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Information in a Spiking Neural Network (SNN) is encoded as the relative timing between
spikes. Distortion in spike timings can impact the accuracy of SNN operation by modifying
the precise firing time of neurons within the SNN. Maintaining the integrity of spike tim-
ings is crucial for reliable operation of SNN applications. A packet switched Network on
Chip (NoC) infrastructure offers scalable connectivity for spike communication in hardware
SNN architectures. However, shared resources in NoC architectures can result in unwanted
variation in spike packet transfer latency. This packet latency jitter distorts the timing
information conveyed on the synaptic connections in the SNN, resulting in unreliable
application behaviour.

This paper presents a SystemC simulation based analysis of the synaptic information dis-
tortion in NoC based hardware SNNs. The paper proposes a fixed spike transfer latency ring
topology interconnect for spike communication between neural tiles, using a novel time-
stamped spike broadcast flow control scheme. The proposed architectural technique is
evaluated using spike rates employed in previously reported mesh topology NoC based
hardware SNN applications, which exhibited spike latency jitter over NoC paths. Results
indicate that the proposed interconnect offers fixed spike transfer latency and eliminates
the associated information distortion.

The paper presents the micro-architecture of the proposed ring router. The FPGA validated
ring interconnect architecture has been synthesised using 65 nm low-power CMOS technol-
ogy. Silicon area comparisons for various ring sizes are presented. Scalability of the proposed
architecture has been addressed by employing a hierarchical NoC architecture.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Biologically inspired artificial neural network computing techniques mimic key functions of the human brain and have
the potential to offer smart and adaptive solutions for complex real world problems [1]. The organic central nervous system
includes a dense and complex interconnection of neurons and synapses, where each neuron links to thousands of other neu-
rons through synaptic connections. Computing systems based on Spiking Neural Networks (SNNs) emulate real biological
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Fig. 1. EMBRACE hardware modular SNN architecture and GA-based SNN evolution platform (The Modular Neural Tile (MNT) comprises a two layered
16:16 fully connected SNN structure, packet encoder/decoder, SNN configuration and topology memory).
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neural networks, conveying information through the communication of short transient pulses (spikes) via synaptic connec-
tions between neurons. Each neuron maintains a membrane potential, which is a function of incoming spikes, associated syn-
aptic weights, current membrane potential, and the membrane potential leakage coefficient [2,3]. A neuron fires (emits a spike
to all connected synapses/neurons) when its membrane potential exceeds the neuron’s firing threshold value. Hardware SNN
systems offer the potential for elegant, low-power and scalable methods of embedded computing, with rich non-linear
dynamics, ideally suited to applications including classification, estimation, prediction, dynamic control and signal process-
ing [4,5]. Efficient implementation of hardware SNN architectures for real-time embedded systems is primarily influenced by
neuron design, scalable on-chip interconnect architecture and SNN training/learning algorithms [6].

Packet switched Network on Chip (NoC) architectures have recently been proposed as the spike communication infra-
structure for hardware SNNs, where data packets containing spike information are routed over a network of routers. The
NoC based synaptic connectivity approach provides flexible inter-neuron communication channels, scalable interconnect
and connection reconfigurability [7,8]. The authors have investigated and proposed EMBRACE1 (illustrated in Fig. 1)as an
embedded computing element for the implementation of large scale SNNs [9–11]. A Modular Neural Tile (MNT) architecture
has been proposed for reducing the silicon area, by using a combination of fixed and configurable synaptic connections [11].
The proposed MNT comprises a 16:16 neuron fully connected hardware SNN structure. MNTs are integrated in a two dimen-
sional mesh topology packet switched NoC interconnect to form a hardware modular SNN architecture. Spike communication
between the MNTs is achieved by routing spike information within spike data packets over the network of routers. The NoC
architecture uses XY routing scheme and supports unicast packet flow control, where each spike packet contains destination
synapse information for a single spike and is routed independently. A GA-based SNN evolution platform evolves SNN applica-
tions by finding a correct set of synaptic weights and neuron threshold potentials. A number of benchmark SNN applications
such as XOR data classifier, inverted pendulum controller, Wisconsin breast cancer dataset classifier and robotic controllers
have been successfully implemented on the EMBRACE-FPGA prototype [8,10,11].

Packet transfer via shared on-chip resources within a NoC based hardware SNN results in different latency values for each
NoC packet. The NoC packet latency variation (jitter) alters the arrival timing of spike packets at the destination neurons,
distorting the encoded information within the SNN. While a NoC based hardware SNN can be trained to produce correct
application behaviour, NoC traffic dependent packet latency jitter can impact the accuracy of the SNN applications and
potentially cause an application to fail. Providing guaranteed packet transfer latency is difficult in NoC based SNN architec-
tures due to the large number of virtual synaptic connections. In past few years, research in NoC architectures have been
primarily focused on providing statistical guarantees (or soft bound QoS) for large streaming data traffic [12,13]. However
NoC architectures that can provide fixed packet transfer latency for a large number of virtual connections have not been
explored.

