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Text search is a classical problem in Computer Science, with many data-intensive applica-
tions. For this problem, suffix arrays are among the most widely known and used data
structures, enabling fast searches for phrases, terms, substrings and regular expressions
in large texts. Potential application domains for these operations include large-scale search
services, such as Web search engines, where it is necessary to efficiently process intensive-
traffic streams of on-line queries. This paper proposes strategies to enable such services by
means of suffix arrays. We introduce techniques for deploying suffix arrays on clusters of
distributed-memory processors and then study the processing of multiple queries on the
distributed data structure. Even though the cost of individual search operations in
sequential (non-distributed) suffix arrays is low in practice, the problem of processing mul-
tiple queries on distributed-memory systems, so that hardware resources are used effi-
ciently, is relevant to services aimed at achieving high query throughput at low
operational costs. Our theoretical and experimental performance studies show that our
proposals are suitable solutions for building efficient and scalable on-line search services
based on suffix arrays.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

In the last decade, the design of efficient data structures and algorithms for textual databases and related applications has
received a great deal of attention, due to the rapid growth of the amount of text data available from different sources. Typical
applications support text searches over big text collections in a client–server fashion, where the user queries are answered
by a dedicated server [15]. The server efficiency—in terms of running time—is of paramount importance in cases where the
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services demanded by clients generate a heavy work load. A feasible way to overcome the limitations of sequential comput-
ers is to resort to the use of several computers, or processors, which work together to serve the ever increasing client
demands [19].

One such approach to efficient parallelization is to distribute the data onto the processors, in such a way that it becomes
feasible to exploit locality via parallel processing of user requests, each on a subset of the data. As opposed to shared-memory
models, this distributed-memory model provides the benefit of better scalability [44]. However, it introduces new problems
related to the communication and synchronization of processors and their load balance.

This paper studies the parallelization of text indexes, in particular suffix arrays [39], in distributed memory systems, and
describes strategies to reduce the inter-processor communication and to improve the load balance at search time.

1.1. Indexed text searching

The advent of powerful processors and cheap storage has enabled alternative models for information retrieval, other than
the traditional one of a collection of documents indexed by a fixed set of keywords. One is the full text model, in which the
user expresses its information need via words, phrases or patterns to be matched for, and the information system retrieves
those documents containing the user-specified patterns. While the cost of full-text searching is usually high, the model is
powerful, requires no structure in the text, and is conceptually simple [5].

To reduce the cost of searching a text, specialized indexing structures are adopted. The most popular are inverted indexes
[5,10,68]. Inverted indexes are efficient because their search strategy is based on the vocabulary (the set of distinct words in
the text), which is usually much smaller than the text, and thus fits in main memory. For each word, the list of all its occur-
rences (positions) in the text is stored. Those lists are large and may be stored on secondary storage, or in the main memory
of the cluster nodes [10]. However, inverted indexes are suitable only for searching natural-language texts (which have
clearly separated words that follow some convenient statistical rules [5]). Suffix arrays or PAT arrays [39,28], on the other
hand, are more sophisticated indexing structures, which are superior to inverted indexes when searching for phrases or com-
plex queries such as regular expressions [5]. In addition, suffix arrays can be used to index texts other than natural language.
Examples of these applications include computational biology (DNA or protein sequences), music retrieval (MIDI or audio
files), East Asian languages (Chinese, Korean, and others), and other multimedia data files.

Pattern search on suffix arrays is based on binary search [39,28]; see Section 2.1 for further details. Processing a single
query X of length m in a text of length n takes Oðm log nÞ time on the standard sequential suffix array. One can also achieve
Oðmþ log nÞ time, yet by storing an extra array that doubles the space usage. Hence, trying to reduce such query time by
using a distributed-memory parallel computer of P processors is not very attractive in practical terms. In real applications,
however, many queries arrive at the server per unit of time. Such work load can be served by taking batches of Q queries.
Processing batches in parallel is appealing in this context, as one is more interested in improving the throughput of the
whole process rather than improving single operations.

To achieve this goal, a pragmatic (though naive) strategy would be to keep a copy of both the whole text database and the
search index in each server machine and route the queries uniformly at random among the P machines. For very large dat-
abases, however, each machine is forced to keep a copy of a large suffix array, often in secondary memory, which can dras-
tically degrade performance. A more sensible approach is to keep a single copy of the suffix array evenly distributed over the
P main memories. Now the challenge is to achieve efficient performance on a cluster of P machines that must communicate
and synchronize in order to serve every batch of queries. This is not trivial: on a naive partitioning of the suffix array, most
array positions are expected to reference to text stored in a remote memory. We study these problems in this paper in order
to achieve efficient text searching.

