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Abstract

In this paper, we investigate how to exploit task-parallelism during the exe-
cution of the Cholesky factorization on clusters of multicore processors with
the SMPSs programming model. Our analysis reveals that the major dif-
ficulties in adapting the code for this operation in ScaLAPACK to SMPSs
lie in algorithmic restrictions and the semantics of the SMPSs programming
model, but also that they both can be overcome with a limited programming
effort. The experimental results report considerable gains in performance and
scalability of the routine parallelized with SMPSs when compared with con-
ventional approaches to execute the original ScaLAPACK implementation in
parallel as well as two recent message-passing routines for this operation.

In summary, our study opens the door to the possibility of reusing message-
passing legacy codes/libraries for linear algebra, by introducing up-to-date
techniques like dynamic out-of-order scheduling that significantly upgrade
their performance, while avoiding a costly rewrite/reimplementation.
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1. Introduction

Linear systems of equations
Az = b, (1)

where A € R™"™ and b € R" are given, and = € R" is the sought-after so-
lution, are ubiquitous in scientific and engineering applications. When the
coefficient matrix A in these problems is dense, the most efficient approach
for their solution consists in a direct method that first decomposes A into
a simpler form, and then solves the corresponding transformed system. A
well-known decomposition for the solution of (1), when the coefficient matrix
A is symmetric positive definite (s.p.d.), is the Cholesky factorization. Com-
puting this factorization requires a cubic number of floating-point arithmetic
operations (flops) in the problem dimension, compared with the quadratic
computational cost that takes the subsequent solution of the factorized sys-
tem, and therefore the first stage is crucial for the efficient solution of s.p.d.
linear systems [1].

Large-scale instances of (1) with n ~ O(100,000) and s.p.d. matrix A
appear, e.g., in molecular dynamics, electromagnetism and space geodesy,
usually requiring a cluster of computers (nodes) for their solution. ScaL.A-
PACK [2] and PLAPACK [3] are two message-passing, dense linear algebra
libraries for parallel distributed-memory architectures in general and clusters
in particular. These packages were developed in the mid 90s, when a single
processor (CPU) per node was mainstream, and thus are not well-suited to
leverage the intra-node concurrency of as-of-today clusters nodes equipped
with multicore technology. In particular, a feasible approach to exploit the
two levels of hardware parallelism (inter-node and intra-node) in clusters of
multicore processors from ScaLAPACK/PLAPACK is to employ one MPI
rank (process) per core; i.e, use a pure MPI approach, with as many MPI
ranks (i.e., processes) per node as cores in the platform. Alternatively, one
can place one MPI rank per node and rely on a multithreaded implementation
of the BLAS (hybrid MPI/MT-BLAS) to exploit the intra-node hardware
parallelism. These two strategies provide a plain, though sub-optimal, path
to leverage the hybrid architecture of clusters of multicore processors from
existing dense message-passing numerical linear algebra libraries. Specifi-
cally, the problem of these two solutions is that they unnecessarily constrain
the level of concurrency of the operation by imposing a strict ordering of the



computations. Although this drawback can be partially alleviated via ad-
vanced look-ahead techniques [4, 5], this greatly complicates programming.
Furthermore, the introduction of one additional variable, the depth of the
look-ahead, in the modeling/experimentation turns the optimization of the
resulting code even more challenging.

SMPSs [6] is a portable and flexible framework to exploit task-level par-
allelism on shared-memory multiprocessors (including multicore processors).
The framework is composed of a few OpenMP-like compiler directives which
allow the programmer to annotate certain functions (routines) in the code as
tasks, a source-to-source compiler, and a runtime that detects dependencies
among tasks and efficiently issues them for execution in due order, attaining
dynamic load balancing with an out-of-order schedule. A significant part of
the benefits observed from the application of SMPSs to dense linear algebra
operations are similar to those obtained with a carefully tuned look-ahead;
on the other hand, tackling these problems with SMPSs requires a very mod-
erate effort from the programmer [7].

In this paper we describe our experience using SMPSs to leverage multi-
threaded parallelism from within message-passing implementations of dense
linear algebra kernels, using the implementation of the Cholesky factorization
in ScaLAPACK (routine pdpotrf) as a case study. The major contributions
of this paper are summarized as follows:

o We illustrate the difficulties encountered during the parallelization of
the Cholesky factorization in ScaLAPACK, e.g. due to algorithmic
restrictions embedded in the library, the data layout, or the semantics
of the SMPSs programming model.

e We report high performance as well as remarkable scalability on a large
facility which clearly outperform those obtained with the conventional
pure MPI and hybrid MPI/MT-BLAS approaches. We also compare
our solution with two recent alternatives to ScaLAPACK [8, 9], show-
ing the superior performance of the MPI/SMPSs routine against those
modern codes as well.

e We provide experimental evidence that the exploitation of task-parallelism
enabled by the dependency-aware out-of-order execution of tasks intrin-
sic to SMPSs is the source of this superior performance and scalability.

e Our exercise provides a practical demonstration that the MPT/SMPSs



framework applies to a significant part of the contents of ScaLAPACK-
/PLAPACK (and possibly also to task-parallel operations in other li-
braries). Furthermore, we show that advanced techniques like dynamic
out-of-order scheduling (and, as a result, adaptive look-ahead) can be
integrated into of these libraries, without requiring a costly rewrite of
their contents.

The rest of the paper is structured as follows. We first elaborate a com-
pact discussion of related work in Section 3. Next, we briefly revisit the
SMPSs framework for the exploitation of task-level parallelism on multicore
architectures in Section 3. The main contributions of this paper are contained
in Sections 4 to 6. These parts address the parallelization of message-passing
routine in ScaLAPACK for the Cholesky factorization using SMPSs; report
an experimental comparison of the resulting code with conventional paral-
lelization approaches and the more modern ones in [8, 9]; and apply the
Paraver [10] performance analyzer in order to comprehensively demonstrate
that the exploitation of task-parallelism enabled by SMPSs is the source of
superior performance and scalability over conventional approaches. Finally,
a few remarks close the paper in Section 7.

2. Related Work

Cilk [11] is likely among the pioneer projects to target the exploitation
of general-purpose task-level parallelism with dependencies on multiproces-
sor systems. From then on, several other projects have adopted a similar
approach for task-parallel general-purpose applications (e.g., OmpSs and its
instances CellSs [12], SMPSs [6] and GPUSs [13]; StarPU [14], Harmony [15],
XKaapi [16], etc.) as well as for the specific domain of linear algebra (Super-
Matrix+1ibflame [17] and PLASMA/MAGMA [18, 19]).