This paper simulates (using clock cycle accurate SystemC models) and analyses the synaptic information distortion in NoC
based hardware SNNs due to packet transfer latency jitter caused by the NoC communication infrastructure. The paper pro-
poses a fixed spike transfer latency ring topology interconnect for spike communication between neural tiles using a novel
timestamped spike broadcast flow control scheme. The proposed architectural technique is evaluated using spike rates em-
ployed in previously reported hardware SNN applications. Results indicate that the proposed interconnect offers fixed spike
transfer latency and eliminates the associated information distortion. The paper presents the micro-architecture of the pro-
posed ring router. The ring interconnect architecture has been validated on a Xilinx Virtex-6 FPGA and synthesized using
65 nm low-power CMOS technology. Silicon area comparisons for various ring sizes are presented. Limitations on the
1 EMulating Biologically-inspiRed ArChitectures in hardwarE.
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scalability of the proposed ring architecture and selection of the optimal ring size based on spike rate resolution and hard-
ware resources are discussed. Scalability of the proposed architecture has been addressed by employing a hierarchical NoC
architecture.

The structure of the paper is as follows: Section 2 reviews the NoC architectures suitable for hardware SNNs. Section 3
presents simulation based analysis of the effect of latency jitter in NoC based hardware SNN architectures, and discusses
the impact of the noise introduced by latency jitter on SNN applications. Section 4 presents the spike flow control of the pro-
posed interconnect architecture and the detailed micro-architecture of the proposed ring router. Section 5 presents ring
interconnect spike transfer latency results and discusses the limitations on the scalability of the proposed ring architecture.
The section analyses the optimal ring size for practical spike rate encoding resolution and hardware implementation, and
presents hardware resource utilisation results. Section 6 concludes the paper.
2. NoC architectures for hardware SNNs

The biological nervous system exhibits direct interconnection between neurons, where spikes stream through fixed
length axons ensuing deterministic spike transfer latency and integrity of synaptic information. For biologically inspired
SNN systems, the spike communication infrastructure should provide fixed spike transfer latency to ensure integrity of infor-
mation. Network on Chip (NoC) architectures have been proposed as a promising solution for multi-core System on Chip
(SoC) systems [14,15]. This section reviews related work on NoC based communication architectures for hardware SNN sys-
tems. This review focuses on the NoC architectures which can provide QoS for latency management and are suitable as hard-
ware SNN interconnect.

Information in SNNs is contained within the timing of spikes. Hence the NoC spike communication infrastructure should
ideally support fixed latency spike transfer in order to maintain the integrity of the encoded information. Computationally
powerful hardware SNN architectures are characterised by thousands of neurons and millions of synapses [16–23]. Hence,
the NoC spike communication infrastructure should support millions of virtual synaptic communication channels. Localised
multicast communication schemes closely resemble the connectivity patterns typically observed in SNN application topol-
ogies and NoC architectures supporting such connectivity patterns are especially suitable for hardware SNN architectures
[7]. Information distortion in SNN structures is directly proportional to spike transfer latency jitter. For practical hardware
SNN implementations, the spike transfer latency can be longer than the minimum (or best case) latency, though the latency
jitter should be as low as possible.

A packet switched NoC architecture can provide suitable communication infrastructure for hardware SNNs, offering scal-
able, parallel, distributed communication channels with flexible connection reconfigurability [24,9,7]. A NoC architecture
suitable for hardware SNNs should:

– maintain the integrity of information encoded within spike timings
– support a large number of virtual synaptic communication channels
– support connection topologies that closely resemble neural connectivity patterns

In summary, the NoC architectures for hardware SNN architectures should provide a large number of virtual synaptic
communication channels and localised multicast connectivity patterns, while offering low spike transfer latency jitter.

The Æthereal NoC architecture [25], developed specifically for streaming media applications, combines both Guaranteed
Services (GS) and Best Effort (BE) services in a single router design. The architecture aims to offer guaranteed services such as
uncorrupted, lossless, ordered data delivery, guaranteed throughput and bounded latency essential for real-time embedded
multi-media applications. �pipes [26], a scalable and high performance NoC architecture, consists of a library of synthesisa-
ble soft macros to realise latency insensitive on-chip communication. The router design is deeply pipelined and the NoC
architecture is optimised for high throughput and low latency. The QNoC architecture [27] comprises a two-dimensional pla-
nar mesh topology NoC with fixed shortest path multi-class wormhole routing and provides statistical guarantees for packet
communication. The QNoC architecture defines various service levels such as Real-Time Service Level which guarantees band-
width and latency essential for real-time applications, such as streamed audio and video processing. SoCBUS [28], a circuit
switched NoC architecture uses the initial phase of resource reservation using setup and acknowledge packets. The system
can provide throughput and latency guarantees after successful channel setup.

