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ARTICLE INFO ABSTRACT
Article history: There are many challenges that need to be met before effamehteliable computation at the
This is the history of the article... petascale is possible. Many scientific and engineeringndeing at the petascale are likely to

be memory intensive, which makes thrashing a serious profde many petascale applications.
One way to overcome this challenge is to usgyaamicnumber of processes, so that the total
amount of memory available for the computation can be irgéaon demand. This paper
describes modifications made to the massively parallelagloptimization code pVTdirect in
order to allow for a dynamic number of processes. In padicithe modified version of the
code monitors memory use and spawns new processes if thentumiavailable memory is
determined to be insufficient. The primary design challengee discussed, and performance
results are presented and analyzed.
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1. Introduction and motivation

The ultimate goal of the work presented in this paper is teeligva robust global optimization code that runs efficieathyl
effectively at the petascale. This means that the prograst o efficiently, and be able to tolerate failures of anydkion a
cluster with hundreds of thousands of cores. There are a @uailthallenges that must be overcome before this is pessin
instance, designing the optimization code so that the gjeebitained by using multiple cores scales up to hundredsoosands
of cores. This challenge alone is enough to make the petadaahting [1].

Beyond maintaining the efficiency of the code at the petasaale must ensure that the code is robust and can recover from
any number of failures. One possible failure results wheoderin the cluster crashes. This type of failure is geneddiglt
with by including a checkpointing mechanism in the code. #heo type of failure that can occur is insufficient main meynor
which can lead to thrashing. Given the crippling effectshoéshing, a mechanism for dealing with insufficient memooyld be
indispensable to a large number of scientific and enging@aaes that hope to run efficiently at the petascale.

The main contribution of this work is a global optimizatioode that is able to detect insufficient levels of availablernogy,
and in response spawn new processes on nodes with availabienn The solution to insufficient memory presented inphaiger
is specific to a particular global optimization cog&Tdirect), but many aspects of the design, as well as the lessonetgarn
can be applied to a number of parallel scientific or engimgecbdes, especially those that make use of the master-naekegn
pattern.

The rest of this paper is organized as follows. Section 2gmtssa description of the DIRECT algorithm, which forms the
basis of the global optimization cog@Tdirect. Some details of the cod&Tdirect are also presented. A description of the
problem and the main challenges involved are presentedcitiocBe3. Section 4 describes some stress tests performealtme
two possible design choices. A dynamic load balancing n@shais described in Section 5. Performance results aregive
Section 6. Section 7 discusses related work. Section 8 ésiglith conclusions and lessons-learned.
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Fig. 1. Ilustrations of DIRECT’s box columns (left), and VTdirect in action (right).

2. Description of DIRECT

The algorithm DIRECT (Dlviding RECTangles) by D. R. Jonegifa deterministic global optimization algorithm. DIRECT
does not require the computation of the gradient of the dibgéunction, or even objective function values (rankinfprmation
is sufficient). It performs Lipschitzian optimization, tdes not require knowledge of the Lipschitz constant.

DIRECT works as follows [3]. The algorithm begins with antiai box normalized to the unit hypercube. The objective
function (assumed to satisfy a Lipschitz condition) is ea#d at the center of this box. The current minimum valusiiglized
to this value. An evaluation counten and an iteration countdrare initialized tom = 1 andt = 0. The following process
is repeated untit or t reaches some prespecified limit (although the subrogifTeirect [3] supports several other stopping
conditions).

Selection. Identify the setS of “potentially optimal” boxes. Here “potentially optinrfaineans that (1) for some Lipschitz
constank, the box potentially contains a point with smaller objeetiunction value than any other box, and E£g) — K - L/2 <

frin — €| fmin|, WhereF is the objective functiong is the center point of the boX is the same Lipschitz constartjs the box
diameter,f,,;,, is the current minimum value for the objective function, and a small, nonnegative, fixed constant.

Sampling. Select one of the potentially optimal boxBSrom S. For boxB, identify the set of dimensions with maximum
side lengthL, and let6 = L/3. Sample the function at the points of the focrd: de; for eachi € |, wherec is the center of the
box ande; is theith standard basis vector. Update

Division. Divide the box containing the poimtinto thirds along the dimensions In beginning with the dimension with the
least value ofnin { f (c + d¢;), f(c — d&;) }, and ending with the dimension with the greatest such valylate the minimum
value.

lteration. Remove the boxB from the set of potentially optimal boxé If S = (), then increment and go toSelection
Otherwise, go tGampling.

The method of choosing the subbox according to both objeétinction value and box size gives DIRECT its local and globa
aspects. DIRECT performs a convex hull computation to dater potentially optimal boxes without using the Lipschutmstant
directly (see Figure 1 for an illustration). From Figuretisiclear that if a box is on the convex hull, then the box hastgactive
function value that is minimal amongst all boxes of the saire gotice that the set of boxes of the same size forms a “box
column”, as seen in Figure 1). Since every box is ultimateneined, DIRECT will not get stuck at a local optimum, butlwil
instead perform a global search of the feasible set. Fudiiails can be found in [2].

VTDIRECT [4] is a Fortran 95 implementation of DIRECT thatessdynamic data structures and has options and stopping
conditions not in earlier implementations of DIRECT. Basedexperience from using the serial code VTDIRECT on aptitioa
such as aircraft design, cell cycle modeling, and wirelessraunication system design, VTDIRECT was polished andneled to
include both serial and massively parallel (terascalejivas. These codes eventually became part of the ACM TOMSithin
VTDIRECT95 [3]. In this Fortran 95 package the user callahibroutines ar&Tdirect (serial) andpVTdirect (parallel).
pVTdirect is efficient at the terascale [5][6][7] on real applicatipbsit likely not so at the petascale. The motivation for the
present work is modifyingVTdirect to be efficient at the petascale, where applications in systaology and nuclear physics
await such capability.