1.2. Problem definition and model of computation

In its most basic form, the full-text search problem is defined as follows: Given a text T½1 . . . n�, which is a sequence of n
symbols from an ordered alphabet R ¼ f1; . . . ;rg, and given a search pattern X½1 . . . m� (also over R), we want to find all the
occurrences of X in T. There are different kinds of queries for full-text search, depending on the application:

� locate queries, where one wants to report the starting positions in the text of the pattern occurrences, that is, the set
O ¼ fij1 6 i 6 n�mþ 1 ^ T½i . . . iþm� 1� ¼ X½1 . . . m�g.
� count queries, where one wants to count the number of pattern occurrences, that is, compute jOj.
� exist queries, where one wants to check whether X occurs in T or not, that is, we want to determine whether O ¼ ; or not.

In this paper we will study a variant of this problem suitable for parallel processing when throughput is emphasized: given a
set of Q patterns fX1½1 . . . m�;X2½1 . . . m�; . . . ;XQ ½1 . . . m�g, one wants to find the occurrences of each of these strings in T (we
use equal length for all the patterns for simplicity, but our results do not depend on that). We will focus on count queries. In
such a case, one wants to obtain the number of occurrences of each of the Q search patterns. The reason is that, on suffix
arrays, the algorithmic complexity of the problem lies on the counting part, and when this is solved, locating reduces to
merely listing the values in an array range. In addition, as we discuss in the Conclusions, it turns out that the strategies that
are best for counting are also the most promising ones for locating. On the other hand, many relevant applications rely solely
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on count queries. Several examples, like computing matching statistics and longest common substrings, arise in computa-
tional biology scenarios [29,58]. Another application is approximate searching, where k errors are allowed in the search pat-
tern. A successful approach is to split P into kþ 1 pieces that will be searched for exactly. An algorithm to find the best
partition into kþ 1 pieces carries out Oðm2kÞ count queries [50,59].

We assume a model in which the text is known in advance to queries, and we want to carry out several queries on it.
Therefore, as we said above, the text can be preprocessed in order to build a data structure (or index) on it, such that queries
can be supported efficiently.

We shall study the problem on a distributed computing model. We assume a server operating on a set of P processors
P0;P1; . . . ;PP�1 (the search nodes), each containing its own local memory. The communication between processors is carried
out through message passing. Users request service to one or more broker (or master) machines. The broker distributes the
queries onto the P search nodes of the server, yet solving the queries may require access to the data stored on various
machines. Finally, the broker must gather the results from the search nodes and produce the answer to each query.

We assume that, under a situation of heavy traffic, the server processes batches of Q ¼ qP queries, for some q P 1. Our
main goal is to achieve a high query throughput to answer these batches of queries. We will model the distributed-memory
computation using the bulk-synchronous model of parallel computing (BSP model) [61,64]. See Section 2.2 for further details
about this model.

1.3. Previous related work

1.3.1. Distributed query processing and inverted indexes
The distributed query processing on text databases has been extensively studied, being the inverted index one of the most

used data structures [63,57,37,4,11,32,42,47,66]. Those works obtain highly efficient inverted indexes, with a high query
throughput. There are two main ways to distribute an inverted index over several processors [63]:

Local index approach. The document database is evenly distributed across processors, and then a local inverted index is
built for every processor. At query time, the broker must send each query in the batch of Q queries to each of the P
processors.
Global index approach. A global inverted index is built for the entire collection. Then, the vocabulary (i.e., set of different
terms or words in the collection) is evenly distributed across processors, such that each processor stores only the inverted
lists for the terms in the local vocabulary. At query time, the broker sends each query in the batch to the processor whose
local vocabulary contains the query terms.

A disadvantage of the local index approach is that all the processors have to handle all the queries, and then the results
must be merged, whereas in the global index approach just one processor immediately gives the final result. On the other
hand, the global index approach may suffer from load imbalance, since queries tend to be skewed towards certain terms
(that vary over time) and thus some processors may have to handle many more queries than others. This load imbalance
can be avoided by distributing the terms in a more clever way [46], but coping with skewed distributions that vary over time
is more challenging.

1.3.2. The importance of suffix arrays in text processing and searching
There are many applications that need to search texts where the concept of word is not well defined, as in the case of East

Asian languages, or it does not exist at all, such as, biological databases (like DNA and proteins) or music retrieval. We need
in these cases more general search tools, able to search for any text substring, not only words or phrases. Suffix trees [65] and
suffix arrays [39] are the most well-known and used indexes of this kind.