Recent research indicates an increasing use of NoC architectures for hardware SNN systems [24,9,7]. A generic reconfig-
urable neural network architecture using a packet switched NoC communication infrastructure is reported in [24]. The archi-
tecture consists of a 2-D torus topology NoC, where each router serves four neurons and offers monolithic connectivity. An
FPGA-based mesh topology NoC, using XY unicast routing for a clustered neural network, has been proposed in [29]. A uni-
cast communication scheme is a limiting factor in large hardware neural network implementations because of the large
number of synaptic connections. A theoretical and comparative analysis of interconnect architectures for hardware SNN sys-
tems is reported in [7]. The paper argues the use of packet switched mesh topologies over fat tree, point-to-point and shared
bus topologies. Due to the connectivity patterns observed in neural topologies, multicast communication schemes outper-
form unicast and broadcast. A bufferless ring topology NoC architecture has been proposed, which aims to achieve low pack-
et transfer latency while maintaining a small silicon footprint [30]. Although, the ring topologies offer deterministic hop
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count between nodes, the inherent connectivity pattern limits its scalability, affecting the network performance [31]. How-
ever, ring topology offers a simple and compact architecture suitable for hardware implementation. This paper presents an
eight node ring topology interconnect with a fixed spike transfer latency flow control. The proposed eight neural tile ring
interconnect integrates as an element within a mesh topology NoC forming a scalable, modular hardware SNN architecture.
3. Information distortion in NoC-based hardware SNN architectures

This section analyses the synaptic information distortion in SNN structures due to packet transfer latency jitter caused by
the NoC communication infrastructure, using clock cycle accurate simulation models and discusses impact of the noise intro-
duced by latency jitter on SNN applications.

3.1. Spiking neural network information coding

Understanding biological neuronal coding is one of the fundamental issues in neuroscience. Traditional hypothesis sug-
gests that the neural information is encoded in the mean firing rate of neurons, whereas experimental results on response
time of humans (for a number of senses) suggest that the neuronal information is encoded in the relative timing between the
spikes [2,3,32,33]. Based on these findings, information encoding in artificial SNN systems can be broadly categorised in the
following two categories:

1. Rate Coding technique is based on encoding the SNN information as the ‘mean firing rate’ of neurons. Based on different
notions of the mean firing rate, this category is further subdivided in three averaging procedures, namely Rate as a Spike
Count, Rate as a Spike Density and Rate as a Population Activity [34]. For practical SNN systems, rate coding encodes spike
count within a fixed time interval (or sampling time window as depicted in Fig. 3). The time interval or sampling time of
the SNN is often determined by the application response time and stimulus encoding resolution requirements. Spike rate
coding technique is a popular choice for embedded applications due to its simplicity [8,10,11].

2. Temporal Coding technique encodes information based on the ‘precise spike timings’. For practical SNN systems, this
coding technique can be implemented as Time to First Spike, Spike Phase Encoding and Spike Correlation Encoding,thorpe96.
The absence of a fixed sampling time reduces the response time of this coding technique and speeds-up the application,
but the implementation complexity limits its use in practical SNN systems.

Variable spike transfer time between neurons distorts the information flowing in SNNs employing either rate coding or
temporal coding. This paper presents an elaborate analysis of spike latency variation on the information flowing in SNNs
employing rate coding. Due to the dependency on exact spike timings, temporal coding is highly susceptible to spike latency
variations.

3.2. Latency jitter in the EMBRACE mesh topology NoC architecture

Variation in packet transfer latency resulting from the spike communication interference introduced by the reported EM-
BRACE NoC architecture has been modelled using EMBRACE-SysC clock cycle accurate SystemC simulation models [35]. The
mean (ll) and standard deviation (rl) values for packet transfer latency (l) are used to analyse the noise introduced in SNN
structures by the latency jitter. NoC paths with multiple hops (through a number of routers) are exercised with a fixed rate
spike packet stream. The intermediate NoC routers are loaded with additional spike packet traffic to mimic traffic conditions
in hardware SNNs. Fig. 2 illustrates the packet transfer latency variations (ll and rl) simulated for the multi-hop NoC paths
under various traffic density conditions (i.e. bandwidth utilisation values of intermediate NoC routers). The mean latency
plot (Fig. 2a) illustrates slow variations in the packet latency, while the latency standard deviation plot (Fig. 2b) illustrates
dispersion of the spike packets received at destination neural tiles due to NoC traffic conditions. After 100% bandwidth util-
isation, the intermediate NoC routers are unable to handle the traffic and therefore drop spike packets. The rate of change of
mean packet latency (ll) increases significantly after 100% NoC traffic density. The latency standard deviation (rl) increases
and saturates at 100% traffic density conditions in the network.

3.3. Impact of spike latency jitter on SNN applications

The packet switched NoC spike communication infrastructure cannot guarantee a precise spike transfer time for a hard-
ware SNN system comprising a large number of virtual synaptic connections. This makes it very difficult to support temporal
coding. The EMBRACE hardware SNN employs spike rate coding scheme, where information is encoded as the number of
spikes in a fixed Sampling Time Window (STW = 1 ms). This technique offers practical implementation by allowing a sam-
pling time window of a few milliseconds, required by real-life embedded applications. Benchmark SNN control and classifier
applications (such as inverted pendulum controller, two-input XOR and Wisconsin breast cancer dataset classifier) have
been successfully evolved on EMBRACE FPGA prototype using spike rate coding [8,10,11]. The remainder of this section
analyses the impact of spike packet latency variations (due to the packet switched NoC) on information processed in SNN
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Fig. 3. Information distortion in LIF neuron due to spike transfer latency variations
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structures using simulations. The mean (ll) and standard deviation (rl) values of spike packet transfer latency (l) shown in
Fig. 2 are used for the analysis.