2.1. Important details of the implementation

pVTdirect, the parallel version ofTdirect and the only version under consideration in this paper, siake of the master-
worker design pattern. The masters handle the program hagiereas the workers perform function evaluation taske mhsters
are tightly coupled, in the sense that the state of one maggeificantly affects the state of other masters. There iobaj
worker pool shared by all masters. Workers from the poolctetesters to which they send requests, and masters respond t
these requests by sending points at which to evaluate tleetolg function. Optionally, the initial box can be paditied into
subdomainseach with assigned masters, where masters assigned tatsepzbdomains operate independently. In fact, when
subdomains are used, it is almost like runnimgeparate instances p¥Tdirect, with the important exception that the separate
subdomain optimizations share some resources, e.g., iorBeth the masters and the workers run through a main loogeS
the masters handle all the program logic, an iteratiopg@tlirect will be defined as an iteration of the main loop for the masters
The masters synchronize at every iteration of their maip ia MPI_BARRIER, whereas the workers do not synchronize at all.

It is possible to have more than one master per subdomaincdrhputational work done by masters is relatively insigaifii
but more than one master per subdomain may be desired—thermatore the current state of the search (in the form of box
columns), and the memory available to multiple masters neaseljuired to completely store the current state. By thereaifi
the computation, the memory required to store the currext¢ stf the search increases with time. This means that thertur
collection of masters may become unable to store the custate of the search, which may lead to thrashing. Thrastinge
avoided by increasing the number of processors in the catipat hence increasing the amount of memory availableote she
current state of the search. Since the memory burden is plynoa the masters, it is necessary to spawn new masterslen id
processors in order to obtain a substantial amount of extéraarny. Ideally, one would like talynamicallyincrease the number
of masters, rather than restarting the computation (whialy last for days, or even months) with a greater number of emaist
Doing this in the context of MPI and the (necessarily) disited data structures usedyTdirect is nontrivial, and constitutes
the core topic of this paper.

3. Problem description

Running low on memory is a problem for masterpifidirect. pvTdirect was modified in order to keep track of memory
use, and to spawn new masters when the amount of availabl@médails below a certain threshold. Spawning new masters
when memory is low, and subsequently integrating them matinning program, is a complicated and subtle task. Tmegpyi
challenges are (1) determining which processes should @lspghwning (this choice affects other design factors, ssdhoa
the communication scheme is handled), (2) executing thenrspehen the workers behave asynchronously, (3) updating the
communication scheme of the newly expanded collection ofgsses, and (4) integrating the spawned masters into trentu
job, obtaining a coherent execution unit. A modificatiorp®Tdirect, calledspVTdirect, is considered as a possible solution
to the challenges described above.

The codespVTdirect works as follows. The number of boxes possessed by a pattizidster is monitored, and if the memory
needed to store those boxes exceeds a user-defined threstagldwn request is made. When all processes have deteeted th
spawn requesMPI_COMM_SPAWN is executed and new masters are spawned. All processesdatiming and spawned, must then
update their state in order to integrate the new mastershetalready-running job. After the state update proceducempleted,
the current iteration restarts at the top of the main loogitiermasters, and the workers restart at the top of their roajn |

3.1. Choosing the spawning communicator

The choice of communicator used to spawn the new masterspigrient, because it affects how communication between
workers and spawned masters will be handled. Affr_COMM_SPAWN has been executed, a handle for an intercommunicator is
returned. Since the local group of the intercommunicatottaios the processes that performed the spawn, and thee gmuatp
contains the spawned masters, the spawned masters caroamtyunicate directly with the processes that performed pagvs.
Consequently, as far as communication is concerned, thebeise of spawning communicator is the entire collectibowrent
processes. This choice of communicator facilitates conication between the spawned masters and all current pegess

However, using the entire collection of current processgetform the spawn is problematic, because the spawningutite
MPI_COMM_SPAWN is both blocking and collective over the set of spawning goalasmed processes. If the entire collection of
current processes performs the spawn, then the mastersoskersimust all make a collective blocking callMPI_COMM_SPAWN.

This is simple for the masters, which synchronize at evematton of their main loop vi#iPI_BARRIER. However, the situation
is more complicated with the workers since they operateaswymously, in the sense that attempts to synchronize Ilediavior
with MPI_BARRIER (or any collective, blocking operation) generally lead éadlock.
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3.2. Executing the spawn

Every master monitors its own memory usage. If the amountaifable memory for a master falls below a given threshald, i
notifies all other processes of a need to spawn new mastersofitain more memory). After a process has received ratiific
of a spawn request, that process first calls a spawning stiteathat executeBPI_COMM_SPAWN, followed by a subroutine that
updates state.

