
UC Berkeley
UC Berkeley Previously Published Works

Title
Tuning collective communication for Partitioned Global Address Space programming models

Permalink
https://escholarship.org/uc/item/6qk1g6bf

Journal
Parallel Computing, 37(9)

ISSN
0167-8191

Authors
Nishtala, Rajesh
Zheng, Yili
Hargrove, Paul H
et al.

Publication Date
2011-09-01

DOI
10.1016/j.parco.2011.05.006

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6qk1g6bf
https://escholarship.org/uc/item/6qk1g6bf#author
https://escholarship.org
http://www.cdlib.org/

Tuning Collective Communication for Partitioned

Global Address Space Programming Models

Rajesh Nishtalab, Yili Zhenga, Paul H. Hargrovea, Katherine A. Yelicka,b

rajeshn@cs.berkeley.edu, {yzheng, phhargrove, kayelick}@lbl.gov

aLawrence Berkeley National Laboratory
bDepartment of Electrical Engineering and Computer Sciences

University of California, Berkeley

Abstract

Partitioned Global Address Space (PGAS) languages offer programmers the
convenience of a shared memory programming style combined with locality
control necessary to run on large-scale distributed memory systems. Even
within a PGAS language programmers often need to perform global com-
munication operations such as broadcasts or reductions, which are best per-
formed as collective operations in which a group of threads work together
to perform the operation. In this paper we consider the problem of im-
plementing collective communication within PGAS languages and explore
some of the design trade-offs in both the interface and implementation. In
particular, PGAS collectives have semantic issues that are different than in
send-receive style message passing programs, and different implementation
approaches that take advantage of the one-sided communication style in these
languages. We present an implementation framework for PGAS collectives as
part of the GASNet communication layer, which supports shared memory,
distributed memory and hybrids. The framework supports a broad set of
algorithms for each collective, over which the implementation may be auto-
matically tuned. Finally, we demonstrate the benefit of optimized GASNet
collectives using application benchmarks written in UPC, and demonstrate
that the GASNet collectives can deliver scalable performance on a variety of
state-of-the-art parallel machines including a Cray XT4, a IBM BlueGene/P,
and a Sun Constellation system with InfiniBand interconnect.

Keywords: Partitioned Global Address Space Languages, Collective
Communication, One-Sided Communication

Preprint submitted to Parallel Computing April 6, 2011

1. Introduction

Partitioned Global Address Space (PGAS) languages combine the con-
venience of shared memory programming with the locality and data layout
control of message passing. These languages run well on both shared mem-
ory and distributed memory hardware, taking advantage of shared memory
support when it exists and leveraging the partitioned nature of the address
space for performance on distributed memory supercomputers and clusters.
The main difference between PGAS programming and the conventional mes-
sage passing programming model, such as MPI, is that PGAS languages
provide a global view of the memory across nodes and support one-sided
communication, read and write (or get and put), for shared data. In con-
trast, in the two-sided communication model in MPI a process can only see
its own local memory space and needs matching send and receive operations
between itself and a remote process to transfer data. MPI is widely used
due to its high quality implementations, portability, and good performance
scalability, but the two-sided communication model is inconvenient for ex-
pressing asynchronous communication patterns in applications like histogram
construction, mesh generation, and certain graph algorithms, in which only
one side knows about a communication event. A global address space and
one-sided communication primitives make developing such applications eas-
ier. In addition, by decoupling the transfer of data from the notification to a
remote process, the one-sided communication can take advantage of Remote
Direct Memory Access (RDMA) hardware and avoids some of the overheads
of message and tag matching that are inherent to the two-sided model.

There are many different variations of PGAS languages and each has dif-
ferent design goals and programming styles but all of them fundamentally
share the idea of a global address space in which a thread has affinity to part
of the global address space. PGAS programming language implementations
share a common set of runtime needs including: one-sided communication,
collective communication, active messages, memory allocation, and the man-
agement of processes and threads. The GASNet communication library [1]
is a portable runtime system for enabling PGAS implementations. GASNet
is used to implement many PGAS programming languages including: Co-
Array Fortran[2]), UPC[3], Titanium[4], Cray Chapel[5], in addition to some
research prototypes.

One-sided communication involves only a single application level process
and two-sided communication involves two, but it is often useful in both mod-

2

els to have operations involving a large set of processes working collectively
to perform a global communication operation. Common collective operations
such as broadcast and reduction could be performed by accessing shared vari-
ables in a global address space, but this approach is neither convenient nor
scalable. To aid in productivity and performance, many languages provide
a standard set of such collective operations. These operations encapsulate
common data movement and inter-processor communication patterns, such
as broadcasting an array to all the other processors or having all processors
exchange data with every other processor. The abstraction is intended to
shift the responsibility of optimizing these common operations away from
the application writer, who is probably an application domain expert, into
the hands of the implementers of the runtime systems. While this problem
has been well studied in the two-sided communication model community, the
primary focus of this paper will be to understand and improve the perfor-
mance and productivity benefits of collective operations in PGAS languages
such as UPC[3], Titanium[4], and Co-Array Fortran[2], with the emphasis on
UPC. The semantic differences between one- and two-sided communication
pose interesting and novel opportunities for defining and tuning collectives.

PGAS collectives are different than MPI collectives in several aspects:

• MPI collectives are node-centric, while PGAS collectives are data-
centric. For example, in MPI broadcast, the user specifies the source by
providing the rank of of root. In contrast, in a UPC broadcast, the user
specifies the source by providing the pointer to the shared data buffer
and the runtime determines the location of the data automatically.

• MPI collectives implementations are often built on top of two-sided
communication primitives (send and receive) whereas PGAS collectives
are often built on top of one-sided communication primitives (put and
get).

• PGAS collectives have an added semantic complexity in that one pro-
cess may be writing to remote data that is involved in a concurrent
collective operation. In UPC, for example, a set of synchronization
modes are used to limit such behavior.

To benefit as many PGAS implementations as possible, we have designed,
implemented, and tuned collective functions for PGAS languages in the GAS-
Net system. Because GASNet is designed as a low-level system software li-
brary, programmers usually use GASNet indirectly by programming in one

3

of the PGAS languages that implemented on top of GASNet. In this work,
we use Berkeley UPC to implement application level benchmarks to evaluate
the performance of the optimized GASNet collectives implementation.