The afore-mentioned projects have clearly demonstrated the advantages
of decomposing dense linear algebra operations into a collection of fine-
granularity tasks, express the dependencies among them as a directed acyclic
graph (DAG), and schedule the execution of the tasks using this information.
The application of the same approach to the iterative and direct solution of
sparse linear systems on multi-core processors has also demonstrated its ben-
efits in [20] and [21], respectively.

ScaLAPACK and PLAPACK contain message-passing routines for dense
linear algebra operations, but mimic their “sequential” counterparts (LA-
PACK [22] and libflame [23] respectively), in that they do not exploit all
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the concurrency intrinsic to the operation/DAG. Elemental [9] is a modern
replacement for PLAPACK, but with the same restriction. The number of
approaches that aim at exploiting a more flexible scheduling on message-
passing environments is more limited. In [8] the authors introduce a depth-
one look-ahead message-passing Cholesky which enables effective overlapping
of communication/computation. Although static and dynamic scheduling
variants of the algorithm are designed (with the latter aiming at removing
the so-called spurious synchronizations from the former), the opportunities
to leverage the operation concurrency are limited in both cases by a fixed
look-ahead depth hard-coded in the algorithm/code itself. DAGuE [24] goes
one step further and adopts dynamic scheduling to enhance the extraction
of parallelism. In particular, this tool is a DAG-based scheduling framework
where the nodes represent sequential tasks and the arcs correspond to data
movements. Furthermore, in order to build this graph, DAGuE includes a
specific language to express how the flow of data circulates between kernels.
Finally, a portable but not scalable approach is investigated in [25] using Su-
perMatrix and libflame to execute dense linear algebra algorithms directly
on (small scale) message-passing environments.

Our effort with MPI/SMPSs departs from previous approaches in that we
commence with an existing legacy code, in our case the implementation of the
Cholesky factorization in ScaLAPACK, and study what are the changes that
need to be introduced into this code so as to obtain an efficient task-parallel
dynamic out-of-order execution. The benefits of our approach lie thus in the
reuse of existing, legacy code that it enables. A related exercise was per-
formed in [26] using the implementation of the LU factorization with partial
pivoting in the HPL (LINPACK) benchmark. However, the implementation
of the Cholesky factorization in ScaLAPACK is a much more challenging
case, mainly due to the symmetric nature of the operation.

3. A Brief Review of SMPSs

StarSs is an active project that targets multiple different hardware plat-
forms (Grids; multicore architectures and shared-memory multiprocessors;
platforms with multiple hardware accelerators: GPUs, Cell B.E., Clearspeed
boards; heterogeneous systems, etc.) with distinct implementations of the
framework. SMPSs is an instance of the StarSs framework tailored for shared-
memory multiprocessors. It combines a language with a much reduced num-
ber of OpenMP-like compiler directives, a source-to-source compiler, and
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a runtime system to leverage task-level parallelism in sequential codes. In
SMPSs, the programmer employs compiler directives to annotate certain rou-
tines (functions) appearing in the code as tasks, indicating the directionality
of their operands (input, output or input/output) by means of clauses. The
runtime exploits task-level parallelism by decomposing the code (transformed
by the source-to-source compiler) into a number tasks during the execution,
dynamically identifying dependencies among these, and issuing ready tasks
(i.e., those with all dependencies satisfied) out-of-order for execution in the
cores of the system.

Listing 1 illustrates the parallelization of a sequential blocked routine,
dblock_chol, that computes the Cholesky factorization A = UTU of an n x n
matrix A with entries stored in column-major order, overwriting the upper
triangular part of A with the entries of the triangular factor U. For simplicity,
we assume that the matrix size is an integer multiple of the block size bs.
Routines dpotrf (Cholesky factorization), dtrsm (triangular system solve),
dgemm (matrix-matrix product), dsyrk (symmetric rank-bs update) simply
correspond to well-known computational kernels from LAPACK (the former)
and BLAS (the latter three), with the functionality specified as comments
at the beginning of the corresponding routine. In principle, it could appear
surprising that, in order to compute the Cholesky factorization of a matrix
A, we recursively call a kernel (dpotrf) that performs the same computation,
but on a smaller chunk of data. However, this is a usual technique in blocked
algorithms which aim at leveraging the multi-layered organization of the
memory subsystem by amortizing the cost of accessing data in the main
memory with a large number of flops.

#define Ad(i,j) A[(j-1)*n+(i-1)]

void dblock_chol( int n, int bs, double A[] ){
int i, j, k;

for (k=1; k<=n; k+=bs)
// Perform unblocked Cholesky factorization on k-th block
dtile_chol( bs, &Ad(k,k), n );

if (k+bs<=n){
// Form the row panel of U using the triangular solver
for (j=k+bs; j<=n; j+=bs)
dtile_trsm( bs, &Ad(k,k), &Ad(k,j), n );

// Update the trailing submatriz, A := A - U'T * U
for (j=k+bs; j<=n; j+=bs){
for (i=1; i<=j; i+=Dbs)
dtile_gemm( bs, &Ad(k,i), &Ad(k,j), &Ad(i,j), n );
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dtile_syrk( bs, &Ad(k,j), &Ad(j,j), n );
}
}
}

#pragma css task input( bs, 1ldm ) inout( A[1] )

void dtile_chol( int bs, double A[], int 1ldm )

{
// Obtain the Cholesky factorization A = U"T U, where A is bs © bs
int info;

dpotrf ( "Upper", &bs, A, &ldm, &info );
}

#pragma css task input( bs, A[1], 1ldm ) inout( B[1] )

void dtile_trsm( int bs, double A[], double B[], int ldm )

{
// B := A~-1 x B, where A and B are both bs z bs, and A is considered
// to be upper triangular
double done = 1.0;

dtrsm( "Left", "Upper", "Transpose", "Non-unit",
&bs, &bs, &done, A, &ldm,
B, &ldm );
}

#pragma css task input( bs, A[1], B[1], 1ldm ) inout( C[1] )
void dtile_gemm( int bs, double A[], double B[], double C[], int 1ldm )
{

// C := C - AT * B, where A, B and C are all bs z bs

double dmone = -1.0, done = 1.0;

dgemm ( "Transpose", "Noytranspose",
&bs, &bs, &bs, &dmone, A, &ldm,
B, &ldm,
&done, C, &ldm );
}

#pragma css task input( bs, A[1], 1ldm ) inout( C[1] )
void dtile_syrk( int bs, double A[], double C[], int ldm )
{

// C := C - AT * A, where A and C are both bs z bs
double dmone = -1.0, done = 1.0;
dsyrk( "Upper", "Transpose',

&bs, &bs, &dmone, A, &ldm,
&done, C, &ldm );
}

Listing 1: Parallelization of blocked right-looking Cholesky factorization using SMPSs.