Using all of the current masters, as well as the workers, tfopa the spawn is a delicate procedure. Since the masters
already synchronize at the top of their main loop, it wouldtdr@pting to synchronize all processes at that point, and tise
a collective communication to notify all processes of a spagguest. However, all attempts to synchronize the wonkts
MPI_BARRIER have lead to deadlock. Two options for notifying all proesssf a spawn request have been explored in the current
work. One option is to notify all processes of a spawn reghgstaving the requesting process write to a “spawn requdst” fi
This can be problematic, because different processes neaspawn request file at different times, and hence one oney
begin executinglPI_COMM_SPAWN while the others are still busy, which can lead to deadlockim® sharing method can be used
to prevent deadlock from occurring when a process perfomimg{po-point communications—when performing a poinpmnt
communication, a process goes back and forth between ctieifkhe communication has completed, and reading the “spaw
request” file to see if there is a pending request. Collectramunications are only performed by the masters, and thigyoocur
when the masters and workers are not communicating. Hemeg are never a source of deadlock during the spawn notditati
procedure.

The time sharing method is effective, but it is not portatlee to its reliance on a shared file system. A more portabigisol
is to first notify all masters of a spawn request using a typeedtiction operation (technicallyfPI_ALL_REDUCE is used), and
then have the lead master notify the workers. |If H*@_ALL_REDUCE is executed at the top of the main loop for the masters,
then the masters can prepare for a spawning event beforeegtéteration even begins. After the masters have been edtifi
the simplest solution for notifying the workers is to useedhat is already in place wVTdirect. In pVTdirect, the workers
receive messages from masters at every iteration of an ioogfor the workers, and the tag associated with a messagemaes
the response to that message. SapviTdirect, the lead master can simply send a message to each workea teighndicating
a pending spawn request. The workers receive the messatjpsegrare for spawning.

On iterations without a pending spawn request (this is tts¢ majority of them), there is no extra overhead for the wigke
and the only overhead for masters is of#d _ALL_REDUCE per iteration. This overhead is minimal, and performanselte have
shown that the overhead has negligible impact on the rungienéeration (see Section 6 for performance results).

3.2.1. Further issues with spawning

There are a few further issues related to spawning that neusbbsidered. First, MPI does not support spawning on aeslust
with a scheduler [8], a¥PI_COMM_SPAWN requires the user to provide a list of processes in the forra bbst file (the host
file contains node names, like “ithaca42”, not just rankspng&equently, a Fortran 95 module designed to support spgvami
scheduled clusters was developed and tested. Currerglynsiolule (calleSPAWN) only provides subroutines that build a host
file for spawning, but further support for spawning on schedwlusters may be added in the future. In order to build & files
the names of all nodes scheduled for the job must be obtaasesell as the number of cores available on each node. MPida®v
support for determining node names, but not for determitiirggnumber of cores available on a node—for this, the OpenMP
commandMP_GET_MAX_THREADS is used.

Second, the new masters should ideally be spawned on idtegsors in order to obtain a substantial amount of extra memo
Where these idle processors come from is a serious conceme. p@ssibility is to replace a worker with the spawned master
However, it is not guaranteed that a worker will be runningterown processor—it is possible for the worker to be runringa
node along with other workers and a master (since masterser®ry hogs, itis preferable to place them on separate ho8es
the only solution that will work consistently is to spawn nevasters on unused nodes. For clusters without a scheditecan
be done by providingpVTdirect with a list of all available nodes (possibly obtained fronyatem administrator). For clusters
with a scheduler, one solution is to use a system call to pumswegob onto the scheduler’'s queue. Performance concecteteali
that the computation should continue, and hence state eipdapostponed, until after the new job is launched by thedsdbe
as their may be a substantial delay before the new job is lmdhcAfter the job is launched, communication can be estadi
between the current and newly-launched jobs, and statdeipea proceed as described in Section 3.4.

Another solution is to run multiple jobs simultaneouslylpaing these jobs to share a global pool of nodes. Rather than
launching each job separately, a single job with one pro@mssmany reserved nodes) could be launched using the custe
scheduler. The single process could then spawn all of theifmgabjobs usingPI_COMM_SPAWN, as well as maintain a list of
available nodes. All involved jobs would simply take nodédtte list as they consume them, and repopulate the listmoties as
they finish with them. This idea of consolidating jobs canyombrk if (most of) the jobs have fluctuating resource requieats,
allowing them to consume and release nodes periodicallhobh the number of nodes neededspyTdirect may increase
with time, it never decreases. Consequently, it is not dfahis solution is feasible fospvTdirect.

4



3.3. Updating the communication scheme

The spawning procedure reorders some processes (the Hamkskers are translated), and add others (the spawned rsaste
This means that communicators must be updated in order toestisat messages are sent to and from the correct procésses.
particular, the state (ordering of processes) of the conirators after being updated must be consistent with the siathe
communicators before the spawning procedure began.

The communication between the current and spawned praceggeends on which subset of the current processes does
the spawning. If only the set of current masters performssiigvning, then communication between the workers and the
spawned masters becomes infeasible—the intercommunieitoned from the call tPI_COMM_SPAWN only allows for direct
communication between the spawning and spawned procdsfasworkers are not involved in spawning the new mastées) t
communication between the workers and spawned masterdmimstirect. Although indirect communication is possilgdad can
be coded cleanly with wrappers for the standard MPI comnatioic subroutines), it is relatively inefficient as all conmmication
between the workers and spawned masters must pass throegbranore) of the current masters. In particular, if thererily
one master, then that master becomes a bottleneck for athcaination between the workers and spawned masters. ‘bheref
it is preferable to have the set of all current processesuteieI_COMM_SPAWN. In this case, communication between the workers
and the spawned masters is direct. If every member of themworld of processes executdI_COMM_SPAWN, then the best
way to update the communication scheme is as follows. Ther@mMPI_INTERCOMM_MERGE is used to merge the local and
remote groups of the intercommunicator returnedBy_COMM_SPAWN. The processes in this merged intracommunicator must be
reordered so that they are consistent with the current imglef processes—masters have the lower ranks, startifigzeio, and
workers have the higher ranks, beginning with the numberasiters. This allowspVTdirect, with an updated communication
scheme, to continue to run properly.