Fig. 3 illustrates the distortion of information in a Leaky-Integrate-Fire (LIF) neuron [3] due to NoC path spike transfer
latency variations. The spike rate encoder generates a fixed Spike Rate (SR). Spikes traverse through the packet switched
NoC before reaching the neuron synaptic input. Due to the NoC path Spike packet Transfer Latency (STL) variation (ll;rl),
the source spike rate SR deviates to DSR at the input of the LIF neuron. The input spikes update the neuron membrane po-
tential by the associated synaptic weight (SynWt). Thus, the altered input spike rate (DSR) translates into the neuron mem-
brane potential variation, resulting in additional error in the neuron output spike rate (DSR0). Fig. 4 illustrates the LIF neuron
output spike rate deviation due to input NoC path spike transfer latency jitter. An input spike event on a large synaptic
weight alters the neuron membrane potential significantly and thus has a larger effect on the output spike rate changes
due to jitter. The experiment highlights effect of NoC packet latency jitter on the SNN information distortion. A similar setup
is used for analysis of the impact of latency jitter on SNN information in next set of experiments.

Both excitatory (positive) and inhibitory (negative) synaptic weight values affect the output spike rate of a LIF neuron due
to input spike rate variations. Fig. 5 shows the comparison of LIF neuron output spike rate deviation (DSR) due to the input
spike rate jitter and the excitatory/inhibitory synaptic weight values. Since the threshold potential of a LIF neuron can only
be positive, large inhibitory synaptic weight values dampen the output spike rate significantly, resulting in a large variation



Fig. 4. LIF neuron output spike rate deviation due to latency jitter (Spike rate deviation DSR is measured as the difference in number of spikes within a STW
of 1 ms. Constant Synaptic Weight SynWt ¼ 3:5).

Fig. 5. Spike rate deviation (DSR) due to latency jitter and synaptic weight (constant latency jitter l ¼ 15)(Spike rate deviation DSR is measured as the
difference in number of spikes within a STW of 1 ms).
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in the output spike rate due to input spike rate jitter. Similarly, large excitatory synaptic weight values cause immediate fir-
ing of the neuron resulting in significant spike rate deviation.

Each synaptic input experiencing spike rate jitter contributes to output spike rate deviation (proportional to the associ-
ated synaptic weight). Multiple synaptic inputs of a LIF neuron have a combined effect on the output spike rate. Fig. 6a shows
the SystemC simulation setup used to measure the output spike rate error of a LIF neuron due to multiple synaptic inputs
with associated spike transfer latency jitter. Fig. 6b shows the output spike rate error of a LIF neuron for a range of spike
latency jitter values on multiple synaptic inputs. The output spike rate error of a LIF neuron is directly proportional to latency
jitter (rl). Low jitter values have negligible effect on the output spike rate, since the multiple input spike events cancel the
minor variations in membrane potential. As the jitter increases, the changes in membrane potential are significant and have
a large impact on output spike rate.

SNN application topologies consists of multiple feed-forward and feed-back (recurrent) neuron layers. Fig. 7a shows the
SystemC simulation setup used to measure the spike rate error due to cascaded layers in a feed-forward SNN topology.
Fig. 7b illustrates the spike rate error in a multi-layer feed-forward SNN topology. Latency jitter has a cascading effect on
the spike error rate in multi-layered SNN structures for various jitter values (ll;rl). As the information is processed in each
SNN layer, the corresponding spike rate is altered due to spike transfer latency jitter. In some cases, the effect of large spike
transfer latency is marginally cancelled by low spike transfer latency in the next layer. This can be seen as a slight reduction
in the spike rate error in the third layer in Fig. 7.

Adaptive properties of SNNs are evident from the negligible spike rate error observed at low jitter values. However, large
latency jitter observed at high network traffic in the NoC distorts the SNN information considerably. This behaviour, illus-
trated in Figs. 4, 6 and 7, shows the traffic dependent behaviour of the SNN structure within the NoC based hardware
SNN architectures and can result in erroneous application behaviour. Practical SNN systems use spike rates that are much
lower than the system clock frequency. Assuming that the SNN application spike rate encoding requirement is 1024 spikes
in a STW of 1 ms, the maximum spike injection rate is one spike in 196 clock cycles for the system clock frequency of
200 MHz [8,11]. Also, increasing the system clock frequency results in slower spike rates for the given encoding resolution.
These properties of the SNN application spike traffic can be used to design a fixed latency spike communication
infrastructure.