In this paper we make the following contributions: i) explore the inter-
face issues with collective communication in PGAS language, which includes
trade-offs in performance and simplicity; ii) describe the implementation of
a collective communication library for PGAS languages as part of the GAS-
Net communication library; iii) enumerate some of the implementation ap-
proaches for various collectives and the need to automatically tune over these
implementation to select a reasonable one for a given machine and usage sce-
nario; iv) evaluate the collectives on some of the largest computer systems
available today, including a Cray XT4, an IBM BlueGene/P, as well as a
large Sun cluster with an InfiniBand interconnect.

2. Designing a PGAS Collectives Interface

Many parallel algorithms perform global communication operations, such
as broadcasts and reductions, that involve data movement across all threads.
In PGAS languages, because all threads have access to shared data, the first
design question is whether these global operations should be performed as
a collective operation in which all threads participate together, can a single
thread invoke a global operation. In PGAS languages, a single thread has
access to all data in the shared space, operations on data spread across the
machine can be performed by a single thread. Nevertheless, UPC, like MPI,
provides these global operations as collectives. This simple model provides
a good abstraction of current machines and requires minimal runtime sup-
port, albeit at some loss of convenience. Several questions remain about the
collectives interface and implementation strategy.

One key part of the collectives interface that we do not discuss here in
detail is the exact set of collective operations. GASNet and UPC provide
both rooted collectives, such as broadcasts and reductions with a single source
or destination thread that acts as the root, as well as non-rooted collectives
that perform operations such as all-to-all communication patterns. Some
of the collectives perform computation, e.g., scans and reductions, whereas
others simply move data. These are described for UPC and GASNet in their
respective specifications [3, 1].

4

2.1. Global Address Space and Synchronization

In PGAS languages, all the threads may have global knowledge of the
destinations of all the data. This knowledge can be used to avoid extra copies
of data or synchronization within collective operations, since one thread can
write directly into the final destination of another. However, this lack of
copying raises semantic issues, since the data involved in a collective can
be read or written by the destination thread or any other thread while a
collective is in progress. Analogous problems arising with writing to input
data in a collective, since the data could be modified by another thread during
the collective operation. One can simplify the semantics by inserting a barrier
before and after every collective but this over-synchronizes and will not fully
expose the performance advantages of collectives in one-sided programming
models. Currently the specification of Unified Parallel C (UPC) language
is exposing this problem to the end user and having the user decide what
the collective synchronization semantics need to be. At the strictest end
of the spectrum, data movement can only occur after the last thread has
entered the collective and before the first thread leaves the collective. At
the loosest end of the spectrum, data movement can start as soon as the
first thread enters the collective and can continue until the last thread leaves
the collective. These options are controlled by synchronization flags on each
collective operation, which significantly complicate the interface but also gain
performance.

2.2. Nonblocking Collectives

The UPC synchronization flags in collectives control when the data can be
safely accessed by other parts of the program, and they admit collectives to
overlap with another, which can be useful in a collective-heavy computation.
However, they do not permit a thread to begin a collective, perform other
work, and then return to see that the collective has completed. UPC has
split-phase barriers to allow for global synchronization of this kind, but not
split-phase (also called nonblocking) collectives. The performance benefits
of overlapping communication with computation have been well studied[6].
Some have further explored how these techniques can be applied to collectives
and their benefits in applications that are written in two-sided communica-
tion models[7, 8].

To enable overlapping collective communication with computation or
other types of communication, we have designed our collectives to be non-
blocking. Like a nonblocking memory transfer, the operation returns a han-

5

dle that needs to be synchronized for completion. When these nonblocking
collectives are used, we do not require any processor to be inside the collec-
tive routines while they are in progress. Special mechanisms (either based
on interrupts or polling) will be needed to ensure that the collectives can
run asynchronously with the rest of the computation. Full details of the
implementation of the nonblocking collectives are available in [9].

2.3. Teams

The control model within the UPC language is a flat Single Program Mul-
tiple Data (SPMD) model, so all threads start a executing the main function
at program startup and run to completion throughout the program. Threads
may take different branches within the code, and do not run in lock step, but
there is no language level mechanism for specifying that a subset of threads
are working together on a computation and therefore perform collective oper-
ations as a team. The question of how to support teams has been an ongoing
topic of discussion in UPC, and they are supported in other PGAS languages
as well as MPI. Therefore, the GASNet design supports teams and they will
be used in some of the UPC applications through extensions in the Berkeley
UPC compiler.

2.4. Address Modes

One of the advantages of a one-sided communication model is that the
initiator of communication has information about where remote data lives.
In a collective operation, this potentially requires one address per thread.
At the UPC level, collective operations are performed on distributed arrays,
and the runtime system keeps track of where all of the blocks of the array
live in memory. But a more general interface allows each thread to point
to an independent data location, not necessarily part of a distributed array.
GASNet therefore supports two modes of use, the first being faster, and the
second more flexible:

1. Single: All the threads pass the addresses for all the other threads
so that no address discovery is necessary. The base addresses for the
remote access regions are usually exchanged when the job starts up so
computing all the remote addresses can be done with local computation
and no communication. This is the address mode that is used by the
Berkeley UPC compiler.

6

2. Local: If providing all the addresses is not feasible a thread can only
pass the address of the data on the local node. This is the relevant
mode for clients that do not keep track of remote addresses for shared
data structures and is the address mode employed by the current MPI
collective interface.

Allowing the collective to only specify the local address, as is done with
MPI, allows more flexibility to the end user. If the language features or ap-
plication do not easily lend themselves to knowing all the different addresses
then this mode is preferable. The collective has to either exchange the ad-
dress information or use internal buffers that are located in a known place
in the remote segments. Thus at scale the latency costs associated with ad-
dress discovery might be much larger than the overhead induced by O(N)
data structures to specify the addresses.

3. Optimizing PGAS Collectives Implementation

To achieve scalable high performance, we have implemented several op-
timizations unique to PGAS in addition to common optimizations used in
MPI collectives.