However, the communication scheme was not originally ugdlas described above. This is because the authors hadyinitia
used only the set of current masters to perform the spawriagxplained above, this choice was made to simplify the spayv
procedure itself, but such simplified spawning greatly clicages communication. In this case, communication is fehdy
using wrappers for the standard MPI communication sutmesti These wrappers are nani&€d( subroutine name ), where
MC stands for “many communicator”. The wrapper subroutings &n array of communicators calledmmArray (rather than
a single communicator) as an argument, allowing the comaation scheme to adjust to increases in the number of masters
Processes are given a global rank within the collection ofroanicators specified byommArray. The global rank of a process
in theith communicator is

I’ankglobu,l =Ni+No+..+N;—1+ I’anklocala

whereN; is the size of thgth communicator foj = 1,...,i — 1, andrank;,..; is the usual rank of the process within titie
communicator.

Such “many communicator” subroutines were written for bptint-to-point and collective communications. For exampl
consider the “many communicator” subroutine for a poirptint send communication, calletC_SEND. For the subroutine
MC_SEND, the global rank of the receiving process is given as an ipptameter. The global rank is used to determine the relevant
communicator and the local rank of the receiving proceshiwithat communicator. If the global rank is strictly lesaitthe
size of commArray(1), thencommArray(1) is the communicator and the local rank of the receivinaepss incommArray(1) is
simply its global rank. If the global rank is greater than qual to the size o€ommArray(1), then the receiving process must be
an element otommArray(i) for somei > 1. In this case, the size @bmmArray(1) is subtracted from the global rank to obtain a
new value, and this value is compared against the sizemiArray(2) to determine if the receiving process is an element af thi
communicator. This process is repeated until the relevanneunicator and local rank within that communicator aredeined.

The idea behindIC_SEND, as well as the other “many communicator” subroutines, ialltmwv the communication scheme of
spVTdirect to be updated simply and cleanly every time new masters arersggl. When new masters are spawned, only a few
data structures (such asmmArray) need to be updated. These data structures are then pasepdtgsarameters to the “many
communicator” subroutines, and the communication schenaiiomatically adjusted to take into account the newly sigalwv
masters. Stress tests were done to compare the performbtiee“many communicator” and “merge” methods. The resufits o
these tests are presented in Section 4.



3.4. Dealing with inconsistent states

The current job has,,, masters ana,, workers, whereas the spawned job hgs masters and zero workers (notice that the
spawned job is not intended to run on its own). These two jaexino be integrated into a coherent execution unit @rth,
masters ana,, workers. The integration of the two jobs is complicated by ithconsistencies in state between the current and
spawned masters—at the point of spawning, the current nsdsdge generally run through quite a few iterations of thertwp,
whereas the spawned masters are just beginning. Dealihghveitdifference in state between the current and spawnettreds
tricky, and it is all too easy for subtle problems to arise wh#empting to integrate the spawned masters into thedstremning
job.

After the intercommunicator has been merged, the differénctate between the current and spawned masters mustlbe dea
with in order to successfully integrate the spawned magtéosthe current job. One solution is to transfer state frora of the
current masters to the spawned masters. Although thiseolotay seem obvious, the real challenge is in the detailsatdmg this
seemingly simple solution work. For a trivial example of thallenges involved, consider the following facts abgilldirect.

In pVTdirect, the lead master in a subdomain (i.e., the master with rard®d behaves differently from the other masters in the
same subdomain. Since, in general, the lead master is thenaster guaranteed to exist, it makes sense to transfetatieeo$ the
lead master to the spawned masters. However, if done natbédywould mean that all spawned masters would think thenewe
lead masters, which is obviously problematic. This probigtnivial—it is only meant to illustrate the sort of problerthat can
arise when the states of all processes are not properlyeghdfter spawning new masters.

A conservative approach is taken to updating state afteaw&rsipg event. In general, an aspect of the state of a prosessét
when it is not clear how to properly maintain and/or augméat fispect. This means that some information is lost; haweve
the lost information has no effect on the mathematical cbness of the algorithm. SuccinctiyTdirect, pVTdirect, and
spVTdirect all produce exactly the same set of boxes and function vaNete that some aspects of state, such as the iteration
counter,mustbe fabricated for the spawned masters (since the iteratiotbar can be used as a stopping condition).

Since state is reset when it is not clear how to update andfgmant it, it is beneficial for the states of data structuoasot be
persistent across iterations (note that it is sufficientlierstate of a data structure to be determined by a simpladarme., the
ith element of an array is the rank of tiib master). If the state of a data structure is not persigteritit can be determined by a
simple formula), then its state is trivial to update aftepawening event. Hence, the less state that is persistengasier it is to
update the state of a process after a spawning event. Fopéxaronsider the arralcConvex, which contains the convex hull
box counters for every master in a subdomain. Since convithbxes are reassigned to different masters at every iiverahe
values oflcConvex are recomputed at every iteration, and hence it is safe éTe€onvex to an arbitrary state after a spawning
event.