4. Ring topology interconnect architecture

Fixed spike transfer latency interconnect supporting a large number of virtual synaptic connections is the key for accurate
and reliable operation of applications executing on packet switched NoC-based hardware SNN architectures. This section



Fig. 6. LIF neuron multiple synaptic paths jitter (Spike rate SR is measured as number of spike in a STW of 1 ms).
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presents the proposed ring topology interconnect architecture for hardware SNNs. Spike packet flow control of the proposed
NoC architecture, supporting fixed spike transfer latency is discussed. The section also presents the detailed micro-architec-
ture of the proposed ring router.
4.1. Fixed latency spike flow-control

The essential elements for designing a fixed latency, packet switched spike communication interconnect are:

– connection topology offering fixed packet transfer latency between the source–destination nodes [31]
– deterministic packet transmission and reception scheduling in the source and destination routers respectively

Network topologies with appropriate flow control schemes exhibiting these properties, can offer fixed packet transfer la-
tency. Extending this flow control to support broadcasting can efficiently support the bandwidth requirements of localised,
high density synaptic connections observed in modular hardware SNNs. This section describes a ring topology with unidi-
rectional, broadcast packet flow control to achieve fixed spike transfer latency. The unidirectional ring topology offers simple
and compact router design and allows simplified placement on the silicon die. Other network topologies such as star, mesh
and torus (with minimal routing) can also be used with suitable modifications in the proposed fixed latency flow control.

The flow control of the proposed ring topology interconnect treats each spike event timing separately, maintaining the
clock cycle count of the spike event occurrence. The recorded spike event clock cycle count is preserved throughout the spike
packet flow control. At the destination ring router, the spike event occurrence clock cycle count is used to send out the spike
at the precise clock cycle (with respect to spike event occurrence) offering fixed spike transfer latency and maintaining the
integrity of the SNN information flow.

Fig. 8 illustrates the proposed ring topology interconnect (in an eight node configuration) with unidirectional packet flow
control for hardware modular SNN architectures. The proposed interconnect comprises routers connected in the unidirec-
tional ring topology, where each router receives a spike packet from the previous router and sends a spike packet to the next
router. The MNTs interface with ring routers for spike communication. Each router buffers the spike events generated by the
attached MNT and encodes them into spike packets. Generated spike packets are processed and forwarded to the next router
in a single clock cycle. Full rotation of the spike packet on the ring ensures broadcast packet flow control. The full Rotation
Cycle (RC) of the ring (i.e. the number of clock cycles required for a generated packet to traverse all the ring routers and arrive
at the source router) is equal to the number of nodes in the ring (RC ¼ R).



Fig. 7. Spike rate error propagation in SNN layers (Spike rate SR is measured as number of spike in a STW of 1 ms).
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The ring interconnect operates in two phases; namely the Insert Phase (IP) and Forward Phase (FP). Fig. 9 illustrates the
sequencing of insert and forward phases of the ring, based on the clock cycle count. The ring operates in the insert phase
for every natural number multiple of the number of ring nodes (n ¼ NR). For all remaining clock cycles (n – NR), the ring



Fig. 9. Rotation count and Insert (IP)/Forward (FP) Phases of the ring (Number of ring nodes R ¼ 8).

Fig. 10. Fixed latency spike packet flow control.
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operates in the forward phase. Thus, the rotation cycle consists of one insert phase and R� 1 forward phases. Phase synchro-
nisation of the ring is maintained by the global Rotation and Phase Counter. The phase counter maintains the clock cycle count
and controls the ring operation phase. For both phases, the packet received by the router from the previous router is pro-
cessed to retrieve the spike information. During an insert phase, the router outputs a new spike packet to the next router
in the ring. During a forward phase, the received packet is forwarded to the next router in the ring.

Fig. 10 illustrates the spike flow control implemented on the proposed ring topology interconnect. The ring router uses a
round-robin scheduling policy for transmitting spike packets corresponding to spike inputs (SpikeIn[0:15]). A new spike pack-
et is generated during each insert phase. To serve the 16 spike inputs (from the attached MNT), the ring router requires 16RC
clock cycles (i.e. 128 clock cycles for an eight node ring configuration). This is defined as the full Operating Cycle (OC) of the
ring. Each router maintains a timestamp counter which counts the clock cycles within an operating cycle. A valid spike event
on a spike input (SpikeInx) is timestamped and buffered in the corresponding Timestamp Register (TSRx). During an insert
phase, the TSRx value (selected by the round-robin sequence) is encoded in a new spike packet for the spike input x, and
is forwarded to the next router in the ring.

Each ring router decodes the input spike packets and buffers the spike events for processing at precise clock cycle based
on the timestamp value. On receipt, the timestamp value in the spike packet is incremented by the rotation count to account
for the packet transfer latency between the corresponding source–destination router pair. The spike event is then buffered in
the Time Slot Registers (TSLR) on the resulting timestamp value. A timeslot counter counting the clock cycles within the
operating cycle is used to select and process spike events from the TSLRs. The TSLRs contain 128 registers for the eight node
ring configuration (16RC registers), each corresponding to a time slot in the ring operating cycle. The spike events buffered in
TSLRs are delivered during the next operating cycle. Thus the spike generated at tin ¼ T in the source router, is delivered at
tout ¼ OC þ T þ y. Thus the flow control offers fixed spike transfer latency of one operating cycle and the source–destination
hop count (OC þ y) for input spikes rates of ISI P OC (where ISI is inter spike interval in number of clock cycles.
4.2. Ring router micro-architecture organisation

The ring routers facilitate spike communication between the MNTs in the ring. Fig. 11 illustrates the ring router and MNT
interface. The ring router packet sender subsystem buffers the spikes generated by the attached MNT and inserts spike pack-
ets on the ring. The ring router packet receiver subsystem decodes and buffers the received spike information and sends the
spikes to the attached MNT. Fig. 12 illustrates the micro-architecture organisation of the proposed ring router RTL design,
comprising (a) Packet Sender and (b) Packet Receiver subsystems.