3.1. Leveraging Shared Memory

Most modern systems, including the ones presented in this study, contain
multicore processors that have shared physical memory for all processor cores
within a node. We use a “virtual node” to represent a collection of threads
that share a common address space, system resources, and network endpoint
resources. Each virtual node is implemented as an underlying OS process.
The Berkeley UPC runtime supports two modes of operation: (1) a one-to-
one mapping between UPC threads and GASNet processes or (2) each UPC
thread in the shared memory domain is mapped to an operating system level
thread within a single GASNet process (i.e. a many-to-one mapping). In
the latter case, a data movement operation between the threads in a shared
memory domain is a simple memcpy().

For the experiments in this paper we use a one-to-one mapping between
UPC level threads and the underlying operating system threads. Thus all
UPC threads that are sharing the same physical address space can use shared
memory to transfer the data amongst themselves. Our collectives implemen-
tation is aware of the hierarchical execution model of threads and processes.

7

Thus, to minimize the network traffic, a representative thread from each node
manages the internode network communication with other nodes and uses
memcpy to pack and unpack the data for communication within the node.
Our study is conducted with POSIX threads [10], however the techniques
discussed are applicable to other threading models as well.

Since communication amongst processes is handled through the network
interface, the current collective library makes no distinction between virtual
nodes that are co-located on the same physical node and virtual nodes on
distinct physical nodes. Future work will address this issue and optimize the
collectives to further be aware of the communication amongst virtual nodes
that are co-located on a physical node.

3.2. Communication Topology Optimizations with Trees

Rooted-collectives are typically implemented by a logarithmic Tree algo-
rithm. We define a tree as a directed acyclic graph constructed with the
nodes such that all the nodes except the root has an in-degree of 1. An
edge in the graph represents a virtual network link between the source and
the destination. In many cases, it is useful for these virtual links to match
what the underlying physical network provides, however this is not neces-
sary for correctness. On all the platforms used in this study, the underlying
networks can appropriately route the messages from the source to the des-
tination without intervention from the collectives library. Tree algorithms
include many parameters and variations. A full analysis of the tree geome-
tries is not possible in the space provided here and is slightly tangent to the
focus of this paper. Hence we refer the reader to [9] for a full treatment on
the topic including a set of performance models that can be used to guide
the choice of the optimal tree. The experiments presented in the rest of this
paper show the results from the best tree picked by a search over the different
tree geometries.

3.3. Data Transfer Optimizations

It is an important design issue about how the data is communicated
between nodes. Since the intermediary nodes of a communication pattern
will need to receive and forward data to their peers, they need to know when
the sender has finished the data transfer. Thus along with the one-sided data
transfer, we have developed mechanisms to signal when the data has arrived.
We explore two different data transfer mechanisms and their tradeoffs.

8

3.3.1. Signaling Put

For Single address collectives, since the sender knows the destination
address of the data, we use a GASNet Long active message [11] to transfer the
data. The function invoked on the target node sets a state flag indicating that
the data has arrived. For collective operations not requiring synchronizations,
the data can be transferred to the destination nodes without the point-to-
point synchronization.

3.3.2. Rendezvous

For Local address collectives that would like to avoid the latency costs of
address exchange and Single address collectives that require the user buffers
not be touched until the destination thread has entered the collective, the
data needs to be transferred into an auxiliary buffer on the destination node.
However we do not want to pay the cost to manage the internal memory
to stage the data before copying it into the user’s buffers. For machines
with large processor counts and small per-node memory (e.g., the IBM Blue-
Gene/P), it is impractical to use a significant percentage of the memory for
bounce buffers. If one were to limit the amount of space available for these
bounce buffers, then complicated flow control mechanisms are needed to en-
sure that the memory space is not exhausted. To avoid these issues, we
employ a Rendezvous approach for larger messages. The sender first notifies
the receivers about the address of the source data buffer. Then the receivers
initiate get operations to fetch the data from the sender’s source buffer once
they know the address. After the get operations complete, the receivers in-
crement an atomic counter on the sender to acknowledge the completion.
The sender checks the acknowledgement counter and waits until all data
transfers are done at which time it can exit the collective. The Rendezvous
data transfer protocol naturally enforces that a node’s data can be modified
by other nodes only when the node is in the collective function.

3.4. Non-Rooted Collectives Optimizations

There are a large set of applications that rely on non-rooted collectives,
in which every thread receive a contribution from every other thread. Näıve
(Flat) implementations of these operations can lead to O(T 2) messages while
well tuned ones can perform the same task in O(T log T) messages.

Non-rooted collectives commonly use some variant of Bruck’s algorithm[12],
which we refer to as dissemination algorithms. The dissemination algorithms
send data to its final destination node through intermediaries in O(N log N)

9

Exchange Radix 4 (2 Rounds)

0

Exchange Radix 2 (3 Rounds)

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Exchange Radix 8 (1 Round)

1st round 2nd round 3rd round

Figure 1: Example Dissemination Communication Patterns

steps. Since the same data is sent more than once, this approach requires
more bandwidth than having each thread send direct messages to all other
threads. Thus we can trade message counts for additional bandwidth. The
most common dissemination radix is two; however higher radix algorithms
are often useful in practice. As the radix increases, the replication of data
is reduced at the expense of more messages per round. Figure 1 shows the
communication patterns with 8 nodes for three different radices. The total
number of messages can be approximated by O(N(k− 1)(logkN)) where k is
the radix, and N is the total number of nodes. Notice that at the extreme
when k = N , the dissemination algorithm uses the same number of messages
as the Flat Algorithm. At each round, the message size is O(BNt2

k
) where B

is the size of the personalized messages between the threads.

3.5. Hardware Collectives and Algorithm Compositions

More and more interconnects support collective communication in hard-
ware, which usually is faster than software implementations. For example,
IBM BlueGene supercomputers [13] have a special network for collective com-
munication. The hardware collectives are orthogonal to the software imple-
mentations and are included in our library.

Complex collective operations can be implemented by composing ba-
sic collective algorithms. For example, All Reduce can be implemented
by Reduce followed by Broadcast or by Reduce scatter followed by
All Gather. Similarly, All Gather can be implemented by everyone Broad-
cast or by Gather followed by Broadcast from the root. Our collectives

10

framework facilitates advanced users to implement new algorithms via algo-
rithm composition.