Suffix trees are probably the most important data structures for processing strings [2,29]. They are extensively used not
only for full-text searching, but also for more complex pattern matching and discovery problems. It has been shown that a
suffix array can support the same functionality as a suffix tree, provided that extra data is stored [1], but it needs no extra
data to support simple pattern searches. In practice, suffix arrays are in many cases preferred over suffix trees, because of
their smaller space requirement and better locality of access. However, suffix arrays (and also suffix trees) were initially
designed as sequential data structures, that is, they did not support parallel query processing.

1.3.3. Distributed suffix trees and arrays
The efficient parallel construction of suffix trees [3,21,30,20,13,16,40,67] and suffix arrays [52,31,33,27,35,48,54] has

been thoroughly investigated. The aim was, however, the construction in parallel of a global index for the entire text collec-
tion, so that queries upon that index can be carried out using the standard sequential search algorithm. Clifford and Sergot
[17] defined a version of suffix trees that supports the distributed query processing on genomic data. Ferragina and Luccio
[22] proposed a related algorithm that works on a distributed Patricia tree that is constructed from the suffix array. This algo-
rithm is optimal both in computation and communication time. We have only found one article addressing our specific prob-
lem of distributed text searching using suffix arrays: Cheng et al. [14] define two strategies, which are based on the local and
global approaches for inverted indexes. These have several drawbacks from a distributed-memory point of view (e.g., low
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concurrency and load imbalance), as we will thoroughly demonstrate in this paper. Indeed, we take the local and global
strategies as baselines and build improved solutions upon them.
1.4. Our contribution

In this paper we propose several strategies to represent suffix arrays under the distributed memory model. We begin by
proposing two basic distribution strategies, which are realizations of the local and global index approaches of inverted
indexes already seen in Section 1.3.1. In the case of counting queries on suffix arrays, however, these simple approaches pose
serious problems on top of those they present on inverted indexes. The local index approach leads to low concurrency
because the search cost on a part of the collection, Oðm logðn=PÞÞ, is close to that on the whole collection, Oðm log nÞ, and thus
low concurrency is achieved. On the other hand, the global index approach requires accessing text stored in remote mem-
ories at each step of the search, leading to very high communication complexity.

Henceforth, the main contribution of this paper are approaches that seek to alleviate these problems on suffix arrays. We
propose several alternatives to balance the work load, reduce communication costs, and achieve high concurrency.

We focus on improving query throughput in scenarios where batches of queries must be served. Our algorithms are
designed and analyzed on the bulk-synchronous model of parallel computing (BSP model) [64,61]. This is a distributed mem-
ory model with a well-defined structure that enables predicting the running time of an algorithm. We use this feature to
compare different alternatives for index partitioning, considering their effects in communication and synchronization of
processors.

Our empirical results show that the proposed algorithms are efficient in practice, outperforming by far the classical local
and global choices to distribute the text collection across processors.

The present paper is an extension of a conference version [43], with more in-depth explanations of the proposed methods,
improvements to the original algorithms, a tighter algorithm analysis, and a more extensive experimental evaluation.

2. Preliminary concepts

We study here the preliminary concepts needed to understand our work.

2.1. Suffix arrays

Suffix arrays [39] (also known as PAT arrays [28]) are one of the most used data structures for full-text searching. Given a
text T½1 . . . n� of length n over an alphabet R, the corresponding suffix array SA½1 . . . n� stores pointers to the initial positions of
the text suffixes. The array is sorted in lexicographical order of the suffixes, as shown in Fig. 1 for the example text
‘‘this_is_a_sample_text$’’. Here, we have replaced spaces by ‘_’, which is assumed to be lexicographically smaller than
the remaining symbols. Also, symbol $ R R is a special text terminator, which is assumed to be lexicographically smaller
than any other alphabet symbol. Given an interval of the suffix array, notice that all the corresponding suffixes in that inter-
val form a lexicographical subinterval of the text suffixes.

To search for a pattern X½1 . . . m� in the text T we must find all the text suffixes that have X as a prefix, that is, the suffixes
starting with X. Since the array is lexicographically sorted, the search for a pattern proceeds by performing two binary
searches over the suffix array: one for the immediate predecessor of X, and another for its immediate successor. We
obtain in this way an interval in the suffix array that contains the starting positions of the pattern occurrences. Algorithm 1
illustrates how this search is carried out.

Algorithm 1. SASearch (Suffix array SA, search pattern X)

1: l 1
2: r  n
3: while l < r do
4: h blþr

2 c
5: if X>lexT½SA½h� . . . minfSA½h� þm� 1;ng� then
6: l hþ 1
7: else
8: r  h
9: end if
10: end while
Let us call interval query to the operation of using SASearch with both the immediate predecessor and the immediate suc-
cessor of X. This takes Oðm log nÞ time.