Fig. 11. Ring router and MNT interface.

TSR0
TSR1
TSR2

...
TSR15

Timestamp
Registers

Timestamp
Counter

SpikeIn[0:15] SpikeIn Select
Counter

Packet
M

ultiplexer

RPhase

Packet
Register

PacketIn
PacketOut

(a) Packet Sender

TSLR0
TSLR1
TSLR2

...
TSLR127

Time Slot
Registers
[0-127]

SpikeInNum
+

Source Router
Number

Selected TSLR Busy

Rollover
Adder

SpikeTS

RCount

. . .
FIFO

SpikeOut
+

SynapseNum

Selected TSLR Empty

Timeslot
Counter

(b) Packet Receiver

Fig. 12. Ring router micro-architecture organisation.

366 S. Pande et al. / Parallel Computing 39 (2013) 357–371
(a) Packet Sender: The phase input (RPhase), determines the operating phase of the ring router. During a forward phase,
the packet multiplexer selects the input packet from the previous router. During an insert phase, a new spike packet
generated by the router is selected. The selected spike packet is buffered in the packet register and passed to the next
router in the ring. On receiving a valid spike on the spike input (SpikeInx), the current timestamp counter value is
stored in the corresponding Timestamp Register (TSRx) along with a valid bit. The packet sender uses a round-robin
policy for transmitting the output spike packet for spike inputs (SpikeIn[0:15]). The SpikeIn Select Counter is incre-
mented during each insert phase and a new spike packet comprising the Packet Valid, Spike Timestamp and Source
Spike Number is generated. Fig. 13 illustrates the packet structure for the proposed ring interconnect.

(b) Packet Receiver: The packet receiver subsystem decodes and buffers valid input spike packets (PacketVal = ‘1’) and
forwards the output spike pulse along with synapse number to the MNT. The Spike Timestamp (SpikeTS), the Rotation
Count (RCount) and the router number (RRn) present in each router are used to calculate the resulting timeslot for the
output spike pulse. The rollover adder increments the timestamp value by the rotation count value. If the result is lar-
ger than the maximum number of timeslots in the operating cycle, the sum is rolled over to the next operating cycle.
The rollover adder output selects the Timeslot Register (TSLR) for storing the SpikeIn Number (SpikeInNum) from the
input spike packet, source router number (calculated from destination router number and RCount), and asserts the
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Busy bit. If the selected TSLR is already occupied (Busy = ’1’), the SpikeInNum and source router number values are
pushed into the FIFO.The Timeslot Counter continuously counts clock cycles within the operating cycle and keeps
track of the current time slot. The timeslot count is used to select the TSLR and retrieve the SpikeInNum and source
router number. If the selected TSLR is empty (Busy = ‘0’), the next available entry from the FIFO is retrieved. The Syn-
apseNum is computed by concatenating the source router number and SpikeInNum, and is sent to the attached MNT
along with a generated spike pulse (SpikeOut).

Multiple spike events that are destined for the same TSLR are buffered in the FIFO for delivery during vacant time slots,
which are indicated by an empty TSLR. This untimed delivery of spikes results in variable spike transfer latency. As the spike
rates for practical SNN applications is considerably lower than the worst case spiking rates, the probability of the TSLR col-
lisions is low.

5. Results and discussion

The proposed ring topology interconnect has been modelled as a clock-cycle accurate model in SystemC. Performance of
the ring architecture has been measured using EMBRACE-SysC design exploration framework for hardware SNN architec-
tures [35]. This section presents spike transfer latency and hardware implementation results for the proposed ring intercon-
nect. Scalability of the proposed ring interconnect has been addressed by employing a hierarchical NoC architecture.

5.1. Ring topology interconnect spike transfer latency performance

Performance of the proposed ring topology interconnect has been evaluated using worst case spike traffic observed in
SNN applications [8,11]. The measurement setup uses spike rate encoders (instead of MNTs as shown in Fig. 8) feeding con-
stant spike streams to each router in the ring. Each spike rate encoder has 16 spike outputs connected to the spike inputs
(SpikeIn[0:15]) of the corresponding ring router. The frequency of spikes on each of the spike inputs (SpikeInx) is 1

ISI; where
ISI is Inter Spike Interval in clock cycles. Each ring router can receive a spike every ISImin=16 clock cycles from the attached
MNT, resulting in a maximum spike rate of 16F=ISImin ¼ 25� 106 spikes per second (where system clock frequency F =
200 MHz and ISImin = 128 clock cycles). Overall the ring generates, transfers and consumes ð16FNRÞ=ISImin ¼ 200� 106 spikes
per second. The proposed ring interconnect supports high spike density communication, with each ring router able to deliver
a spike on every clock cycle. The previously reported EMBRACE mesh topology NoC employing unicast flow control scheme
cannot offer such performance.