In order to parallelize this code with SMPSs, the programmer employs
the #pragma css task directive to mark which functions will become tasks
during the execution of the code. The associated clauses input, (output,)




and inout specify the directionality of the function arguments, which help the
runtime to capture all data dependencies among tasks. For example, in the
invocations to dtile_chol, the block size bs is an input (not modified inside
the routine), while A is both an input and an output (this block has to be
factorized and the results overwrite the corresponding entries). In the blocked
code for the Cholesky factorization, we exploit that the blocks involved in the
kernel calls do not overlap. Thus, we use the top-left (i.e., first) entry of each
bs X bs block as a “sentinel” (representant) for all its elements, relying on the
SMPSs runtime to keep track of dependencies among tasks based solely on
this first entry. It is precisely this non-overlapped property that enables the
application of the technique of sentinels [27]. Although there exists a more
formal solution which explicitly recognizes the real dimensions of a block, see
in particular [28], we select the one described above for its simplicity.

Apart from directionality clauses, SMPSs also offers the highpriority
clause. This clause gives a hint to the runtime system about the “urgency”
of scheduling a given task for execution (as soon as its dependencies are
satisfied). Tasks marked with the highpriority clause are scheduled for
execution earlier than tasks without this clause. This mechanism allows a
programmer with global understanding of the critical computations to influ-
ence the actual schedule.

Figure 1 shows a DAG that captures the tasks (nodes) and data depen-
dencies (arcs) intrinsic to the execution of routine dblock _chol, when applied
to a matrix composed of 4 x 4 blocks (of dimension bs x bs each). There
are 4 tasks of type C (dtile_chol), 6 of types T and S each (dtile_trsm
and dtile_syrk respectively), and 4 of type G (dtile_gemm). (For matri-
ces with a large number of blocks, though, tasks of type G dominate, their
abundance being of O(b%), with the number of blocks b = n/bs; tasks of
types Tand S appear O(b?); and the number of tasks of type C is O(b).)
The subindices associated to a task (e.g., Cq1) indicate the block of matrix
A the task overwrites, and the colors distinguish between tasks belonging to
different iterations of loop k in routine dblock_chol. It is this set of de-
pendencies that expresses the true concurrency in the computation of the
Cholesky factorization. The SMPSs runtime derives this information from
the annotated version of the code to maximize the concurrent execution of
the routine, dynamically balancing the load, while fulfilling all dependencies
intrinsic to the operation.

One appealing instance of the StarSs programming model is MPI/SMPSs,
which provides specific support for MPI applications [26]. In this particular
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Figure 1: DAG with the tasks and data dependencies of routine dblock_chol applied to
a 4 x 4 matrix, with blocks of dimension bs X bs each.

version there exists the possibility of embedding calls to MPI primitives as
SMPSs tasks, so that communication can be overlapped with computation
transparently to the programmer. To indicate that a particular task com-
prises a communication (e.g., a task that invokes a BLACS/MPI primitive),
in MPI/SMPSs the developer employs the target device clause, with the
comm_thread option, (i.e., #pragma css task target device (comm_thread)).
A separate thread devoted to communication is created dynamically by the
runtime and those dependencies required to enforce the correct communica-
tion order are automatically added. Depending on the target platform, the
SMPSs runtime may also configure the priority of the communication thread
dynamically, in order to enforce communication to occur as soon as possible.

4. The Cholesky Factorization in ScaLAPACK
4.1. Review of ScaLAPACK routine pdpotrf

Routine pdpotrf encodes a message-passing algorithm to compute the
upper (or lower) triangular Cholesky factor of an s.p.d. matrix. The entries
of the matrix are distributed following a block-cyclic 2D layout among a p x q
(logical) grid of processes. Thus, A is partitioned into square blocks, of size
ds (the data distribution blocking factor), which are then mapped to the
2D process grid in a block-cyclic fashion. The distribution layout determines
the communication pattern of the message-passing algorithm, which transfers
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data via calls to BLACS (usually built on top of MPI). Standard kernels from
LAPACK and BLAS are employed in the routine for local vector and matrix
operations.

Listing 2 contains an excerpt of code that mimics the computations per-
formed in the main loop of the ScaLAPACK routine for the Cholesky factor-
ization. descA is a descriptor containing information on the data distribution,
the grid shape, etc. (See [2] for details.) For simplicity, we consider hereafter
that the first element of A is stored in the top-left process of a square q x q
grid.

VT

for (k=1; k<=n; k+=ds){
// Perform unblocked Cholesky factorization on k-th block
pdpotf2( "Upper", &ds, A, &k, &k, &descA, &info );
V2

if (k+ds<=n){
m = n-k-ds+1;
j = k+ds;

// Form the row panel of U using the triangular solver
pdtrsm( "Left", "Upper", "Transpose", "Non-unit",
&ds, &m, &done, A, &k, &k, &descA,
A, &k, &j, &descA );

// Update the trailing submatriz, A := A - U'T * U
pdsyrk( "Upper", "Transpose",
&m, &m, &dmone, A, &k, &j, &descA,
&done, A, &j, &j, &descA );

Listing 2: Simplified version of ScaLAPACK routine pdpotrf.

Routines pdpotf2, pdtrsm, and pdsyrk encode message-passing kernels
to compute, respectively, the Cholesky factorization, triangular system solve,
and symmetric rank—ds update of a distributed (sub)matrix. Compared
with the code in Listing 1, the invocation of pdtrsm in the ScaLAPACK
code fragment performs all the computations in the loop j in lines 12-13
(several invocations of dtile trsm); and the invocation of pdsyrk those of
the nested loops j and 1 in lines 16-20 (multiple invocations of dtile gemm
and dtile_syrk).

Let us now consider each one of these message-passing kernels and the
implications from the viewpoint of the communications for a given iteration,
namely k. Define r = (k — 1)/ds + 1 and assume, for simplicity, that the
problem size is an integer multiple of the distribution block size; i.e., n = d-ds
with d an integer; consider also the following partition of the matrix A into

10
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Figure 2: Communication pattern during an iteration of the Cholesky factorization in
ScaLAPACK for a 2 x 3 process grid. (a) The Cholesky factor of the leading diagonal
block, computed in dpotrf, is broadcast rowwise. (b) When the triangular systems are
solved, the computed panel is broadcast columnwise. In (c¢) and (d), local portions of a
new block are redistributed, using point-to-point operations, within the second column
of processes, where they are transposed. (e) Finally, processes in the second column
broadcast rowwise the transposed panel, in preparation for the trailing submatrix update.

a grid of d x d blocks,

[ A1 Ay Ajg ]
A — A — : 2
(43 Ay, Arr Arg |, @)

i Ad,l o Ad,r o Ad,d ]

with each block A;; of dimension ds x ds.

Routine pdpotf2. This call obtains the Cholesky factorization of block Ar r.
Given that all blocks are ds x ds, these data are local to a single process of
the grid and, therefore, the computation can be performed in that process
via a single invocation of kernel dpotrf.