3.6. Automatic Tuning

The collectives implementation space is very large because GASNet in-
cludes many possible algorithms and parameters for each collective. We have
thus implemented an automatic collective tuning system in GASNet that
stores all algorithms for the various collectives in a large index implemented
as a multi-dimensional table. For each collective, a collection of possible
algorithms is available. Along with each algorithm, the list of applicable
parameters and their ranges are stored (e.g. tree shapes and radices). As
part of the index, each collective algorithm advertises its capabilities and
requirements. By allowing different algorithms to have different capabilities,
we can write more specialized collectives, which work well for certain input
parameters but may not be applicable to others. For each of the combination
of input parameters, at least one algorithm must exist to ensure a complete
collectives library. In addition, the system has been designed to incorporate
customized hardware collectives into the tuning framework.

It is an expensive process to find the best collective algorithm among
all choices. There are many factors that affect the overall performance of
the library. Some performance-influencing factors can be inferred at the
library installation time while others are only known during the application
execution.

• Offline Tuning: Offline tuning is the process of tuning the collective
library outside the users application. This can be done either at the li-
brary install time or periodically by the system administrator. Because
the tuning step is outside the critical path of the library, it can spend
more time finding the best variant of the code. However, since the ex-
act collective input parameters are not known from the application, a
set of input tuples need to be searched. The set of sample input tuples
can be adjusted as needed to tailor for specific applications. This is the
tuning approach that is used by popular automatically tuned software
packages such as ATLAS.

• Online Tuning: Online tuning is the process of tuning the collective
library either implicitly or explicitly during the run of applications.
The advantage of this approach is that the complete information about

11

input data, processor layouts and network loads are available to make
tuning decisions. However, because the collective tuning can be a po-
tentially expensive process (up to a few minutes per input tuple on a
large node count), any gains from the collective tuning might be over-
whelmed by the cost of the tuning.

To get the positive aspects of each method, we employ a combination of
online and offline tuning in GASNet. The main aim of the offline tuning is to
refine the search space and throw away obviously bad candidate algorithms.
The online search space is responsible for fine tuning the algorithmic selection
given runtime factors. The full design and implementation of the automatic
tuner can be found in [9].

4. Experimental Platforms

We use three large scale supercomputers for our experiemetns: the IBM
BlueGene/P at Argonne National Labs (Intrepid), the Sun Constellation Sys-
tem at the Texas Advanced Computing Center (Ranger), and the Cray XT4
at the National Energy Research Scientific Computing Center (Franklin). As
of November 2010, these machines are respectively ranked 13th, 15th, and 26th

on the Top500 list[14], the list of the 500 most powerful computers in the
world. Table 1 lists the architectural summary of these systems.

One of the features common to all these systems is a Direct Memory Ac-
cess (DMA) device that is attached directly to the network card. This is
hardware that allows the network interfaces to directly read and write data
to the main memory (or the L3 cache in the case of the BlueGene/P) without
having the processors actively manage communication in progress. In addi-
tion these devices can directly read or write data to the memory on remote
nodes, a feature known as Remote Direct Memory access (RDMA) designed
for one-sided communication. The hardware support for one-sided commu-
nication is leveraged heavily in our work. Our related work [6, 15] has also
shown how these features can be utilized to realize significant performance
advantages.

5. Performance Study with Micro-Benchmarks

We study the performance characteristics of our implementation of PGAS
collectives by a set of micro-benchmarks.

12

Cray IBM Sun
XT4 BlueGene/P Constellation

Machine Name Franklin Intrepid Ranger

Machine Location NERSC ALCF TACC

Top500 Rank 26 13 15
(November 2010)

Processor Type AMD IBM AMD
Opteron PowerPC Opteron

(Budapest) 450 (Barcelona)

Clock Rate (GHz) 2.3 0.85 2.3

Cores/Processor 4 4 4

Processors/Node 1 1 4

Peak Perf. /Node 36.8 13.6 147.2
(GFlop/sec) †

Memory BW 10.6 13.6 10.6
(GB/s)

Network BW 7.6 0.85 1
(GB/s) (2-way) (2-way) (1-way)

One-way Network 6.2 1.5 2.3
Latency (µs)

Table 1: Experimental Platforms (†All platforms support a peak of 4 double-precision
floating point operations per cycle.)

8 16 32 64 128 256 512 1k 2k 4k 8k
Transfer Size (Bytes)

0

100

200

300

400

500

600

T
im

e
(m

ic
ro
s
e
c
o
n
d
s
)

Local

Single

Figure 2: Comparison of Data Trans-
fer Mechanisms (Broadcast performance on
2048 cores of the Cray XT4)

8 16 32 64 128 256 512 1k 2k 4k 8k
Transfer Size (Bytes)

0

50

100

150

200

250

300

350

400

T
im

e
(m

ic
ro
s
e
c
o
n
d
s
)

Local

Single

Figure 3: Comparison of Data Trans-
fer Mechanisms (Broadcast performance on
1024 cores of the Sun Constellation)

13

8 16 32 64 128 256 512 1k 2k 4k 8k 16k
Transfer Size (Bytes)

0

100

200

300

400

500

600

700

800
T
im

e
(m

ic
ro
s
e
c
o
n
d
s
)

Eager

Put

Rvous

Figure 4: Comparison of Data Trans-
fer Mechanisms (Broadcast performance on
2048 cores of the Cray XT4)

8 16 32 64 128 256 512 1k 2k 4k 8k
Transfer Size (Bytes)

0

50

100

150

200

250

T
im

e
(m

ic
ro
s
e
c
o
n
d
s
)

Eager

Put

Rvous

Figure 5: Comparison of Data Trans-
fer Mechanisms (Broadcast performance on
1024 cores of the Sun Constellation)

5.1. Address Modes

Figures 2 and 3 show the performance advantages of knowing all the ad-
dresses versus having to discover the addresses. As the data show on both
platforms, the Single address mode can consistently realize better perfor-
mance than Local. One would expect the performance difference to be only
significant at smaller message sizes. However, the cost of the added syn-
chronization also has a significant impact on larger message sizes. The cost
of the added synchronization needed to discover the addresses limits the
amount of time a node spends transferring data and thus reduced the over-
all bandwidth. Comparing across the two platforms, the overhead of Local
collectives is a lot higher on the CrayXT4 than the Sun Constellation. From
the platform summary data in Table 1, the Sun Constellation has a lower
network latency than the CrayXT4. Thus the cost of the communicating the
addresses, which involves latency sensitive small message transfers, is higher
and hence the performance penalty.