Fig. 1. Our running example.
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Example 1. The search for pattern ‘‘s_’’ leads to binary searches obtaining the positions pointed to by suffix array members
16 and 17 of Fig. 1. This indicates that there are two occurrences of ‘‘s_’’ in the text, and these occurrences start at positions
SA½16� ¼ 7 and SA½17� ¼ 4.

As we can see from line 1 of Algorithm 1, the binary searches on the suffix array are conducted by direct comparison of
the suffixes pointed to by the array elements. This means that we need to access the text to perform a search. This will be an
important issue when designing our distributed realizations of suffix arrays.

2.2. BSP and the cost model

In the bulk-synchronous parallel (BSP) model of computing [64,61], any parallel computer (e.g., PC cluster, shared- or dis-
tributed-memory multiprocessors, etc.) is seen as a set of P processors composed of a CPU and a local memory, which com-
municate with each other through messages. Let P0; . . . ;PP�1 denote these processors. The computation is organized as a
sequence of supersteps. During a superstep, the processors may perform sequential computations on local data and/or send
messages to other processors. The messages are available for processing at their destinations by the next superstep, and each
superstep is ended with the barrier synchronization of the processors.

This model of parallel computation ensures portability at the very fundamental level by allowing algorithm design in a
manner that is independent of the architecture of the parallel computer. Shared and distributed memory parallel computers
can be programmed in the same way.

The practical model of programming is SPMD, which is realized as P program copies running on the P processors, wherein
communication and synchronization among copies is performed via libraries such as BSPlib [8], BSPub [7] or BSPonMPI [9].



Fig. 2. The different distribution alternatives, for P ¼ 4 processors, on our running example.
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Note that BSP is actually a paradigm of parallel programming and not a particular communication library. In practice, it is
certainly possible to implement BSP programs using the traditional PVM [55] and MPI [45] libraries. A number of studies
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have shown that bulk-synchronous parallel algorithms lead to more efficient performance than their message-passing or
shared-memory counterparts in many applications [61,62].

The total running time cost of a BSP program is the cumulative sum of the costs of its supersteps, and the cost of each
superstep is the sum of three quantities: w;hG and L, where:

� w is the maximum of the computations performed by each processor, excluding sending/receiving data;
� h is the maximum of the messages sent/received by each processor, with each word costing G units of running time; and
� L is the cost of the barrier synchronization of the processors.

The effect of the computer architecture is included by the parameters G and L, which are increasing functions of P. These
values, along with the computing cost of relevant operations for the application at hand can be empirically determined
for each parallel computer by executing benchmark programs at installation [61].

Example 2. As an example of a basic BSP algorithm, let us consider a broadcast operation that will be used in this paper.
Suppose that a processor needs to send a copy of P chapters of a book, each of size a, to all other P processors (including
itself). A naive approach would be to send the P chapters to all the processors in one superstep. That is, in superstep 1, the
sending processor sends P chapters to P processors at a cost of P2aGþ L units. Thus, in superstep 2 all P processors have
available into their respective incoming message buffers the P chapters of the book. An optimal algorithm for the same
problem is as follows. In superstep 1, the sending processor sends just one different chapter to each processor at a cost of
PaGþ L units. In superstep 2, each processor sends its arriving chapter to all others at a cost of PaGþ L units. Thus, at
superstep 2, all the processors have a copy of the whole book. Hence the broadcast of a large P-piece a-sized message can be
carried out at PaGþ L cost.
3. Distributed suffix arrays

Assume that we are given a text T½1 . . . n�, and we want to search for a batch fX1½1 . . . m�;X2½1 . . . m�; . . . ; ½3�XQ ½1 . . . m�g of
Q ¼ qP individual patterns (or queries) of length m each (the assumption of equal-length patterns is made only for simplic-
ity; it is not a restriction for our algorithms). Assume also that we want to support count queries, which from a suffix array
point of view means determining the suffix array intervals containing the answers to each query.

We introduce in this section our proposals for the distributed processing of pattern queries using suffix arrays. Section 3.1
presents two basic strategies that are analogous to the local and global distribution approaches of inverted indexes. After
discussing and highlighting the drawbacks of these solutions, Section 3.2 introduces our new proposals, which will lead
to more efficient realizations of distributed suffix arrays. As a baseline, recall that the cost of answering such queries using
a standard sequential suffix array would be OðQm log nÞ.