Routine pdtrsm. This call solves a triangular system with the upper trian-
gular factor computed by dpotrf (i.e., the Cholesky factor of Arr) as the
coefficient matrix, and for the right-hand side blocks Ar ri1,Ar ri2, .., Ar g,
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which are distributed among a row of processes of the grid. Thus, to per-
form this operation, the triangular factor is first broadcast from the pro-
cess that contains it to the remaining processes in the same row of the
grid. All processes can then operate concurrently, obtaining their local part
of the right-hand side via a single call to dtrsm. For example, given the
block cyclic distribution of data, the process that owns Ar r;; will solve
a triangular system with the right-hand side matrix composed of blocks

[Ar,rﬂ, Arrig+1, Arriogs - - ]

Routine pdsyrk. Internally, pdsyrk encodes two distinct algorithmic vari-
ants, pdsyrkAC and pdsyrkA. Here we will focus on this second routine
as, except for the last iterations, this is the common case invoked from the
ScaLAPACK routine for the Cholesky factorization.

Routine pdsyrkA performs the symmetric update of the trailing subma-
trix

¢ = c-B"B=
Aryir+1 Aryir+e - Aprgig [ Aryire1 Aryire2 oo Argag
Arior+1 Aryory2 oo Argog Arioryi Arqor+2 oo Ariogd
Adry1 PAdrye oo Ada L ‘%d,r+1 Adri2 -+ Aag
Arri
AT
r.r42
- . [Ar,r+1 Arrio ... Ar,d]
T
L Ar,d

(3)
as follows. The processes that own part of the r-th block row of the matrix,
(renamed as B,) first broadcast their local portions column-wise (i.e., inside
the same column of processes of the grid). Then, B is transposed onto a
column of processes, yielding B”; and these processes next broadcast row-
wise their local parts of it. Finally, all the processes in the grid update their
local portions of C with respect to BT and B as in (3).

For general grids (p # q), the transposition of B from a row of processes
onto a column of processes essentially requires several point-to-point com-
munications. The blocks of B to be exchanged are packed by the source
process into temporary buffers, and unpacked/transposed into an auxiliary
workspace in the destination. The communication patterns described above
for these three stages of the iteration are illustrated in Figure 2. For details,
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Figure 3: Aggregation of level 3 BLAS calls in pdsyrkA from the perspective of a single
process in the grid. Blocks labelled with an “R” are only read, while blocks annotated
with an “X” are both read and written. The update of the green region is done via a call
to dgemm, while blue regions are updated via invocations to dsyrk.

see [29].

The parallel update of C in (3) decouples the algorithmic blocking factor,
as, from the data distribution blocking factor, ds, in order to increase the
granularity of the invocations to the level-3 BLAS that are necessary to per-
form the local computations. The diagonal blocks induced by this algorithmic
partitioning are updated via several fine-grained calls to the level-3 BLAS,
possibly spanning more than one process. The update of the off-diagonal
blocks, on the other hand, may span more than one process but involves a
single coarse-grain invocation to the level 3 BLAS per process. This is cap-
tured in Figure 3, which shows the operations performed by a single process
to update the local portions of C with the received parts of B” and B. Local
parts of C and B are referenced in the figure as C; and B; respectively.

4.2. Taskification of the computational layer

We next describe how the computations ocurring during the message-
passing Cholesky factorization can be decomposed into a collection of tasks
(and dependencies) of finer granularity, in a process similar to those proposed
in [17, 18] to obtain algorithms-by-blocks or tile-based algorithms for multicore
platforms. We point out the differences though, in that we commence with
a message-passing routine and, as a result, the DAG that is obtained locally
(at the node level) not only includes communication tasks, but is also quite

13



different from that obtained from the “sequential” (i.e., non message-passing)
Cholesky factorization.

4.2.1. Capturing dependencies

Our parallelization of the Cholesky factorization routine using the MPI/SMPSs
programming model is conditioned by two restrictions® of this programming
model. First, dependencies among tasks are identified by comparing the base-
address of the corresponding operands, so that memory regions correspond-
ing to different operands cannot overlap. Second, data for matrix/vector
operands accessed by tasks must be stored contiguously in memory. This
latter constraint has important implications in our case because Scal.A-
PACK, BLACS, MPI and BLAS all employ column-major storage for the
data. Therefore, operands involved by the computational and communica-
tion kernels of these libraries used from within pdpotrf are actually spread
in discontiguous regions of the memory. Among the different solutions that
were considered, we decided to adopt the usage of sentinels [27], as it is ap-
plicable to most dense linear algebra codes and avoids significant recoding;
see [7] and our discussion below.

Notice that the use of sentinels implies that we must enforce that (re-
gions in memory corresponding to) distinct operands accessed by tasks are
separated, with no overlapping among them, though they may still lie in
discontiguous regions. In the next two subsections, we will describe how

we adapted the codes to enforce this in the message-passing kernels from
ScaLAPACK.

4.2.2. Local computations

The parallelization of the computations performed within pdpotrf and
pdtrsm using SMPSs is simple. For the first one, we simply define it as a task,
and use its first entry as a representant for the rest of the block. In principle,
we could have also done the same with pdtrsm, with one single task per
process to perform the local triangular system solve. However, to increase
the degree of concurrency and attain better load balancing inside (multicore)
nodes, we decided to subdivide the local triangular solve into multiple ones,
one for each ds x ds block of Ar rii1,Arrio,... Arg- Consider, e.g., the
computations local to the process that owns Ar r4. Instead of a single call

'While other instances of StarSs do not suffer from these limitations, they cannot be
used in the parallelization of pdsyrkA as they provide no support for MPI applications [28].
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to the kernel dtrsm to compute the triangular system with the right-hand
side [Ar,r+1a Arriqg+1; Arriagets - } , this process will invoke dtrsm multiple
times, one for each of its local ds x ds blocks. Each one of these calls then
becomes a task and the top-left entry of the corresponding block acts as a
representant for it.

From the implementation point of view, in order to semi-automatically
attain the decomposition of pdtrsm into tasks of finer granularity, the original
call to dtrsm was replaced by a wrapper which decomposes the code into
tasks and invokes the actual level 3 BLAS to perform the corresponding
computations (solves) on the appropriate blocks. Proceeding in this manner,
we can taskify the code without rewriting the original routines, by simply
linking in the intermediate wrapper for the dtrsm kernel.

The update of the trailing submatrix from within routine pdsyrkaA is more
challenging as this routine decouples the algorithmic and distribution block
sizes with the purpose of casting all local computations in terms of a reduced
number of coarse-grain level 3 BLAS; see Figure 3. This was natural when
ScaLAPACK was designed, as in the mid 90s most clusters were equipped
with single-processor nodes. It also made sense when these systems incor-
porated a very reduced number of processors per node that could be more
efficiently exploited using MT-BLAS. Nevertheless, this approach unneces-
sarily constrains concurrency in current multicore nodes.