5.2. Data Transfer

Figures 4 and 5 compare the performance of the various transfer mecha-
nisms for a Broadcast of various sizes. The times shown are the average for
multiple back-to-back collectives. Each of the collectives is separated by a
barrier to approximate the time taken for the data to reach the bottom of the
tree. As the data show, the cost of the extra synchronization required for the
Rendez-Vous approaches on both platforms increase the time for the total op-
eration. The 3D Torus on the Cray XT implies that the signaling mechanisms

14

necessitated by the Rendez-Vous need to go through multiple hops further
aggravating the latency of the operations. The Put mechanism consistently
outperforms the Rendez-Vous mechanism. For comparison purposes we have
also measured the performance of the same operations in MPI. In the case of
the Cray XT4, the MPI performance is between that of the Put and Rendez-
Vous. As the transfer size increases MPI and the Rendez-Vous are similar in
performance. The data of the Sun Constellation show that the MPI perfor-
mance is similar to the performance of Put. From the figures we can draw
the conclusion that when applicable, taking advantage of the Global Address
knowledge can yield good performance advantages. MPI may also utilize
these operations but it needs extra support in the runtime to pre-exchange
the addresses of the internal buffers used by the collective implementation.
However, one-sided programming models eliminate the associated overheads
of copying data to and from the collectives library’s internal buffers.

5.3. Non-Rooted Collectives

Figures 6, 7, and 8 show the performance of different Exchange algo-
rithms on 512 cores of the Cray XT4, 256 cores of the Sun Constellation,
and 2048 cores of the IBM BlueGene/P. As the data show at small message
sizes, the Dissemination algorithms yield the best performance by reducing
the overall message count. For each platform we compare three different
benchmarks. The Flat measures the performance of GASNet and having all
the threads transferring data to each other directly without using intermedi-
ary nodes. This method incurs a total of O(n2) messages without any extra
bandwidth consumption. The Dissem shows the performance of the best
dissemination algorithm with a search across radices 2, 4, and 8 for Bruck’s
algorithm implemented in GASNet. The MPI line shows the corresponding
performance for MPI. For all the GASNet experiments we have used the
Single address mode. On both the Sun Constellation and the Cray XT4, the
Dissemination algorithms yield the best GASNet performance at the lower
scale, indicating that the advantages of sending O(n log n) messages yield
good improvements when the bandwidth costs are not very high. However,
as the bandwidth costs become expensive, the Flat algorithms yield better
performance. On the IBM BlueGene/P, however, the Flat algorithm yields
consistently the best performance. This indicates that the cost of the extra
hops in the network is so expensive that sending the data directly to the des-
tination nodes is the best option. The cross over point is platform specific
and thus a combination of performance modeling and search can yield the

15

8 16 32 64 128 256 512 1k 2k 4k 8k 16k
Transfer Size (Bytes)

10
2

10
3

10
4

10
5

T
im

e
(m

ic
ro
s
e
c
o
n
d
s
)

MPI

Dissem (k=2)

Dissem (k=4)

Dissem (k=8)

Flat

Figure 6: Comparison of Exchange Algorithms (512 cores of Cray XT4)

8 16 32 64 128 256 512 1k 2k 4k 8k 16k
Transfer Size (Bytes)

10
2

10
3

10
4

10
5

T
im

e
(m

ic
ro
s
e
c
o
n
d
s
)

MPI

Dissem (k=2)

Dissem (k=4)

Dissem (k=8)

Flat

Figure 7: Comparison of Exchange Algorithms (256 cores of Sun Constellation)

8 16 32 64 128 256 512 1k 2k 4k 8k 16k
Transfer Size (Bytes)

10
2

10
3

10
4

10
5

T
im

e
(m

ic
ro
s
e
c
o
n
d
s
)

MPI

Dissem

Flat

Figure 8: Comparison of Exchange Algorithms (2k cores of IBM BlueGeneP)

16

Data size (bytes) Sun Constellation Cray XT 4
4 0.012165 0.036255
128 0.013965 0.037965
2048 0.017625 0.047925
32769 0.087345 0.10884

Table 2: Tuning time (seconds) for Broadcast with different data sizes on three platforms

best performance. On the Cray XT4 the best GASNet performance tracks
the MPI performance but further enhancement needs to be done to better
optimize the performance. The performance of GASNet is on par with MPI
on both the Sun Constellation and the IBM BlueGene/P.

5.4. Automatic Tuning

Table 5.4 lists the tuning time for a Broadcast operation. If the collective
has been tuned before, the lookup operation is a simple table lookup, whose
cost is negligible compared to the collective operation time. The memory
requirement for the autotuning look up table is proportional to the number
of entries in it. For each data point, it takes about 48 bytes to store the
tuning results.

6. Application Level Benchmarks

To evaluate the overall application performance delivered by our collec-
tives library, we have developed three popular and important application
level benchmarks using the optimized collectives: dense matrix multiplica-
tion, Cholesky factorization and 3-D FFT. Both dense matrix multiplication
and Cholesky factorization uses upc team broadcast (the UPC equivalent
of MPI Bcast). 3-D FFT uses upc team exchange (the UPC equivalent
of MPI Alltoall) for transposing the 3-D array during different phases of
the row-column multi-dimensional FFT algorithm. The collectives autotun-
ing is done offline for these applications.

6.1. Dense Matrix Multiplication

Dense matrix multiplication (also known as GEMM) is one of the most
commonly used computational kernels in large scale parallel applications.
This kernel computes C = A × B where A, B, and C are dense matrices of
sizes M × P , P ×N , and M ×N , respectively.

17

Tx

Ty

M

P

N

B
A

C

b

b

Figure 9: 2-D block-cyclic distribution for parallel matrix mul-
tiplication diagram. TX and TY are the dimensions of the 2-D
thread grid.

