given for using parallel matrix multiplication on p = 8 up to p = 128 proces-
sors. For comparison, the rightmost column gives the runtime of the parallel
prefix scheme (using the optimal number of processors, respectively). Using
parallel matrix multiplication to parallelise the prefix computations gives a per-
formance advantage of factor 2–3. As expected, the performance advantage
grows for larger matrix sizes.

4. Performance Results for the GRAPE Algorithm

In figure 8 we illustrate the runtimes for one complete iteration of the
GRAPE algorithm on the Infiniband cluster (compare section 3.3). For each
problem size, the total runtime is split up into four parts: computing the matrix
exponentials, forward propagation, back-propagation, and computation of the
gradients (steps 4 and 5 of algorithm 1). For the forward and backward propaga-
tion, we compare the runtimes when using the 3D parallel matrix multiplication
instead of the parallel prefix scheme.
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parallel runtime [s]
Matrix size M p = 8 p = 16 p = 32 p = 64 p = 128 par. prefix
512× 512 2048 41.99 35.53 20.52 11.48 11.35 23.00
1024× 1024 256 28.94 21.38 12.12 6.50 5.31 13.49
2048× 2048 512 – – 128.06 67.51 51.59 152.04
4096× 4096 64 – – 93.13 49.16 34.91 229.73

Table 1: Parallel runtimes for the prefix problem with parallel matrix multiplication on p
processors for different matrix sizes and number M of matrices. The fastest runtime of the
parallel prefix scheme on the optimal number of processors is given for comparison.
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Figure 8: Runtime of one iteration of the GRAPE algorithm for different problem sizes.
We compare the runtimes for using the parallel prefix scheme (’old’) vs. using the 3D parallel
matrix multiplication (’new’) for systems with 9 and 10 spins, where the number M of matrices
varies between 128 and 1024.
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Using the 3D matrix multiplication gives a substantial performance advan-
tage already for the 9-spin problem, where the matrix sizes are still very small
(512 × 512)). For the 10-spin problem (matrix size 1024 × 1024), the 3D ma-
trix multiplication is already more than 2 times faster than the parallel prefix
scheme. Note that for the 10-spin problem, we were able to compute problems
with M = 512 and M = 1024, which was not possible with the parallel-prefix-
scheme implementation due to lack of memory. More precisely, the inhomoge-
neous distribution of matrices to processors was responsible for this restriction
(compare figure 4).

5. Conclusions

In the presented work, we substantially improved the two most time-consuming
linear algebra tasks in the GRAPE algorithm for quantum control problems. For
the computation of the exponentials of Hamiltonian matrices, we integrated a
method based on Chebyshev series expansion. As this method is able to exploit
the sparsity of the exponent matrices, we obtain a runtime improvement of more
than factor 2 compared to the earlier adopted approach, which was based on
the eigendecomposition of the exponents. In addition, the Chebyshev method
was shown to be more accurate than the eigendecomposition method.

For parallelisation of the prefix multiplication in the forward and back prop-
agation step, we introduced a fine-grain parallelisation that relies solely on the
parallelisation of individual matrix multiplications. Compared to the earlier
adopted, tree-oriented parallel prefix computation, the respective approach saves
the additional logarithmic factor in the total computational work. We therefore
obtain improved runtimes despite the non-optimal parallel efficiency of the par-
allel matrix multiplication for the small matrix sizes typical for our quantum
control problem. Overall, we gain a factor 2–3 in runtime, and also reduce the
memory requirements of the implementation.
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