Table 1 illustrates the mean spike transfer latency (ll) for multi-hop spike traffic on the proposed ring topology intercon-
nect in an eight node configuration. The interconnect offers fixed latency for ISI P OC. As the spike rate reaches its upper
limit (ISI < OC), the generated spike events are overwritten on TSRs (in the packet sender subsystem within the source ring
router), resulting in loss of spikes. Fig. 14 illustrates the increase in spike loss due to the increase in input spike rate. Also, as
the spike rate exceeds the upper limit (ISI < OC), the probability of received spike events destined for the same time slot
increases, resulting in collisions on the destination TSLRs. The packet receiver subsystem within the destination ring router
buffers these spike events (causing collisions on the TSLR) in a FIFO. Due to the unavailability of time slots and untimed
delivery of spike events from the FIFO, the spike transfer latency variations increase considerably. Fig. 15 illustrates the spike
Table 1
Mean spike transfer latency (ll) for multiple hop spike traffic on the proposed ring topology interconnect.

Inter spike interval 1-Hop 2-Hop 3-Hop 4-Hop 5-Hop 6-Hop 7-Hop Rotation full ring 8-Hop

2048 129 130 131 132 133 134 135 128
1024 129 130 131 132 133 134 135 128

512 129 130 131 132 133 134 135 128
256 129 130 131 132 133 134 135 128
128 129 130 131 132 133 134 135 128

96 204.87 205.87 206.87 207.87 208.87 209.87 210.87 203.87
64 269.80 270.80 271.80 272.80 273.80 274.80 275.80 268.80
32 327.45 328.45 329.45 330.45 331.45 332.45 333.45 326.45

Inter Spike Interval (ISI) is specified in clock cycles between consecutivespikes and the spike transfer latency is measured in clock cycles.
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transfer latency variations (ll and rl) measured for the 4-hop spike traffic on the proposed ring topology interconnect. For
ISI < 128 (i.e. the operating cycle of the eight node ring), the spike transfer latency mean and standard deviation (ll and rl)
increase significantly.

The operating cycle (OC ¼ RS pike Inn) of the ring imposes a limit on the maximum spike rate supported (for spike inputs),
for the fixed spike transfer latency operation of the proposed ring interconnect. The maximum number of spikes for a sam-
pling time window2 of 1 ms for various ring sizes is depicted in Table 2 (Highlighted values represent the selected ring size of
eight nodes). A large number of spikes within a STW allows higher resolution for spike rate encoding in a SNN application setup
(Fig. 3).

5.2. Hardware implementation

The proposed ring interconnect has been implemented as a configurable design in VHDL. A number of ring configurations
have been synthesised to Xilinx Virtex 6 FPGA (to validate the RTL design) and 65 nm low-power CMOS technology from
STMicroelectronics for silicon area results. Table 3 shows the hardware synthesis results for the proposed ring topology
interconnect where the eight ring node configuration selected for hardware implementation is highlighted. ASIC synthesis
has been performed using Synopsys Design Compiler 2009-sp5 and FPGA synthesis using Xilinx XST 14.4.

The ring router architecture is primarily organised around timestamp and time slot registers, which are integral parts of
the packet sender and receiver subsystems. The number of timestamp registers is determined by the number of spike inputs,
2 Choice of sampling window time is primarily influenced by the response time requirements of the application.



Table 2
Neuron density, spike injection rate and maximum number of spikes in a Sampling Time Window (STW) of
1 ms, for various ring sizes.

Ring size Neurons Synapses Minimum ISI (in clock cycles) Maximum spikes (in a STW)

4 128 5 K 64 3125
8 256 18 K 128 1562

16 512 68 K 256 781
32 1024 264 K 512 390
64 2048 1040 K 1024 195

128 4096 4128 K 2048 97
256 8192 16448 K 4096 48

Table 3
Ring topology interconnect synthesis results (Clock frequency: 200 MHz).

Ring size ASIC synthesis (65 nm low-power CMOS) FPGA synthesis (Xilinx Virtex-6 FPGA)

Ring NoC area (in lm2) Ring router area (in lm2) Ring NoC slices Ring router slices Slice registers

4 40,580 10,136 1060 265 581
8 157,700 19,707 5202 650 1175

16 642,555 40,145 24,010 1212 2486
32 2,723,136 85,099 NA 2970 5322
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and the register width is defined by the operating cycle. The number of time slot registers is determined by the operating
cycle, and the register width is defined by the operating cycle and the number of synapses in the ring. As the ring dimension
scales, the number of synapses increases quadratically and similar change is observed in the silicon footprint of the ring rou-
ter and the complete interconnect. In FPGA synthesis, the TSR and TSLR registers are mapped to slice registers resulting in a
proportional increase in slice register count and associated control logic mapped onto the slices.