In order to parallelize the local computations inside pdsyrkA, one could
simply try to encapsulate the calls to the level 3 BLAS from within pdsyrkA
as SMPSs tasks. However, as we describe next, this naive approach unnec-
essarily limits the concurrency of the update and, besides, has the potential
of yielding an unbalanced load distribution.

Let us deal with the first problem which, unless corrected, may result in
the SMPSs runtime not taking advantage of all the concurrency intrinsic to
the symmetric update. Inside an MPI process, routine pdsyrkA attempts
to maximize the size of the operands by grouping together several local in-
vocations to BLAS kernels. Thus, local updates to the off-diagonal blocks
are aggregated into one large dgemm, while diagonal blocks are updated via
repeated invocations to the dsyrk kernel; see Figure 4 (a). In principle, the
update of each one of the blocks in C; marked with an “X” corresponds to
an SMPSs task. The problem here is that the algorithmic partitioning used
for the parallel update of C does not need to be “aligned” with the data dis-
tribution partitioning. Thus, employing the first (top-left) entry of the block
of C7 highlighted with a red circle as a sentinel for the two dsyrk operations
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Figure 4: Example of the update of local blocks performed in a single process during
the execution of pdsyrkA. (a) Update with unaligned partitionings shows an overlapped
region (highlighted in red) which leads to a false dependence detection when using SMPSs.
(b) Aforementioned false dependence detection when using SMPSs is easily solved using
aligned partitionings. (c) Taskification of the updates yields a more balanced distribution.

that update part of its data leads to erroneously identifying a dependency
between these two tasks. In other words, the base-address match performed
by the runtime detects a false data dependency between these two opera-
tions, serializes their execution and, in consequence, does not leverage all the
parallelism intrinsic to the update. To deal with this problem, we propose
to align both partitionings by readjusting the algorithmic block size as to
the closest integer multiple of the data distribution block size. Figure 4 (b)
illustrates how the realignment solves the problem of false dependencies. In
practice, the optimal distribution block size is relatively small (in our exper-
iments, in the range of 128 to 384) so that we do not expect that this minor
restriction on the algorithmic block size poses a major obstacle to attain high
performance.

Consider now the second problem, related with the potential load unbal-
ancing, and which already appeared in the triangular system solve. Here
we apply the same solution, decomposing the coarse-grain calls of the local
update into multiple finer-grain tasks. To do this, we develop wrappers for
the dgemm and dsyrk kernels so as to avoid a major rewrite of the routine.

The result from these two techniques is illustrated in Figure 4 (¢): no
overlapping occurs now, which allows the runtime to properly identify depen-
dencies among the tasks which operate on these blocks; and the granularity
of tasks is much smaller and homogeneous, enabling a balanced workload
distribution. (The computational cost of a task is proportional to the size of
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its operands, of O(ds?) for all types of tasks.)

Although it could be desirable that the granularity of the taskifying de-
composition was determined independently of the data distribution blocking
factor, the packing/unpacking operations for the transposition of row panels
are blocked conformally to the data distribution partitioning. Therefore, in
order to correctly track data dependencies from within the MPI/SMPSs run-
time, the taskifying grain must be aligned with the data distribution blocking
factor.

Let us finally remark that the tasks resulting from the taskification of
pdpotrf and pdtrsm were marked with the highpriority clause. The same
applies for those local symmetric rank-k updates and matrix-matrix multi-
plications within pdsyrkA required for the computation of the next panel
(i.e., those that update the first block row of the trailing submatrix). With
this, we pursue an adaptive, dynamic look-ahead effect that accelerates the
execution of the critical path of the parallel algorithm. The performance
benefit of this strategy will be analyzed in detail in Section 6.

4.3. Taskification of the communication layer

Two types of BLACS primitives are invoked from the pdpotrf routine:
point-to-point messages (exchanged to transpose B) and broadcasts (to prop-
agate copies of certain blocks within the same row/column of processors);
see subsection 4.1. The taskification strategy discussed next for the point-
to-point BLACS send/receive calls was also used for the BLACS broadcast
primitives.

To identify data dependencies among communication and computation
tasks in MPI/SMPSs, the former need to be blocked conformally with the
data distribution partitioning. Although this can be achieved by decompos-
ing a BLACS send/receive invocation into a number of sends/receives (as
was done for the computational kernels), this option was abandoned i) to
preserve the communication pattern of the initial distributed algorithm in
ScaLAPACK; i) and, for programmability and simplicity, to avoid recoding
(taskifying) the communication primitives in BLACS.

The communication-preserving taskification scheme is illustrated in Fig-
ure 5. A receive call is annotated as a real receive task plus several “artificial”
tasks, one per block of the reception buffer. Both classes of tasks are mapped
to the communication thread (see Section 3). The receive task actually re-
ceives the message, while the artificial tasks do nothing, they only receive the
address of the corresponding block as an argument. (The overhead due to

17



the introduction of these artificial tasks is negligible.) By specifying this pa-
rameter as an output of the corresponding task, the correct data dependency
is created between computation and communication tasks. When the actual
data-flow execution takes place, the communication thread first issues the
receive task. Once the execution of this task is completed (i.e., the point-to-
point communication is done), the data dependencies of the artificial tasks
are satisfied, so that they are immediately executed by the communication
thread. A similar strategy was developed for the send calls, but in this case
the directionality of the data dependency was reversed using the input clause
for the artificial tasks.

MPI_Recv
[0..m]

Sentinel Sentinel Sentinel
[0..ds] [ds..2ds] [2ds..m]

Computational Task
ds..2ds

Sentinel
[ds..2ds]

MPI_Send
[0..m]

Computational Task
0..ds|

Sentinel
[0..ds]

Computational Task
[2ds..m]

Sentinel
[2ds..m]

Figure 5: Example of taskification of communication kernels. Each node represents an
SMPSs task. Assume that communication kernels operate with a buffer of m elements.
Computational tasks operate with m/ds elements (m/ds = 3 in current example). To
track of the dependencies, “artificial” tasks are created for each portion of the buffer, thus
maintaining only one communication task.