In order to effectively parallelize the problem in this benchmark, each
of these matrices are partitioned and distributed across the threads with a
2-D block-cyclic format (Figure 9). The data structures are implemented as
arrays of sub-matrices with UPC shared pointers. The pieces of the matrix
are color coded by the thread that owns the piece of the matrix. We can
compute a particular block, C[i][j] by performing the operation:

C[i][j]+ =
P−1∑
k=0

A[i][k]×B[k][j]

For all blocks in a given row i, only the elements of A[i][k] need to be
broadcast-ed and stored into a temporary array. The subset of the threads
that owns row i has size O(

√
T), where T is the total number of UPC threads.

In the next step, B[k][j] is broadcast-ed to a separate scratch array within
every thread that shares a column of the matrix (the column teams). Col-
umn broadcasts occur over a set of O(

√
T) threads in the column dimension.

This is a blocked implementation of the SUMMA algorithm [16]. The al-
gorithm has further been modified to perform a “prefetch” of the rows and
columns of matrices in order to overlap the communication needed for future
panels of the matrix multiplication with the computation of the current one.

18

1500

2000

2500

3000

3500

G
Fl
op

s

Matrix Multiply Weak Scaling Performance on Cray XT4

DGEMM Peak

UPC Collectives

MPI Collectives (ScaLAPACK)

0

500

1000

0 50 100 150 200 250 300 350 400 450

Cores

Matrix size: (8K X 8K doubles) per node

Figure 10: Matrix Multiply Performance on 400 cores of Cray
XT4

1000

10000

G
Fl
op

s

Matrix Multiply Weak Scaling Performance on IBM BlueGene/P

Ideal Peak

UPC Collectives

MPI Collectives (ScaLAPACK)

10

100

2 8 32 128 512 2048
Cores

Figure 11: Matrix Multiply Performance on 2048 cores of IBM
BlueGene/P

19

Thus we are able to leverage the non-blocking collectives in GASNet to yield
communication/computation overlap.

Figures 10 and 11 show the performance of weakly scaled matrix mul-
tiplication (i.e. fixed number of points per node) on Cray XT4 and IBM
BlueGene/P. Our UPC implementation is written from scratch by using col-
lectives. Our experiments were conducted with one UPC thread per com-
pute node with the local DGEMM operations performed through calls to the
multi-threaded vendor-optimized BLAS library. UPC is used to manage the
communication among the nodes and the math library uses all four cores to
perform the local matrix multiplication. The number of nodes in our experi-
ment is always a perfect square so that a square thread grid is assumed. Each
node is allocated a square matrix with 8192 × 8192 double precision elements
and thus the problem size is weakly scaled as the number of nodes grows. As
the data show, the best performance is obtained when the code leverages the
UPC non-blocking team collectives. The UPC code significantly outperforms
the comparable MPI (ScaLAPACK) version. Effectively using non-blocking
collective communication can lead to good performance improvements even
for a computation-intensive program such as matrix multiplication.

6.2. Dense Cholesky Factorization

The second benchmark is dense Cholesky Factorization, which computes
(A = UTU) for a square M × M matrix A. As shown in Figure 12, the
method performs serial computation on the upper right corner and updates
the lower left and upper right quadrants of the matrix. Then a large parallel
outer product of ALL and AUR is performed to update the lower right corner.
After the update, the lower right quadrant is recursively factored. Because
the matrix elements in the lower right corner tend to be more heavily used
and updated compared to the other parts, a purely blocked layout would
induce a poor load balance since the most heavily used elements will be
concentrated among a few threads.

In order to alleviate this problem, a checkerboard layout[17] of threads is
used to more evenly distribute the load across the threads. The operation
requires three rounds of broadcast operations at each of the M

b
steps. The

first round broadcasts the data from the panel that has just been factored to
all the other panels in the same row to perform a triangular solve. An outer
product with the result of the triangular solve updates the rest of the matrix.
Because the input matrix is symmetric, the outer product is computed by
performing AUR

T ×AUR in Figure 12. However this reduces the opportunity

20

AUL AUR

ALL
ALR

Figure 12: Cholesky Factorization Diagram with 2D block-
cyclic distribution. The matrix is partitioned into 4 quadrants:
a small upper left corner (AUL), a tall skinny lower left corner
(ALL), a short and wide upper right corner (AUR), and a large
lower right corner (ALR).

for overlapping communication and computation because the column and row
teams are not as strictly adhered to. For example a thread that owns column
1 in the diagram (the first column of AUR) is not part of the row team that
needs the data. Hence the thread first has to directly communicate the data
to a member of the row team which can then initiate the broadcast. This
extra step and communication overhead drastically reduces the opportunity
for nonblocking collectives. Hence our implementation of the benchmark only
measures the performance of blocking algorithms. Once the data is passed
on to a member of the appropriate team we used the same team broadcasts
to run the outer-product as described in the Matrix Multiply benchmark.

Figures 13 and 14 show the performance of our Cholesky implementation,
compared to the widely-used ScaLAPACK implementation. Our UPC im-
plementation is written from scratch using the collectives. We use one UPC
thread per node and use a multi-threaded optimized BLAS library to per-
form the local BLAS operations. All the different benchmarks use the same
backing BLAS implementation so we expect the only differences to arise from
communication between the different nodes. We use on all cores on a node
and only use UPC to manage the communication among the nodes. As the
data show, our implementation of the Cholesky factorization performs bet-
ter than or equally well as ScaLAPACK. From the data we can conclude

21

3118	

3757	

4097	

4206	

0	 500	 1000	 1500	 2000	 2500	 3000	 3500	 4000	 4500	

Naïve	 UPC	
(get-‐based)	

Hand-‐coded	
UPC	

UPC	 team	
collec>ves	

MPI	 ScaLAPACK	

GFlop/s	

N=240,000	 Cholesky	 on	 128	 nodes	 (2048	 cores)	 of	 Ranger	
(128	 UPC	 threads	 *	 16-‐way	 threaded	 BLAS)	

Figure 13: Cholesky Factorization Performance on
2048 cores of Sun Constellation

100

1000

10000

G
Fl
op

s

Cholesky Factorization Weak Scaling Performance on IBM BlueGene/P

Ideal Peak

UPC Collectives

MPI Collectives (ScaLAPACK)

1

10

2 8 32 128 512 2048
Cores

Figure 14: Cholesky Factorization Performance on 2048 cores
of IBM BlueGene/P

22

that applying the collective communication is essential for delivering good
performance and algorithms that are comparable with the current state of
the art. For both ScaLAPACK and our implementation, there is still a gap
between the machine peak performance and the achieved performance. Fur-
ther improvements in the collective algorithms, load balancing, and serial
performance can help parallel efficiency.