Now consider the following example of state that is persisaeross iterations. When a worker chooses a master intordeake
a request, the worker chooses from the set of busy masteich vdguires the 2-dimensional arrayssterID andmasterStat.
The arraymasterID holds the ranks of every master in every subdomain, and thg msisterStat holds the status (‘busy’ or
‘idle’) of every master in every subdomain. Updating theteoits ofmasterID after a spawning event is trivial (its contents are
determined by a simple formula), but it is not obvious how pdate the contents afasterStat while maintaining the statuses
of the spawning masters. Hence, a conservative strateggithply (re)initializes the contents efisterStat is used.

3.4.1. Derived data types

The data structures with derived types used for storingretated information do not have to be updated for any procEss
main data structure holding box informatiomm$ead (technicallymHead is just the initial link in a larger data structuregead
is a fairly complex data structure, basically a dynamicdfstnatrices, where columns in the matrices represent baxwas. If
a particular box column grows beyond the height of the mathi& column can be extended (multiple times, if necessasiylgu
fixed-length arrays. The boxes stored by a particular psoaes unique to that process, and so the data structure gamtey
mHead need not be transferred to spawned masters—the spawnegrsnagtializemHead and fill it in with box information from
scratch. This means that there is a substantial imbalantteinumber of boxes stored by spawning and spawned masters. A
dynamic load balancing mechanism is used to balance theenwfiboxes stored by each master (Section 5).

4. Comparison between the “many communicator” and “merge” nethods

Stress tests were performed to compare the two methods—#tagé method” and the “many communicator” method—for
updating the communication scheme after a spawning eventledcribed above, the “merge” method requires that therspgw
process be collective over all processes. In this casenthecommunicator returned froMPI_COMM_SPAWN is simply merged
into an intracommunicator. The “many communicator’” methad designed so that the spawning process need only betivalec
over the current set of masters. This method uses an arrayrohanicators to implement a dynamic communication schéaie t
can adjust to increases in the number of masters.



4.1. Experimental setup

For the “many communicator” method, the experimental séuphe broadcast and gather tests was the same, but differed
from the setup for the send and receive tests. All four setegif ran through 20 iterations, increasing the numbertefers
communicated at each iteration. At each iteration, twoagwous sends and receives were needed to handle the tinhirsgdid
not substantially affect the accuracy of the timing measargs because the communications being timed sent muchdatae
than the communications needed for taking measurementghé&send and receive tests, the source was chosen at ranmlom f
one of two communicators, and the destination was chosemdom from the other communicator. For the broadcast afdgat
tests, the root process was chosen at random. Furtherstisddaeeach message length were performed 1000 times, amadein
communication time was determined. To do this, a separagr@m was used to execute the timing program 1000 times,cand t
obtain data such as means and standard deviations, for eesdage length. The timing data was averaged over a largeemumb
of tests for each message length because unusually nosyvdatobtained in previous tests.

4.1.1. Broadcast and gather

Two communicators were used in all the tests, each contaBinprocesses. One was a parent communicator that spawned
the other. The tests consisted of 20 iterations of commtinitawhere the message length increased with each itarafor
broadcastp00 - k integers were sent to every process at iterakiomaking for a total 0882, 000 - k integers broadcast at each
iteration. For gathef00 - k integers were gathered from each process, making for adb8&, 000 - k integers gathered at each
iteration. Although32, 000 - k integers are communicated during each subroutine caliniesage length at iteratigrwill be
considered00 - k (integers per process, with 64 processes involved in eatimtmication). The root was chosen as a random
element of the parent communicator.

4.1.2. Send and receive

Two communicators—a parent and a child communicator—wsegl in all the tests, and each communicator contained four
processes. The tests consisted of 20 iterations of comationc where the message length was 5,000,000 times tlatidter
number. The source was selected as a random number betweeandeseven, and the destination was chosen as followg, Firs
a random numbeth, between zero and three was generated. If the value of threesatas between zero and three, then the
destination was + 4; otherwise, the value of the destination was simplyNotice that this guaranteed that the source and
destination were in distinct communicators.

4.1.3. The “merge” method

For the “merge” method, one simply needs to MBE_INTERCOMM_MERGE to obtain a merged intracommunicator, and then this
communicator can be used with existing MPl communicatidmautines. Thus, ignoring spawning concerns, the “mergethaod
is quite simple to implement. Whenever possible, the erpanial setup for the “merge” method was the same as the setup f
the “many communicator” method. In particular, the numkantegers sent per communication at each iteration, thebaurof
timing tests performed at each iteration, and the selecfitime source, destination, and root were the same as dedatiove for
the “many communicator” method.

4.1.4. Hardwarsoftware

The experiments were conducted on System G, which is thedisddrgest power-aware compute research cluster. System
G has working power-aware features, power and thermal sessboard and accessible via software, and high perfaenan
processors and interconnects. The cluster consists of peAacPro (dual processor quad core Xeon 2.8 GHz) systéths w
8GB memory per node and a Mellanox QDR Infiniband interconridsers have access to the 30+ thermal sensors and 30+ power
sensors in each MacPro. The version of MPI used for the testsOpen MPI 1.4.1.

4.2. Results

In general, the results for the “many communicator” methedildustrated in plots using triangles, and circles aredifse the
“merge” method. The middle curve for each method repredetsean, and the curves above and below the middle curve show
one standard deviation above and below the mean, resggciifee three curves for each method form a band that likehjaias
the “true” runtime curve for the method.
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4.2.1. Broadcast and gather

For the broadcast and gather tests (Figures 2 and 3), witlva@feeptions, the “many communicator” method generally
performed better. For message lengths of 1000 to 2000 irgtq@er process, the “merge” method outperformed the “many
communicator” method for the broadcast tests. The runtifmeboth methods were relatively low for these message hengt
producing a “dip” in both bands. For message lengths of 26AM1000, the “many communicator” method performed beltizn t
the “merge” method. Notice that there was no overlap in bavigsnever the “many communicator” method outperformed the
“merge” method.