Note that a simple solution in distributed environments is to replicate the text and its resulting suffix array among the
cluster nodes. In such a scheme, the broker sends the query to any node in order to solve it. This results in a perfect load
balance. However, the text and index replication leads to using P times the space of the original solution. This makes it suit-
able only for small texts. Since we focus on moderate-size and big texts (where indexed text search is the most efficient alter-
native), we will not consider this simple approach in this paper. However, we explore partial replication in a case study
where this is feasible, in Section 4.7.

3.1. Global versus local suffix arrays

We first present the basic techniques to distribute suffix arrays, in order to understand the basic ideas and problems we
must face. As a result, we obtain the suffix array counterparts for the global and local distributed inverted indexes [63,14]
(already mentioned in Section 1.3.1).

3.1.1. Global suffix arrays
In the global index approach, a single global suffix array SA is built for the whole text [35] and then mapped evenly on the

processors. That is, processor P0 stores SA½1 . . . n
P�, processor P1 stores SA½nP þ 1 . . . 2 n

P�, and so on. From now on, let SAi denote
the range of the global suffix array SA stored at processor Pi. We call GLOBAL this distribution strategy. The text is also stored in
a similar fashion: processor P1 stores T½1 . . . n

P�, processor P2 stores T½nP þ 1 . . . 2 n
P�, and so on. Let Ti denote the portion of T

stored at processor Pi.

Example 3. Fig. 2(a) shows a realization of this idea for the example text of Fig. 1, using P ¼ 4 processors.

Notice that not necessarily a suffix SAi½k� corresponds to a text position in the local text Ti, but probably to a text position
corresponding to Tj for some other processor Pj. This is the case, for instance, of suffix SA0½2� in Fig. 2(a), which is not in T0 but
in T1. This will have implications when the suffix array search algorithm needs to access the text suffixes.

In the GLOBAL approach, each processor stands for a lexicographical interval or range of suffixes. For instance, in Fig. 2(a)
processor P0 represents suffixes starting with ‘$’, ‘_’ and ‘a_’. The broker machine maintains information on the P suffixes
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limiting the intervals in each machine.6 These P suffixes are searched at the broker to determine which machine should handle
each query (more precisely, we search for each of the two lexicographical extremes of the query). The CPU cost per pattern can
be made OðmÞ by using, for example, a trie data structure for the P strings [26]. After determining the correct processor for each
query, all the queries are routed to their corresponding processors in a single superstep. Load imbalance may occur at this point,
if queries tend to be dynamically biased to particular intervals, just as for global distributed inverted indexes [63]. Also, partic-
ularly on texts over small alphabets (e.g., DNA), the lexicographic range of a query can span more than one processor. In such a
case, the query is routed to all involved processors, which poses some extra overhead.

GLOBAL search algorithm and cost analysis. Assume the ideal scenario, in which the queries are routed uniformly at random
onto the processors. A search for Q ¼ qP queries is carried out as follows. The broker takes Qmþ QmGþ L time to route the Q
queries to their respective target processors (the first term is the cost of the trie search that determines which processor
must answer each query).

Once the processors get their (on average) q queries, each of them performs q binary searches concurrently, each for a
different query. The cost for the q queries in a given processor is Oðqm log n

PÞ, since these are performed on local arrays of size
n
P. Recall, from Section 2.1, that these binary searches are conducted by direct comparison with the corresponding text suffix.
As explained before, many of the references in a local suffix array could correspond to text suffixes stored in a remote pro-
cessor. Indeed, for each query there is a probability of 1� 1=P of needing a piece of text of length m from a remote processor.
This takes an additional superstep, plus the cost of communicating m symbols per query. To avoid the case where the piece of
remote text we are requesting is split among two consecutive processors, which would trigger extra communication, we
store (but do not index) a few kilobytes of the text surrounding each text piece Ti. This gets rid of the problem for any prac-
tical query pattern and with a negligible space overhead.

Note that the q binary searches carried out at any processor Pi will start asking for the first m symbols of the suffix pointed
from the middle of its suffix array range, SAi. Thus we need only one remote request to carry out the first step of all the q
binary searches. It is not hard to see that this idea can be extended to the first log2q steps, so that we request only q remote
suffixes. We can start asking for those q suffixes (or have them stored in the processor). From that point, each query might
traverse a distinct path in its binary search. This amounts to a total of qðlog n

P � log qÞ ¼ q log n
Q remote requests for the q

queries.
For a global suffix array of size n, the local binary searches and the exchange of the text substrings are performed at cost

qm log n
P þ qm log n

Q Gþ L log n
Q, again assuming that requests for text pieces arrive uniformly at the processors. Finally, the q

answers per processor are received by the broker at cost QG to continue with the following batch. Thus the total (asymptotic)
cost per batch is given by
6 Tho
Qmþ QmGþ Lð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
broker cost

þ qm log
n
P
þ qm log

n
Q

Gþ log
n
Q

L
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

server cost

; ð1Þ
where the first term represents the cost of the operations carried out by the broker machine, and the second term is the cost
of processing a Q-sized batch in the server of P processors.