The previously reported EMBRACE mesh topology NoC uses unicast packet flow control for the synaptic connections be-
tween MNTs. The architecture employed SNN topology memory for storing the spike packet information for the large num-
ber of synaptic connections. The topology memory within each MNT occupies 50% of the silicon area [11]. The proposed ring
interconnect employs spike broadcast flow control, where the weight values for unwanted synaptic connections are set to
zero in the neuron configuration. This results in a significant reduction in the silicon footprint of the architecture.

The rotation and phase counter is replicated in each ring router to facilitate scalable hardware implementation of the
interconnect. For simplicity, the rotation and phase counter is shown as a central unit in Fig. 8.



Table 4
Hierarchical modular SNN architecture FPGA synthesis results (Xilinx Virtex-6)

RTL Entity Slices Slice registers DSP48E1 BRAM

Neuron 8 16 1 0
Modular Neural Tile 313 1705 32 0
Interface Tile 490 656 0 16
Ring Router 617 1175 0 1
Ring Tile 7693 22004 224 24
Mesh NoC Router 133 35 0 0
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5.3. Scalability for large SNN arrays

Practical SNN systems are characterised by a large numbers of neurons and high interconnectivity through inter-neuron
synaptic connections. Each of the SNN execution architectures presented in [16–23] aims for thousands of neurons and mil-
lions of synapses, which is essential for a powerful neural computing platform. Hence, scalability is an important aspect of
interconnect design for hardware SNN architectures.

The spike flow control of the proposed ring topology interconnect relies on the ring size and number of spike inputs. Scal-
ing the ring interconnect results in a quadratic increase in the synaptic density, but also increases the spike transfer latency.
Scaling also adversely affects the spike rate encoding resolution (Table 2). Based on the supported synaptic density, spike
rate resolution (which is suitable for practical SNN applications) and silicon area requirements, an optimal sized eight node
ring interconnect with MNTs has been designed as the Ring Tile (Table 2).

Research shows that real world biological networks exhibit high communication locality [36,37]. The modular organisa-
tion in the human brain has been the motivation for the MNN design strategy, which suggests partitioning of application
tasks into a number of subtasks [38–40]. Based on these factors, the proposed interconnect architecture can be scaled by
replicating individual ring tiles connected in a mesh topology NoC architecture. The individual ring tile is made up of the
ring topology interconnect of seven MNTs and one interface tile. The mesh topology NoC router bandwidth utilisation drops
considerably as most of the localised, high density spike traffic is contained within the ring. This results in low spike packet
latency jitter for inter ring tile spike communication.

Fig. 16 illustrates the architecture of the proposed hierarchical modular hardware SNN. The proposed hierarchical, mod-
ular hardware SNN in a two ring tile configuration comprises 448 neurons, 32 K synapses and has been synthesised on Xilinx
Virtex-6 XC6VLX240T FPGA device and the FPGA synthesis results are presented in Table 4.

6. Conclusions

Spike transfer latency jitter in previously reported EMBRACE mesh topology NoC architecture for hardware SNNs has
been quantified and presented as mean and standard deviation of latency over synaptic paths. The mean latency changes
represent slow variations in latency, whereas the standard deviation represents latency jitter. The latency jitter in XY routing
based mesh topology NoC increases with the network traffic and can affect the SNN application behaviour.

This paper analysed the effects of NoC latency jitter on the information in SNN structures. The LIF neuron output spike
rate is dependent on the input spike rate, synaptic weight and associated latency jitter on the input synaptic path. The anal-
ysis shows that the LIF neuron output spike rate error is directly proportional to input spike latency jitter. Large inhibitory
synaptic weight values have a bigger impact on the LIF neuron output spike rate, due to the associated jitter as compared to
excitatory synaptic weight values. The synaptic weight integration within an LIF neuron cancels the minor variations (low
jitter) on the multiple synaptic inputs, but the high jitter results in a steep increase in the neuron output spike rate error. The
SNN information error increases due to the latency jitter in NoC, as the information is processed in cascaded SNN layers con-
nected via NoC.

A ring topology interconnect offering a fixed spike transfer latency flow control has been presented. The proposed ring
interconnect supports high spike density communication. The spike transfer latency is proportional to the ring size and num-
ber of spike inputs to each ring router. The proposed eight node ring configuration offers a fixed latency of 128–135 clock
cycles between the ring nodes for ISI P 128 clock cycles. The fixed latency offered by the proposed ring interconnect makes
the architecture suitable for employing temporal coding in SNN applications. Scaling the ring interconnect increases the
number of synaptic connections quadratically, but also results in proportional increase in spike event buffer size. The ring
sizes with more than eight nodes have been found to be unsuitable for applications with response time requirement of
few milliseconds, due to spike rate coding constraints and limited resolution. A hierarchical, modular hardware SNN archi-
tecture comprising ring tiles integrated in a mesh topology NoC has been presented as a scalable SNN computing platform.

Future work includes validation of the proposed hierarchical hardware modular SNN architecture using real-life modular
SNN applications. A modular robotic navigational controller application comprising multiple application subtasks running on
MNTs within the ring topology interconnect is in development. The suitability of the proposed architecture as a hardware
platform for real-life cognitive embedded applications will be analysed by measuring the application accuracy and
reliability.
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