4.2.2. Send and receive

For the send/receive tests usiMeI_ANY_SOURCE as the source argument, the “merge” method consistentpediarmed the
“many communicator” method (see Figure 4). The performasfdbe “merge” method was also more consistent—the standard
deviation for the “merge” method was generally less thapwtereas the standard deviation for the “many communitatethod
was between about two and five. Itis not clear why the “mergethod performed better than the “many communicator” method
It is possible that the relatively poor performance of thetiymn communicator” method is due to usifigI_IPROBE to determine
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Fig. 4. “Many communicator” (triangles) and “merge” method (circles) gathers on System G.

the relevant communicator. A more efficient method for dateing the communicator could yield better runtimes for ‘tmany
communicator” method.

The performance of both methods was nearly identical fos#mal/receive tests using a specific value for the sourcerengiu
(plot not shown). Since only two communicators were usethéntésts, it was quite simple to determine the communicatur t
contained the destination, as well as the local rank of tis&rmigion process within that communicator. Consequgemtst of the
runtime was taken up by the transmission time associatddanstandardPI_SEND. Presumably, this is why the runtimes for the
two methods were so similar. This situation is not unreialists the number of child programs spawned for the globahapation
application is generally small.

5. Dynamic load balancing

The main source of memory use for masters is storing boxésysmory load” and “box load” are essentially interchandeab
for masters. The box load on masters is monitored to determiren new masters must be spawned. If we desfpagvn cournto
be the number of spawning events that have occurred at arcpdiat of the execution of the program, then the memoryshoéd
for masters is roughly — 1/2%, wheresis the current spawn count, i.e., new masters are spawned eviechalf of the currently
available memory is used. The threshold for sufficient mgnmintentionally low because boxes are not transferrechftioe
current to the spawned masters. Rather, the rate at whigkskame accumulated decreases (resp. increases) tempfwatiie
current (resp. spawned) masters. Notice that each spawnarg doubles the number of masters (and because of thiaexial
increase in masters, the number of spawning events is tirbigea user-defined parameter).

As mentioned above, the box load is strongly imbalanced idiately after new masters are spawned, as the spawned master
have not had time to accumulate boxes. Since spawning netersaseates an imbalance in box load, a dynamic load balgnci
mechanism is required. To this erldad deviatiorfor theith master is defined as

bc; — b,
dev; = ———,
th
wherebc, is the total box count across all mastdrs, is the average box count, ahg; is the box count for théth master. Load
deviation measures the extent (either positive or negativevhich a master’'s box count deviates from the average boxtc
Notice that the sum of load deviations for all masters is zanol thatdev;| < 1.

In order to dynamically balance the box load for all mastére,number of boxes received by a master after the convex hull
computation is initially| (1 — dev; ) T/N|, whereT is the total number of new boxes obtained from the convexdastiputation,
andN is the number of masters. After the initial distribution @ies, remaining boxes are distributed pseudorandomly gston
the masters. This essentially scales a master's share dioess byl — dev;, so that masters with below average box loads will
receive more boxes than those with above average loads.ctin$€.3, it is shown that this method is effective in dyneatly
balancing box load after new masters are spawned.



Runtime per iteration for G

Runtime per iteration for Q

Time (second} Time (secondg
0.000%-
—— spVTdireci 0.000¢t —+— spVTdirec
0.0004
—e— pVTdirect 0.000% —e— pVTdirect
0.0003 0.0004
0.0003 A
0.000Z+
0.000zF
0.000% 0.000% M
5 1015 20 25 3o leratior 5 101520 25 30 lerator
Fig. 5. Comparison of runtimes per iteration for the GR (left) and QU (right) objective functions.
Runtime per iteration for S Runtime per iteration for v

Time (seconds Time (seconds

. 0.0004

—— spVTdirec —— spVTdirec
0.000% —+— pVTdirect 0.0003 — .« pvTdirect
0.0002- 0.0002F
0.0003+ 0.0003+
5 10 15 20 75— lteratior 5 015 20 25 3g eratior

Fig. 6. Comparison of runtimes per iteration for the SC (left) and MI (right) objective functions.
6. Performance results

A variety of optimization problems were used to test the rficaliions made tpVTdirect. Several toy problems, as well as a
realistic nulcear physics problem (MFDn), were used. SbatbpVTdirect andspVTdirect consider the objective function to
be a black box, the runtime per iteration for bpiTdirect andspVTdirect should only depend on the runtime of the objective
function. Consequently, it is useful to test the perforneaatspVTdirect using objective functions with a variety of runtimes
and runtime patterns (i.e., the runtime might increase wétations, or stay roughly constant). Four of the toy peoid have

negligible runtimes (on the order &0 ~* seconds), one toy problem has runtimes around one secahthareal-world physics
problem has (parallel) runtimes ranging from about eigliifteen seconds.

A single spawning event was artificially made to occur at tveath iteration ofpvTdirect. Forthe toy problemgVTdirect
was run with either nine or twelve processes, apdTdirect was run with eight or ten processes (chosen to meet theirgstra
set bypVTdirect on the ratio of masters to workergpvTdirect spawned either one or two new masters, so that the numbers
of processes used lpvTdirect andspVTdirect were identical after the spawning event. For the MFDn objedunction,
pVTdirect was run with six processes, asgVTdirect was run with five processespVTdirect spawned one new master, so
thatpVTdirect andspVTdirect were both running with six processes after the spawningte\i&very instance of MFDn was
run with six processes.