Pruned Suffixes. The idea of storing the top-q suffixes of the binary search can be further exploited, so that we associate
with every local suffix array entry the first t characters of the corresponding suffix. The value of t depends on the text and
usual queries, and involves a space/time tradeoff. In Fig. 2(a), the pruned suffixes for t ¼ 3 are shown below each suffix array.
It has been shown that this strategy is able to reduce the remote-memory references to 5%, even for relatively modest values
of t [33]. However, this increases the space usage: the pruned suffixes require nt log r extra bits overall.
3.1.2. Local suffix arrays
In the LOCAL strategy, on the other hand, we first divide the text into chunks of size n

P, and distribute these chunks onto the
processors. Then, we construct a suffix array in each processor, considering only the portion of text stored in that processor.
See Fig. 2(b) for an illustration. Unlike the GLOBAL approach, no references to text positions stored in remote processors are
made, thus avoiding the cost of sending text substrings of length m per binary-search step.

LOCAL search algorithm and cost analysis. Since the occurrences of a search pattern can be spread over the local texts of all
processors, it is necessary to search for every query in all of the processors. Thus, we find the intervals in all the local suffix
arrays that, together, form the solution for a given query. Finally, it is necessary to send to the broker QP values (Q per pro-
cessor) corresponding to the results of the local count queries. The broker must sum up these values to obtain the answer to
the original count query.

Special care must be taken with pattern occurrences that are split among two consecutive processors, that is, where for
some processor Pi and search pattern Xj½1 . . . m�, a suffix of Ti matches Xj½1 . . . k� and a prefix of Tiþ1 matches Xj½kþ 1 . . . m�.
The same technique described above, which stores a few kilobytes around each text Ti, avoids this problem. More precisely,
Pi will only index the suffixes that start within Ti, and thus only report occurrences that start within Ti, but in order to deter-
mine that Xj matches near the end of Ti, it will use the prefix of Tiþ1 that is stored in Pi.
se can be arbitrarily long, but in practice we can limit them to the maximum pattern length m that can be sought.
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The processing of a batch of Q queries is as follows. The broker must send each query to every processor. This broadcast
operation can be carried out as described in Section 2.2. That is, from the qP total queries, the broker sends q different queries
to each of the P processors. Then, each individual processor broadcasts them to all other processors, at a total cost of QmGþ L.
In the next superstep, the search process is carried out locally and concurrently: each processor performs Q binary searches
and sends the Q answers to the broker. In other words, at a given time all the processors will be dedicated to answer the
same set of queries.

The final step, in which each processor sends the Q answers to the broker, makes the latter receive QP messages in one
superstep. This cost can be reduced as follows: Each of the P processors will be responsible for summing up a slice of q que-
ries. Therefore, in one superstep each processor will send the results it obtained for each of the Q queries to the processor
responsible of handling it. Then each processor will sum up the contributions of each of the q queries it handles over the P
processors that have sent it their results on that query. Finally, each processor will send to the broker the sums obtained for
the q queries it handles. Thus the cost is only Q þ QGþ L. The total cost of this strategy is given by
Qmþ QmGþ Lð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
broker cost

þ Qm log
n
P
þ QGþ L

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

server cost

: ð2Þ
3.1.3. Discussion
The cost analysis of the GLOBAL and LOCAL approaches (see Eqs. (1) and (2), respectively), lead to some clear conclusions. A

first one is that GLOBAL achieves high parallelism, obtaining in its CPU cost an optimal speedup over the sequential search time,
Qm log n. It poses, however, a significant communication overhead, comparable to the CPU cost and clearly dominating it in
practice (this is alleviated, however, by the use of pruned suffixes). To this we must add that our analysis optimistically
assumes that queries are uniformly distributed, which is not the case in practice.

On the other hand, LOCAL has minimal communication costs, which are reduced to the cost of distributing the queries and
collecting the answers. However, its CPU cost is very high, almost the same as that of a sequential execution.

In both cases, the results are clearly unsatisfactory and deserve further research. While we believe that the LOCAL strategy
is fundamentally doomed by the closeness of the search costs in a global and a local suffix array (i.e., m log n versus m log n

P),
we will show that the challenges posed by the GLOBAL strategy can be addressed in order to achieve efficient solutions.