Recall from subsection 4.1 that the blocks of B to be exchanged in a
point-to-point communication are packed by the source process into tempo-
rary buffers; and unpacked/transposed into an auxiliary workspace in the
destination. The subroutines responsible for this data pack/unpack were
also taskified. In contrast to tasks performing the actual data exchange,
these tasks are not mapped to the communication thread. They are however
marked with the highpriority clause with the purpose of accelerating the
critical path of the algorithm.
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5. Experimental Results

The experiments in this section were obtained using IEEE double-precision
(DP) arithmetic on JUROPA, a large-scale computing infrastructure from
the Jiillich Supercomputing Centre (JSC). JUROPA comprises 2,208 com-
pute nodes arranged in a QDR Infiniband interconnected cluster architecture.
Each node is equipped with two quad-core INTEL Xeon E5570 processors run-
ning at 2.93 GHz, and 24 GBytes of DDR3 memory. The codes were compiled
using INTEL Fortran and C/C++ compilers (version 11.1) with recommended
optimization flags and we used ParaStation MPI (version 5.0.2-1) tools and
libraries for native message-passing (based on MPICH2). The codes were
linked against the BLAS and LAPACK available on the INTEL MKL library
(version 10.2, build 12). We employed the MPI/SMPSs compiler wrappers
and runtime provided by the StarSs source code distribution (version 3.6).

Five competing implementations are evaluated in the experiments:

e Reference. This corresponds to a pure MPI implementation that em-
ploys the original pdpotrf routine from ScaLAPACK (in MKL) and a
p X q grid of processes with one MPI process per core. In the experi-
ments with 128 nodes/1,024 cores, the grid was set to p x q = 16 x 64;
for 256 nodes/2,048 cores, p X q = 32 x 64; for 512 nodes/4,096 cores,
p X q = 32 x 128; and for 1,024 nodes/8,192 cores, p X q = 64 x 128.

e MT-BLAS. This is a hybrid MPI/MT-BLAS parallel approach, with one
MPI process per node and parallelism extracted at the node level from
ScaLAPACK (in MKL) with an implementation of MT-BLAS. The
grids for the experiments with 128 nodes/1,024 cores, was set to pxq =
8 x 16; for 256 nodes/2,048 cores, p X q = 8 x 32; for 512 nodes/4,096
cores, p X q = 16 x 32; and for 1,024 nodes/8,192 cores, p x q = 16 x 64.

e SMPSs. This is the version that employs SMPSs to extract parallelism at
the node level from the ScaLAPACK and BLACS source codes? (version
1.8.0 and 1.1, resp.) configured with one MPI process per node, and
the same grids as in the MT-BLAS implementation. An SMPSs thread
was launched per core, plus an additional thread per node to handle
MPI communications.

2 Available online at http://www.netlib.org/.
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e DSBPCholesky. This corresponds to the pure MPI implementation of
the Cholesky factorization presented in [8], with a pxq grid of processes
and one MPI process per core. Its main features are: (1) tiled algo-
rithm; (2) distributed square block packet format for half memory re-
quirements (w.r.t. full storage) and less data movement in both BLAS
and communication subroutines; (3) look-ahead depth one combined
with an static schedule of the operations which allows for an effective
overlapping of communication and computation via non-blocking MPI
subroutines.® In the experiments with 128 nodes/1,024 cores and 512
nodes/4,096 cores, the grid was set to pxq = 16x16 and pxq = 64 x64,
respectively, in agreement with the set-up in [8] that uses square grids
of processors whenever possible. For the experiments with the rest of
nodes/cores, the same grids as in the Reference implementation were
used. We used DSBPCholesky version 2008-10-28%.

e Elemental. This corresponds to the pure MPI implementation of the
Cholesky factorization available in Elemental [9], with a p x q grid
of processes and one MPI process per core. Elemental is a frame-
work for distributed-memory dense linear algebra that is designed to
be a modern extension of the communication insights of PLAPACK (3]
for element-wise distribution of matrices (versus the block distribu-
tion schemes of the rest of codes considered in this study). In the
experiments, we let Elemental internally decide the grid shape for each
number of cores explored. We used version 0.81 of this package®.

A best effort was done to identify, where applicable, the optimal grid
configuration for each implementation —leading to the values indicated above—
as well as the distribution and algorithmic block sizes. For example, for
DSBPCholesky, only the grid configuration and distribution block size had
to be tuned (as the latter is equivalent to the algorithmic block size); while

3We note that in [8] the authors also present a variant of the code that dynamically
schedules tasks within each MPI process with the purpose of alleviating the effect of the
so-called spurious synchronizations. This variant is not considered in this work mainly
because only small improvements are reported in [8] with respect to the static scheduling
version. Furthermore, the DSBPCholesky codes publicly available do not include the
dynamic variant.

4 Available online at http://www8.cs.umu.se/~larsk/.

5 Available online at http://libelemental.org/.

20



for Elemental the optimization comprised only the algorithmic block size,
as this package uses distribution block size equal to one (i.e., element-wise
data distribution), and we let it internally select the grid configuration.

We initially performed a series of experiments to test the selection of an
optimal parameter configuration for the different codes. On one hand, the
two microbenchmarks in [8] were successfully tested, implying that the com-
bination of message-passing software and underlying hardware in JUROPA
is practically able to achieve an effective overlapping of communication and
computation. This is required by DSBPCholesky for high performance. On
the other hand, we performed a comparison of the different implementa-
tions at hand on 256 cores for scaled matrix size ranging from n=2,000 to
90,000. For the latter problem size, all implementations were very close
to (and some of them even reached) its asymptotic flops/sec. regime (i.e.,
computation time largely dominated by GEMM operations). For “small-size”
problems (n < 14,000), SMPSs, DSBPCholesky and Elemental achieve an
average performance improvement of 105, 147, and 117%, respectively, over
Reference. For “medium-size” problems (14,000 < n < 60,000), the perfor-
mance improvements were 50, 37, and 19%; while for the largest test cases,
the improvements were 15, 15, and 7%. These results are in agreement (if
not superior) to those reported in [8, 9], confirming an appropriate set-up of
the codes subject of study.

Figure 6 reports the performance attained by the five parallel distributed-
memory implementations on JUROPA. In the left-hand side plot, we eval-
uate the weak scalability of the solutions, testing their performance for a
varied number of cores while maintaining the memory usage per node of
the ScaLAPACK-based codes constant to approximately 2 GBytes (i.e., 256
MBytes per core). This is the maximum memory a process can address since
the implementations of ScaLAPACK/PBLAS/BLACS only use 32-bit inte-
gers. Therefore, a problem of that size results in the most computationally-
dominated scenario that can be evaluated under this constraint. Note that
less computationally-dominated experiments (i.e., smaller loads per core) can
only increase the benefit of SMPSs over pure ScaLAPACK codes. Problem
dimensions are n=178,884; 252,980; 357,768; and n=505,964 for 1,024, 2,048,
4,096, and 8,192 cores, respectively. In this plot, we report performance in
terms of TFLOPS (1 TFLOPS = 10 flops/sec.); also, the y-axis for this
plot ranges from 0 to the peak (theoretical) performance that can be at-
tained using 8,192 cores of JUROPA, which corresponds to 2.93 GHz x 4
DP flops/cycle x 8,192 cores =~ 96 TFLOPS. The curves labeled as “GEMM”
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provide a practical achievable peak, defined as the sequential matrix-matrix
product kernel from INTEL MKL scaled by the number of cores. The re-
sults demonstrate that the SMPSs implementation clearly outperforms both
the Reference and MT-BLAS versions of the codes, as well as Elemental.
Compared to DSBPCholesky, our solution achieves mildly higher performance
for 4,096 or less cores, but much higher for 8,192 cores. For instance, for
the largest number of cores, SMPSs achieves 70.76 TFLOPS, which repre-
sents about 76% of the peak performance; while Reference and MT-BLAS
attain around 49-51 TFLOPS, i.e., 51-53% of the peak performance; and
Elemental and DSBPCholesky, around 55-57 TFLOPS, respectively.