6.1. Toy problems

The four toy problems with negligible runtimes were the @aek function (GR), the Quartic function (QU), Schwefel's
function (SC), and Michalewicz’s function (Ml), all takerofn [3]. Figures 5 and 6 show runtimes per iterationgéTdirect
and spVTdirect with GR, QU, SC, and MI as objective functions. The runtimesdpVTdirect are shown with triangles,
and those fopVTdirect are shown with circles. Notice that the runtimes per iterafor spvTdirect are quite similar to the
runtimes per iteration fasVTdirect. Predictably, the runtime farpVTdirect is much larger for the seventh iteration (when the
spawning event occurred). The runtime per iteratiorsfoiTdirect generally stabilizes to values that consistently hovehsly
above the values fgVTdirect. See the plot of runtimes per iteration for Ml (Figure 6, tigior a nice illustration of this effect.

The toy problems with negligible runtimes were useful fomgaring thetotalnumber of iterations and function evaluations for
spVTdirect andpVTdirect, as well as comparing other global properties. The totalbemof iterations and objective function
evaluations, the minimum box diameter, and the stopping uskd to end the search were always identicasf@Tdirect and
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Fig. 7. Comparison of runtimes per iteration for the MISleep objective function.

pVTdirect. Although there are very minor differences in performaribe,boxes examined at every iteration are identical for
pVTdirect andspVTdirect.

In Figure 7, the runtimes per iteration are plotted p¥Tdirect andspVTdirect with the objective function MISleep—a
variant of the Ml toy problem discussed above—that is de=igio run for about one second. The runtimessfsWTdirect and
pVTdirect are shown with triangles and circles, respectively. Froerplbt in Figure 7, itis clear that the runtimes per iterafiman
pVTdirect andspVTdirect with the MISleep objective function are nearly identicaithwthe exception of the seventh iteration
for spVTdirect (where the spawning event occurs). The same basic pattseeisin other similar variants of toy problems
(GRSleep, etc.). One can conclude that the overheaspftfdirect has negligible impact on the runtime per iteration when the
objective function has a sufficiently long runtime (accaglto the tests done for this work, a runtime of at least oners®és
sufficiently long).

6.2. MFDn

MFDn, which stands for “many fermion dynamics nuclear”, isuelear physics code [9] developed at lowa State University
that computes theoretical values for certain observalgllesvant to the spectra of atomic nuclei. The computed véhrethese

observables can be compared to empirical values usjryfanction, and a value is obtained representing the goodoiefis
Since MFDn has an input file containing several input paramsebne can vary these parameters, and observe the goadfiess
obtained by each setting of input parameters. This suggfestsse of an optimization algorithm in order to find an optiset

of parameters, where an “optimal” set of parameters mears @f parameters that yields a minimal value. For the problem

considered here, there are only three input parametersahat Also, the output of the objective function is not simghe 2
value for the (sequences) of computed and empirical valmssead, MFDn is run twice with two separate input files. Trauit
files are identical with the exception of a single parametdrch is not amongst the three that are varied. The outpuhef t

objective function is the sum of the twd values for the two runs of MFDn.

The computation of the MFDn objective function is very coexpnd involves finding a solution to the Schrodinger equatio
with a large, sparse, and irregularly structured Hamilianinatrix [10]. One reason for this is that MFDn is itself agbiat
computation, and so it must be spawned u$iRfi COMM_SPAWN. Another reason is that two instances of MFDn need to be run in
order to determine the output of the objective function Keiastance of MFDn uses a different input data set). A thiesom is
that multiple processes may execMBI _COMM_SPAWN simultaneously, and hence (on shared file systems) mufiipleesses may
attempt to access the executable simultaneously, causengrogram to crash. Notice that even though MFDn runs orratpa
processes from the worker that spawned it, the worker’stodlie objective function does not complete until both insts of
MFDn complete, because the objective function waits forrapletion message from MFDn. This means that the computafion
the MFDn objective function takes on the order of eight teeéfi seconds to complete. The runtime of this objective fonds
not entirely consistent because it must be run in parallel.

MPI does not provide any means for locking executables tegmterace conditions when callifPI_COMM_SPAWN, so it is up
to the user to prevent such conditions. Fortunately, Mé&dsprovide support for locking files when reading or writing teein.

So, one way to prevent race conditions when u¥iRf COMM_SPAWN is to have each process read a value from a file, where the
value indicates which process currently “owns” the exdalgta A process continually reads from the file until it reaéis(for
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Fig. 8. Comparison of runtimes per iteration for the MFDn objective function.

“free”), in which case the process writes its own rank to the xecutedlPI_COMM_SPAWN, and then writes “f” to the file once
both instances of MFDn have been spawned.

Figure 8 shows runtimes per iteration ffTdirect andspVTdirect, both with MFDn as objective function. The triangles and
circles show the runtimes per iteration &kpVTdirect andpVTdirect, respectively. The runtimes per iteration fgpVTdirect
with objective function MFDn are roughly the same as runsirper iteration fopVTdirect, ignoring the variations in runtime
for bothpVTdirect andspVTdirect. The overhead ispVTdirect does not have a significant impact on its performance.