3.2. Alternative ways to distribute the global suffix array

From the previous discussion, the GLOBAL strategy seems to be more promising. In this section we will show how its
problems of a high amount of communication and load imbalance can be significantly reduced. Section 3.2.1 introduces
the MULTIPLEXED strategy, which distributes the suffix array entries onto the processors using a Round-Robin scheme. This
breaks load-imbalance but introduces further communication among processors to solve queries. Section 3.2.2 provides a
smooth transition between GLOBAL and MULTIPLEXED, aiming at obtaining the best from both. Finally, Section 3.2.3 introduces
the GLOCAL strategy, which can be regarded as an irregular MULTIPLEXED strategy that avoids accessing text from other processors,
at the expense of some complications on top of MULTIPLEXED.

Similarly to the GLOBAL approach, in the following three techniques, every query will be initially assigned to just one pro-
cessor. This processor will use the local suffix array to perform the initial binary search shown in Algorithm 1. Given the way
in which the suffix array will be distributed, this initial search will give us just a partial answer. In further supersteps, this
partial search will be eventually resumed by a different processor, which will tighten the answer. Notice that in this way the
binary search for a particular query is carried out just once by a single processor, thus avoiding the effect of the LOCAL

approach, where the binary search for the same pattern is repeated by all the processors at a given time.

3.2.1. Global multiplexed suffix array
One drawback of GLOBAL is the possibility of load imbalance, coming from large and sustained sequences of queries being

routed to the same processor. This is because in GLOBAL the suffix array is distributed by lexicographic ranges. The best way to
avoid particular preferences for a given processor would be to send queries uniformly at random among the processors, thus
achieving a fair distribution of queries onto the processors.

We propose to achieve this effect by multiplexing the entries of the original global array, as follows: if the global suffix
array element SA½i� is stored at processor Pj, then the global element SA½iþ 1� is stored at Pjþ1; SA½iþ 2� is stored at Pjþ2,
and so on, in a circular fashion. The elements assigned to a processor Pk are stored in the same relative order to form the
local suffix array SAk. We call MULTIPLEXED this strategy.

Example 4. See Fig. 2(c) for an illustration of the MULTIPLEXED strategy for our running example.

Notice that consecutive entries in a local suffix array correspond to entries that are separated by P positions in the global
suffix array. From another point of view, the suffix array SAi at processor Pi is formed by a regular sampling of the global
suffix array SA, as shown in Fig. 3(a). Just as for GLOBAL, we need the pruned suffixes to reduce remote references. The follow-
ing property states that, under this way of distributing the global suffix array, it is straightforward to know which processor
stores any desired suffix array entry.



Fig. 3. Different ways in which the global suffix array is sampled by the different techniques we propose.
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Property 1. Global suffix array entry SA½i� is stored at processor Pi mod P .
This means that the relative order of the global-array entries is maintained by this distribution strategy.
MULTIPLEXED search algorithm. Given a search pattern X½1 . . . m�, let ½i1 . . . i2� be the target interval in the global suffix array SA

containing all the occurrences of X. We do not have the global suffix array, but the local ones. The idea is that the binary
search of Algorithm 1 can be carried out at any of the local suffix arrays. In this way, we obtain a local interval, containing
the local occurrences of X. This is a subset of the whole set of occurrences of X. Assume that the initial search with Algorithm
1 is carried out locally at processor Pj, obtaining the interval ½i01 . . . i02� of SAj. Since we only use the information of SAj for this
search, we have that entry SAj½i01� does not necessarily correspond to entry SA½i1� in the global suffix array. The same happens
for SAj½i02� and SA½i2�.

Example 5. Consider searching for ‘‘s_’’ in the MULTIPLEXED suffix array of Fig. 2(c). Assume that the search starts at processor
P0. Hence, the resulting local interval is [5. . .5]. This corresponds to the global interval [17. . .17]. Notice that the global
interval containing the occurrences of ‘‘s_’’ is [16. . .17]. Finally, the interval [4. . .6] in SA0 corresponds to the global interval
[13. . .21] in SA, which contains the target interval [16. . .17] we are looking for.

The initial binary search gives us much information about the target interval for a query. We get a local interval that is a
subinterval (in the global sense) of the target interval. More precisely, the target interval starts somewhere in between the
global suffix array entries corresponding to SAj½i01 � 1� and SAj½i01�, and it ends somewhere between the entries corresponding
to SAj½i02� and SAj½i02 þ 1�.

Our next task is to find the processors that store the endpoints SA½i1� and SA½i2� of the target interval containing the
answers to the query. Recall that the initial local search has been carried out at processor Pj. Given the way in which the
global suffix array entries have been distributed across processors, we can start from processor j0 ¼ Pðj�1Þmod P , and check
whether the entry SAj0 ½i

0
1 � 1� corresponds to SA½i1� (i.e., we check whether the suffix pointed by SAj0 ½i

0
1� starts with X or

not). This process is repeated with the next processor, ðj� 2ÞmodP, and so on. This stops as soon as we find the first text
suffix starting with X or, eventually, find out that X does not occur in T (in the special case where i02 ¼ i01 � 1).