6.3. 3-D FFT

We use the NAS Parallel Benchmark [18] FT to study the performance of
the non-rooted collective, exchange. The kernel of the NAS FT benchmark
is a three-dimensional FFT. In a three-dimensional FFT, the rectangular
prism (of NX × NY × NZ points) is evenly distributed among all the threads
and FFTs must be done in each of the dimensions. Depending on the data
layout, the prism might need to be transposed in order to re-localize the data
to perform the FFTs. This transpose step is often the performance-limiting
step at large scale since it stresses the bisection bandwidth of the network.

Figure 15 shows the data partitioning of a two-dimensional thread layout
for 3-D FFT. In a two-dimensional thread layout, only one dimension of the
grid is contiguous on a thread and thus two rounds of transposes need to be
performed to complete one FFT. The first re-localizes the data to make the
Y -dimension contiguous and thus the communication is performed among
teams of threads in the TY dimension (i.e. all the threads within the same
thread plane in Figure 15). The second one re-localizes the data to make the
Z-dimension contiguous among teams of threads in the TZ dimension (i.e.
all the threads within the same thread row).

Figure 16 shows the performance of the NAS FT benchmark on 1024 cores
of Cray XT4. Figure 17 shows the performance of the NAS FT benchmark
on power of two core counts up to 32,768 cores of IBM BlueGene/P. The
problem size was also scaled as the number of cores grew so that the memory
per thread remains constant throughout all the thread configurations. Since
the benchmark is communication bound, using the maximum flop rate of the
machine provides a meaningless upper bound on the application performance.
Therefore we have created an upper bound analytic model that assumes
the communication is the limiting factor [19]. Thus it assumes the total
time taken by the benchmark is the time needed to perform the exchange
operations. In order to get an approximation for the entire network we
use the Bisection Bandwidth of the network. The Bisection Bandwidth is
defined as the total bandwidth across the minimum number of links that

23

teamY
(TY threads)

}teamZ
 (TZ threads)

Slab 0

Slab 1

Slab 2

Slab 3NZ

NY

NX

Figure 15: 2-D data partitioning for 3-D FFT. A thread owns NZ
TZ planes and NY

TY
rows of NX points where the T threads are laid out in a TY × TZ thread grid.

D/8 D/4 D/2 D 2D 4D 8D
Problem Size (D=2048x1024x1024)

0

50

100

150

200

250

300

350

400

G
Fl

o
p
s 2

2
3

2
3

5

2
4

0

2
4

6

2
5

1

2
4

0

2
2

1

1
9

1 2
2

0 2
3

3

2
3

2

2
3

9

2
1

9

1
8

6

1
5

8

1
4

2

2
8

5

3
5

0 3
6

7

3
4

1

2
9

7
MPI Packed Slabs

UPC Packed Slabs

UPC Slabs

Figure 16: 3-D FFT Performance on 1024 cores of Cray XT4

24

need to be cut to sever the network into two equal halves. This thus provides
an approximation for the aggregate Bandwidth a network can deliver in a
large Exchange operation. The total number of flops in the benchmark at
each problem size is divided by this time to yield the performance. As the
data show, overlapping the collective with the computation yields significant
performance improvements (17% at 32,768 cores, for example).

We examine the performance breakdown of the weak-scaling graph in Fig-
ure 18 at 32,768 cores on a 4096× 4096× 2048 grid. The times are grouped
as follows: “Local FFT (ESSL)” shows the amount of time spent to perform
local FFTs through ESSL, “Synchronous Communication” counts the time
spent to initiate communication or wait for its completion, “In Memory Data
Transfers” counts the time to pack and unpack data, “Other” measures the
time for the other parts of the NAS FT benchmark besides the 3D FFT (ini-
tial setup, local evolve computation and final checksum), and “Barrier” mea-
sures the time spent in barriers. As the data also show, the primary difference
in execution time is the time spent on communication. At 32,768 cores the
algorithm without communication and computation overlap (Packed Slabs)
induces Exchanges of 128KB messages per thread and the algorithm leverag-
ing communication/computation overlap (Slabs) induces Exchanges of 8KB
messages per thread. Thus one would expect that the Packed Slabs would
be the winner since it is able to realize better bandwidth at higher message
sizes. Since Slabs spends fewer amount of time in Communication, we can
deduce that the communication and computation are being overlapped and
that some of the communication cost is being hidden. Thus the performance
advantage of Slabs over Packed Slabs can be attributed to communication
and computation overlap.

We have demonstrated the performance of collectives in the NAS FT
benchmark. As the data show, the non-blocking collectives in GASNet con-
sistently yield good performance benefits at scale for communication bound
problems. By overlapping communication with computation, one can hide
the latency of the communication. By leveraging the overlap we are able to
deliver a 17% improvement in performance over MPI on 32,768 cores of IBM
BlueGene/P.

7. Conclusions

To satisfy scientists’ demand for computational power, while at the same
time keeping processor clock speeds unchanged, systems are growing rapidly

25

1000

10000

G
Fl
op

s

3‐D FFT Weak Scaling Performance on IBM BlueGene/P

Ideal Peak
UPC Collectives (Slabs)
UPC Collectives (Packed Slabs)
MPI Collecitves (Packed Slabs)

10

100

256 512 1024 2048 4096 8192 16384 32768
Cores

Figure 17: 3-D FFT (NAS FT) Performance on 32K-core IBM BlueGene/P. The UPC
Slabs algorithm uses the UPC non-blocking exchange (alltoall) collective. The UPC
Packed Slabs algorithm uses the UPC blocking exchange (alltoall) collective. The
MPI Packed Slabs algorithm uses the MPI blocking alltoall collective.