Weak scalability analysis of several distributed-memory Cholesky codes on JuRoPa Strong scalability analysis of several distributed-memory Cholesky codes on JuRoPa
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Figure 6: Performance of several distributed-memory Cholesky codes on JUROPA.

The right-hand side plot of Figure 6 analyzes the strong scalability of the
five competing codes. For this purpose, we evaluate their efficiency (in terms
of attained percentage of peak TFLOPS rate) for a problem of fixed dimen-
sion n=178,884 and a range of cores from 1,024 to 8,192. The results show
a rapid decrease in efficiency for the Reference, MT-BLAS, DSBPCholesky
and Elemental implementations as the number of cores grows, much faster
than that experienced under the same conditions by SMPSs, thus revealing
the stronger scalability of our solution.

6. Sources of performance improvements

The purpose of this section is to demonstrate, with the help of Paraver [10]
performance analyzer, that the exploitation of task-parallelism enabled by
the dependency-aware out-of-order execution of tasks intrinsic to SMPSs is
the source of the superior performance and scalability observed in Section 5.
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In order to achieve this goal, the Reference and SMPSs implementations are
comprehensively compared for a simple test case where a 2 x 8 process grid
is employed to factorize a matrix of fixed dimension n=10,560 on a small
Infiniband-interconnected cluster composed of 16 nodes with two Intel Xeon
HexaCore processors E5645, running at 2.40 GHz, and 24 GBytes per node.
The Reference implementation is mapped to the target computer with only
one MPI process per node. The same applies to the SMPSs implementation,
that spawns only two threads per MPI process/node (one worker thread and
an additional thread devoted to communication tasks). A best effort was
done to identify the optimal distribution and algorithmic block sizes. While
the environment and set-up of the codes is different from the one in our raw
scalability study (see Section 5), it is representative enough and greatly sim-
plifies the presentation, as exactly the same computations are performed by
both codes (although scheduled in a fairly different, more intelligent way, in
the SMPSs implementation).

Given the block cyclic nature of the message-passing Cholesky factor-
ization, for simplicity we found convenient to focus on a given cycle of the
algorithm, in particular that comprising blocked iterations 3-10°. Figure 7
depicts several computations which are performed during this cycle, the cor-
responding MPI processes these computations are mapped to, and the iter-
ation in which they take place. This set includes crucial computations and
related events such as the factorization of a leading diagonal block (i.e., the
start of a new iteration), the local transposition of blocks (i.e., the last com-
putation the algorithm performs right before communication ends at a given
iteration”), as well as symmetric rank-k updates and matrix-matrix multi-
plications required for the computation of the next panel. All computations
in Figure 7 are marked as highpriority in the SMPSs implementation with
the purpose of accelerating the critical path of the algorithm.

6Note that we refer to “blocked” iterations. In the main iteration loop for the Cholesky
factorization the loop counter k takes on the values 1, ds+1, 2-ds+1,... (see Listing 1),
and by blocked iteration 7 we refer to that for which k=(: —1)-ds+1. A cycle comprises a
minimal set of consecutive iterations ,i+1,...,i4+]—1 such that no process performs more
than one factorization of a leading diagonal block, while the same process is responsible
for the factorization of a diagonal block in iterations ¢ and 7 + I, where [, the length of
the cycle, is given by the least common multiple (LCM) between the number of rows and
columns in the process grid. For the particular case of a 2 x 8 process grid, LCM(2,8) = 8.

"Recall that communication ends at a given iteration when the processes in a column
broadcast rowwise the transposed panel; see Figure 2 (e).
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Figure 7: Several computations performed during a cycle comprising iterations 3-10 of the
message-passing Cholesky factorization applied to a matrix cyclically distributed by blocks
over a 2 x 8 process grid. The number within each block identifies the process identifier
the corresponding computation is mapped to. The numbers at the bottom and right-hand
side of the two boxes determine the iteration where the corresponding computation takes
place. Correspondence between kernels and colors is as follows: Cholesky factorization of
leading diagonal blocks in black, solution of triangular systems with several right hand
sides in green, local transposition of blocks in light blue, and symmetric rank-ds updates
and matrix-matrix multiplications required for the computation of the next panel in yellow
and white, respectively. These computations are marked as highpriority in the SMPSs
implementation.

Tracing information was extracted from the Reference and SMPSs imple-
mentations using an ad-hoc tracing scheme based on Extrae and Paraver [10]
tools. Extrae is an instrumentation and trace generation software package,
while Paraver is a parallel performance analyzer and visualization tool. The
tracing scheme was implemented such that computation and communication
subroutines are replaced by wrapper subroutines that trigger Extrae events
on entry and exit. In consequence, each time the codes enter and exit a com-
putation or communication subroutine, the trace records the corresponding
events with a timestamp.

Figures 8 (a) and (b) show captures of the Paraver time-line view cor-
responding to traces (restricted to a cycle comprising iterations 3-10) of the
Reference and SMPSs implementations, respectively. Paraver time-line view
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shows the computations or communications performed by each thread of the
parallel program along a horizontal time-line axis. The label “THREAD 1.X.Y”
to the left of each horizontal bar identifies a particular thread involved in the
parallel computation, where X and Y are the process and thread (within pro-
cess) identifiers, respectively. In the Reference implementation, only one
thread is spawned per process, so that Y always equals 1. In the SMPSs im-
plementation, two threads are spawned per process, with Y=1 and Y=2 being
the computation and communication threads, respectively. For both imple-
mentations, X ranges from 1 to 16, i.e., a 2 x 8 process grid, with the former
eight identifiers assigned to processes in the first row of the grid from left
to to right, while the latter eight to those in the second row. The filter op-
tions of the Paraver time-line view were used to filter and color only those
events strictly related to computations depicted in Figure 7. Apart from
these computations, the send side of a broadcast operation (i.e., BLACS’s
DGEBS2D subroutine) is also colored in magenta in Figure 8. (Note that in
Figure 8 (b) broadcast operations are always performed by the communica-
tion thread.) Any time-interval that does not correspond to filtered events is
colored in blue. In order to facilitate the comparison between the Reference
and SMPSs implementations, the time-interval of Figure 8 (b) has been scaled
so that it matches that of Figure 8 (a). The reader can easily note that the
execution of iterations 3-10 is encompassed in a much smaller time interval
in the case of the SMPSs implementation.