6.3. Performance of the dynamic load balancing mechanism

In order to test the dynamic load balancing mechanigsiTdirect was run with one master using GR and QU as objective
functions. The amount of memory available on a node is read &n input file. The value for available memory was set aidific
low so that a spawning event would occur at iteration 25,gasing the number of masters to two. Box count and load dewiat
were monitored before and after the spawning event. Bef@espawning event, the spawned master did not exist, ane litsnc
box count is assumed to be zero. After the spawning evenhdkeount for the spawned master increased until it was dlmos
identical to the box count for the current master (Figure 9).

The tests for load deviation began at iteration 25, when #vemaster was spawned. Load deviation was initi@lfyfor the
spawning master, ang 0.5 for the spawned master for both objective functions. FohltaR and QU, the load deviation moved
toward zero for both masters; however, load deviation aggred zero more quickly (and smoothly) for GR (Figure 10)isTh
was due to the fact that the number of new boxes added petidteraas greater for GR than for QU, and that (for technical
reasons) the lead master must receive at least one box gaidite In general, at most three new boxes were added patiite
for QU, and since the lead master received at least one bexspéwned master could receive at most two boxes, regawfless
the load deviation. This observation inspired a modificatmthe load balancing mechanism that increases the nurbexes
added per iteration, thereby balancing the box load in fateeations. An input parameter f@VTdirect andspVTdirect,
called the “aggressive” switch, specifies that all boxeshenconvex hull should be selected, not just those meetinmthienum
improvement condition. For 20 iterations after a spawniveng the aggressive switch is turned on. This number chii@ns
was selected based on the observation that 20 iterationgevesally sufficient to reduce load deviation to about 0. hewthe
temporary aggressive switch is used (Figure 11), it takegefaer iterations for load deviation to reach 0.1 (abouterations,
versus 50 iterations when the “aggressive” switch is notl agall).
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7. Related work

Adaptive parallel applications are applications that déer gheir process count in response to changes in avaitaburces.
Adaptive parallel applications are primarily used in grahguting due to fluctuations in available resources (a usehtnmot
want cycles being borrowed from his machine when he is usjngs well as the loose coupling of tasks. As far as the asthor
know, dynamically adjusting the process count of a pariel application with tightly coupled processes is uniquécurrent
work.

Tools have been developed to help users write adaptivel@ampplications. In [11], a system that enables OpenMP narog
to run on a network of workstations with a variable numberades is described. There are similar systems for grid cangput
such as the system described in [12]. The adaptive pargigtms intended for grid computing are of little use for theposes
of this work, because they depend on the noninteraction afgases in the user application (i.e., the user applicatiost be
embarrassingly parallel). The communication between tastens inpvTdirect complicates increasing their count.

Process migration has been used to adjust the number of MEégses running on a physical processor (although the total
number of processes remains unchanged). Adaptive MPI [4€§ processor virtualization to dynamically manage ressur
In particular, virtual MPI processes can be migrated frora physical processor to another, allowing applicationstemiwith
Adaptive MPI to increase the process count on a particulacgssor (while decreasing the process count on one or more
processors). Although Adaptive MPI is intended for use &jtblications developed in C++, it might seem as if proceggation
more generally could be useful for the present work. Foeimsg, if masters lacked sufficient memory, one or more nsastedd
be migrated to processors with more available memory. Hewehis is not an ideal strategy for increasing the memoaylavie
to masters ipVTdirect for two reasons. First, if a process is migrated to a new nihd® the memory that had been used to
store boxes on the previous node is lost. Second, unusedgs@rs are in general needed to increase overall availasteony
(see Section 3.2.1). Within master-worker style applaratj such agvTdirect, it may be wasteful to allocate one process per
node, and so it is difficult to ensure enough memory withoatspng an extra process on a “fresh” node.
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8. Conclusions and discussion

This work shows that it is possible to dynamically adjust lienber of masters in the global optimization cedddirect,
and hence prevent thrashing when the amount of availableonygnecomes insufficient. Performance results show thagstha
communication overhead gpVTdirect has a negligible impact on the performance of the applinatio

There were a number of lessons learned during the coursisafohk that should be useful to anyone designing a mastekexo
style parallel code with the capability to adjust processnt@n demand. Updating state after new processes are spaande
quite subtle if some of the processes are tightly coupledoartdere are persistent aspects of program state, i.ectsspf state
that are persistent across iterations of a main loop. Onetovdgal with the problem of updating/fabricating state igésign the
code so that processes are only loosely coupled, i.e.,dheafta process has minimal effect on the state of any otloeeps. If
the processesiustbe tightly coupled, then a reasonable design choice is teeptestate from being persistent across iterations.
If processes are unaware of any state from the previougi@erahen integrating spawned processes into the compntahould
be simple. Another useful design choice is to regularly byokize all masters. This should simplify the task of natiyall
processes of a spawn request, assuming all processes alreéhin the spawning procedure. Of course, all processed net
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be involved, but the present work has shown that this canlgirgommunication between the current and spawned presess
Synchronizing the workers may also be beneficial, but it migbate an unreasonable amount of idle time for the workers.

One final point is that the number of workers could also be oyoally adjusted on demand. This would require only minor
modifications taspVTdirect—the spawn notification method used for masters could be fosegppawning new workers, and the
state update would be much simpler than for spawning masieljsisting the number of workers on demand would be useful in
many situations. For instance, the user could supply pasmspecifying that some minimal amount of progress has todde
by the search in a fixed amount of time. If sufficient progressdat made, then more workers could be spawned on demand to
perform more function evaluations, and hopefully speecheqprogress of the search.
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