30

40

50

60

70

Ti
m
e
(s
ec
on

ds
)

3D‐FFT Performance Breakdown on IBM BlueGene/P

Pack/Unpack
Barrier
Other
Communication

0

10

20

UPC Collectives (Slabs) UPC Collectives (Packed Slabs)

T

Local FFT

Figure 18: 3-D FFT (NAS FT) Performance Breakdown on IBM BlueGene/P

26

in the number of cores per node and in the number of nodes per system. As
communication costs continue to grow relative to the aggregate performance
on a processor chip, the need to carefully optimize communication becomes
critical. Moreover, future high end systems are likely to be power limited,
and communication to memory and between processors is a significant com-
ponent of the power budget for a machine. This puts particular pressure
on the runtime systems for the programming models to perform well on a
mixture of shared memory and distributed memory hardware. A good imple-
mentation of collective communication operations is invaluable in providing
fast, reusable code for common programming idioms that arise across a wide
range of application domains.

We have presented a new collective communication infrastructure in GAS-
Net that includes a large set of possible implementations for each collective
operation in a framework that allows for automatic search and selection of
the best implementation for a given instantiation. We explored some of the
semantic issues with PGAS collectives, which are related to whether there is
an implicit global synchronization before and after each collective. We found
substantial performance gains–sometimes nearly an order of magnitude–for
using loose rather than strict synchronization in microbenchmarks.

In addition, we explored the use of collectives in three application bench-
marks written in the UPC language: matrix multiplication, Cholesky factor-
ization, and a 3D FFT. We used the Berkeley UPC compiler and runtime
system on three large HPC system systems, and take advantage of extension
of the UPC collectives to include non-blocking and team-based collectives.
We demonstrated that the applications benefited from the use of non-blocking
collectives, which explicitly allow collectives to be overlapped beyond what
is possible with UPC’s collective synchronization modes. With these exten-
sions, the benchmarking results show the performance advantages of lever-
aging a one-sided communication model in programs that have significant
collective communication. The performance is comparable to MPI in the
worst case, and often significantly better.

The UPC community has extensively debated the need for collective com-
munication, since they represent a bulk-synchronous programming style that
is not in keeping with the irregular applications with random access data
structures that were the original motivation for the language. In this pa-
per we show that the one-sided PGAS model has advantage even for bulk-
synchronous programs, and that the collectives are a convenient and efficient
way to express some computations. In addition, the collective abstraction al-

27

lows runtime system programmers who are knowledgeable about the specifics
of a high performance network or memory system to develop optimized collec-
tives which can then be used by the application community. Given the trends
in computer hardware, in which most of the cost and power goes into mov-
ing data rather than computing on it, we believe highly optimized, expressive
collective libraries will be essential to the success of PGAS languages.

Acknowledgments

This research was supported in part by the Department of Energy (DE-
FC03-01ER25509, DE-FC02-07ER25799, DE-AC02-05CH11231) and by the
National Science Foundation (OCI-0749190). It made use of resources of
the Argonne Leadership Computing Facility at Argonne National Labora-
tory, the National Energy Research Scientific Computing Facility (NERSC)
at Lawrence Berkeley National Laboratory, and the Oak Ridge Leadership
Computing Facility at Oak Ridge National Laboratory, which are supported
by the Office of Science of the U.S. Department of Energy under contracts
DE-AC02-06CH11357, DE-AC02-05CH11231 and DE-AC05-00OR22725, re-
spectively. It also used resources at the Texas Advanced Computing Center
(TACC) at the University of Texas at Austin.

References

[1] D. Bonachea, GASNet Specification, Technical Report CSD-02-1207,
University of California, Berkeley, 2002.

[2] R. W. Numrich, J. Reid, Co-array fortran for parallel programming,
SIGPLAN Fortran Forum 17 (1998) 1–31.

[3] UPC, UPC Language Specifications, v1.2, Technical Report LBNL-
59208, Lawrence Berkeley National Lab, 2005.

[4] P. Hilfinger, D. Bonachea, D. Gay, S. Graham, B. Liblit, G. Pike,
K. Yelick, Titanium Language Reference Manual, Tech Report
UCB/CSD-01-1163, U.C. Berkeley, 2001.

[5] B. L. Chamberlain, D. Callahan, H. P. Zima, Parallel programmability
and the chapel language, International Journal of High Performance
Computing Applications 21 (2007) 291–312.

28

[6] R. Nishtala, Architectural Probes for Measuring Communication Over-
lap Potential, Master’s thesis, UC Berkeley, 2006.

[7] R. Brightwell, S. P. Goudy, A. Rodrigues, K. D. Underwood, Implica-
tions of application usage characteristics for collective communication
offload, Int. J. High Perform. Comput. Netw. 4 (2006) 104–116.

[8] T. Hoefler, A. Lumsdaine, W. Rehm, Implementation and Performance
Analysis of Non-Blocking Collective Operations for MPI, in: Proceed-
ings of the 2007 International Conference on High Performance Com-
puting, Networking, Storage and Analysis, SC07, IEEE Computer Soci-
ety/ACM, 2007.

[9] R. Nishtala, Automatically Tuning Collective Communication for One-
Sided Programming Models, Ph.D. thesis, University of California,
Berkeley, 2009.

[10] D. R. Butenhof, Programming with POSIX threads, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1997.

[11] GASNet home page. http://gasnet.cs.berkeley.edu/.

[12] J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, D. Weathersby, Efficient algo-
rithms for all-to-all communications in multiport message-passing sys-
tems, IEEE Transactions on Parallel and Distributed Systems 8 (1997)
1143–1156.

[13] BlueGene, IBM BlueGene/P. http://www.research.ibm.com/

journal/rd/521/team.html.

[14] Top500 List: List of top 500 supercomputers. http://www.top500.

org/.

[15] C. Bell, D. Bonachea, R. Nishtala, K. Yelick, Optimizing bandwidth lim-
ited problems using one-sided communication and overlap, in: The 20th
International Parallel and Distributed Processing Symposium (IPDPS
2006).

[16] R. van de Geijn, J. Watts, Summa: Scalable universal matrix multiplica-
tion algorithm, TR-95-13, Department of Computer Sciences, University
of Texas (1995).

29

[17] HPL website, http://www.netlib.org/benchmark/hpl/algorithm.html.

[18] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, S. K. Weeratunga, The
NAS Parallel Benchmarks, The International Journal of Supercomputer
Applications 5 (1991) 63–73.

[19] R. Nishtala, P. H. Hargrove, D. O. Bonachea, K. A. Yelick, Scal-
ing Communication-Intensive Applications on BlueGene/P Using One-
Sided Communication and Overlap (IPDPS 2009).

30