Figure 8 (a) clearly exposes the synchronous, in-order execution of the
Reference implementation. Once all computations from the previous itera-
tion have been completely executed, a new iteration starts with the factoriza-
tion of a leading diagonal block, and then proceeds with the computation of
a new panel (green colored time intervals in Figure 8 (a)). In preparation for
the distributed symmetric rank-% update, the panel and its transpose are then
broadcast across the process grid. When communication is complete (ma-
genta colored time intervals immediately following light blue colored boxes in
Figure 8 (a)), the next iteration only starts when the whole distributed sym-
metric rank-k update of the current iteration is complete. This can be readily
observed in Figure 8 (a), by taking a look at the length of the time inter-
vals encompassing the start of two consecutive iterations (i.e., the “distance”
between two consecutive red arrows in the figure). For example, measured
values with the help of Paraver are 157.3, 147.2, and 148.6 milliseconds for
the time intervals encompassing the start of 7-8, 8-9 and 9-10, respectively.
A quite uniform distribution can be observed in general looking at small
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Figure 8: Capture of the Paraver time-line view of the (a) Reference and (b) SMPSs
implementation on a 2 X 8 process grid. Focus is on a cycle comprising iterations 3-10 (see
Figure 7). Red arrows are used to mark the start of a new iteration, with the white num-
bers within them representing the iteration identifier. The same correspondence among
computations and colors as in Figure 7 is used. The send side of broadcast operations (i.e.,
BLACS’s DGEBS2D subroutine) has been also colored in magenta, so that those (broad-
casts) immediately following light blue colored boxes can be used to determine when does
communication at each iteration is complet@@ (see Figure 2 (e)).



clusters of consecutive iterations.

An immediate parallel performance penalty in the form of idle threads de-
rived from the synchronous, in-order execution of the Reference implemen-
tation is depicted in Figure 9 (a). The filter options of the Paraver time-line
view were used to filter and color in red only those events associated with the
symmetric rank-k updates and the matrix-matrix multiplications. There it
can observed that processes not involved in the computation of a new panel
waste their time waiting on communication operations (see Figure 2). These
periods of time (in blue) have been enclosed in yellow boxes in Figure 9 (a).
This is indeed revealed as the most contributing parallel overhead in the
Reference implementation.

Figure 8 (b) reveals a fairly different scenario to that observed for the
Reference implementation in Figure 8 (a). In particular, the length of the
time intervals encompassing the start of two consecutive iterations is now
significantly reduced. Measured values for the time intervals encompassing
the start of iterations 34, 4-5, 56, 6-7, 7-8, 89, 9-10, and 10-11 are 67.2,
216.8, 53.5, 151.9, 48.3, 125.2, 52.6, and 169.9 milliseconds, respectively, in
contrast to 200.3, 181.7, 175.1, 181.1, 168.1, 157.3, 147.2, and 148.6 millisec-
onds for the Reference implementation. This is essentially consequence of
a combined effect of the out-of-order execution intrinsic to SMPSs and the
overlapping of computation and communication achieved with the aid of an
additional thread devoted to communication operations. When a given it-
eration starts, there are still pending SMPSs tasks (in particular, regular
symmetric rank-k updates and matrix-matrix multiplications) from previous
iterations, so that those threads that are not involved in the computation of
a new panel can overlap the execution of these pending SMPSs tasks with
the communication required to prepare the next distributed symmetric rank-
k update. One can indeed observe in Figure 8 (b) that the execution of a
new iteration does not start right after communication of the previous itera-
tion is complete, i.e., there is a non-negligible time between magenta colored
time intervals immediately following light blue colored boxes and the start
of a new iteration. This is the time that the SMPSs implementation takes
to schedule and execute those pending tasks from previous iterations that
are required to fulfill the dependencies of those tasks colored in yellow and
white in Figure 7. The latter tasks are executed immediately as long as their
dependencies are fulfilled since they are marked as highpriority. However,
the order on which the former tasks are executed cannot be controlled and
depends on how the SMPSs runtime orchestrates the execution of multiple
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Figure 9: Capture of the Paraver time-line view of the (a) Reference and (b) SMPSs
implementation on a 2 x 8 process grid. Focus is on a cycle comprising iterations 3-10.
Only symmetric rank-k updates and matrix-matrix multiplications are considered, which
are both highlighted in red, but those marked as highpriority in the SMPSs implementa-
tion are highlighted in yellow and white, respectively. In the Reference implementation,
processors not involved in the computation of a new panel idle on communication op-
erations (see Figure 2). These periods of time (in blue) have been enclosed in yellow
boxes in (a). In the SMPSs implementation, these idle periods are significantly reduced as

they are filled with useful work (i.e., regular symmetric rank-k updates and matrix-matrix
multiplications) from previous iterations.
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regular tasks with their dependencies fulfilled. It may indeed happen that
regular symmetric rank-k updates and matrix-matrix multiplications from
previous iterations that are not in the dependency path that ends on the
former tasks are executed before those that are in the dependency path.
This partly explains why the time between the start of two consecutive iter-
ations varies significantly from iteration to iteration. Although it would be
desirable to minimize the time between two consecutive iterations, the SMPSs
implementation still achieves excellent performance as idle periods that were
present in Figure 9 (a) have mostly disappeared from in Figure 9 (b). This is
clearly a consequence of the exploitation of task-parallelism enabled by the
dependency-aware out-of-order execution of tasks intrinsic to SMPSs.

7. Concluding Remarks

In this paper, we demonstrate how the SMPSs runtime scheduler can effi-
ciently exploit intra-node hardware concurrency, improving the performance
and scalability of the ScaLAPACK routine for the Cholesky factorization
on a cluster of multicore processors. This superior efficiency is identified as
being rooted in the out-of-order execution enabled by the detection of task
dependencies and the adaptive scheduling performed by SMPSs, which pri-
oritizes the execution of tasks in the critical path, similarly to what would
be obtained with a dynamic look-ahead, but without incurring in the pro-
gramming complexity of this technique.

Our analysis exposes that the major difficulties in porting the reference
implementation of the distributed-memory routines from ScaLAPACK are
due to certain restrictions of SMPSs, but also that these can be easily ad-
dressed with a limited programming effort. The introduction of the SMPSs
programming model is thus revealed as a powerful tool to improve the per-
formance of numerical kernels in legacy, message-passing libraries for dense
linear algebra on clusters equipped with multicore technology. This solution
thus exhibits software reusability as a clear advantage over other existing
approaches.
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