This process corresponds to a sequential search starting from position i01 � 1, which takes OðPÞ extra supersteps in the
worst case. Instead, the inter-processor search can be carried out with a binary search across the P processors, spending
at most log P additional supersteps (recall from Property 1 how global positions are related to local ones). A similar process
is carried out when looking for the processor storing SA½i2� among processors ðjþ 1ÞmodP, ðjþ 2ÞmodP; . . . ; ðjþ P � 1ÞmodP.

Given a query that is originally assigned to processor Pi, the corresponding inter-processor search may proceed in two
ways. In the first, Pi keeps control of the search and requests texts to other processors, which send back to Pi the requested
suffix array values and pruned suffixes. If the pruned suffix is not sufficient then Pi requests more text characters to the pro-
cessor owning the full suffix. In the second way, Pi delegates the problem of tightening this query to the processor that fol-
lows in the binary search. This has the advantage that pruned suffixes do not need to be transmitted, but instead the pattern
must be sent. We can avoid sending the patterns by making the broker distribute all the patterns to all the machines at the
beginning of the batch, at a cost of QmGþ L, as described in Section 3.1.2.

This idea, in which we start solving a query in a given processor to later delegate the problem to another processor, is
similar to the pipelining strategy defined for global distributed inverted indexes [47]. The difference is that, in our case,
we need to send a smaller amount of data among processors, versus the partial results (in some cases, whole inverted lists)
that must be sent in inverted indexes. Also, while load imbalance is a problem in the pipelined strategy [12,60], MULTIPLEXED

should be less sensitive to the query bias. The first stage of MULTIPLEXED query processing is fully balanced because any pro-
cessor can carry out the binary search (indeed, the same query can be started by a different processor each time it is raised).
In the second stage, where the target interval is refined, every processor is involved, each performing a small amount of
work, thus the load is balanced as well. A small source of imbalance can be the particular number of character comparisons
carried out by each processor, however, this should be very low (as we will see in our experiments).

Cost analysis. The asymptotic cost of MULTIPLEXED is
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Qmþ QmGþ Lð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
broker cost

þ qm log nþ qðm log
n
Q
þ log PÞGþ log

n
q

L
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

server cost

: ð3Þ
The first term in the server cost corresponds to the binary pattern searches, composed of a first internal search cost of
qm log n

P, and a second inter-processor search cost of qm log P. The second term corresponds to the total cost of qm log n
Q G

of fetching the suffixes to decide the binary comparisons, plus the q log P G cost of the inter-processor binary searches.
The third term corresponds to the log n

Q supersteps required by the internal searches plus the log P supersteps required by
inter-processor searches.

Overall, the complexity is slightly worse than that of the plain GLOBAL strategy. The advantage, however, is that this strat-
egy does not suffer from load imbalance: The queries are distributed uniformly across processors regardless of how biased
they are. We also recall that in practice most of the qm log n

Q Gþ log n
Q L cost is avoided thanks to the pruned suffixes.

3.2.2. An intermediate distribution strategy
An intermediate strategy between GLOBAL and MULTIPLEXED, called VMULTIPLEXED, can be obtained by applying the GLOBAL strategy

over V ¼ 2kP virtual processors, for some k > 0. Each virtual processor i is mapped on the real processor imodP, for
i ¼ 0; . . . ;V � 1. In this circular mapping, each real processor ends up with V=P ¼ 2k different intervals of n=V elements of
the global array. This tends to break apart the imbalance introduced by biased queries, whereas the inter-processor search
to refine the intervals becomes unnecessary (just as in GLOBAL, since the intervals of the virtual processors are contiguous in
the global suffix array). The only cost is that the broker must also search for the correct (virtual) processor among V delim-
iting suffixes instead of P, thus k must be small enough to avoid a memory bottleneck in the broker.

Example 6. Fig. 2(d) shows how this strategy distributes the suffixes in our running example, for k ¼ 1, that is, each
processor simulates two virtual processors, and thus it contains two intervals of the global suffix array.
The cost of the VMULTIPLEXED strategy is thus
Qmþ QmGþ Lð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
broker cost

þ qm log
n

2kP
þ qm log

n

2kQ
Gþ log

n

2kQ
L

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

server cost

; ð4Þ
which only improves with k. As explained, the memory of the broker is the practical limit to how large k can be (as it needs to
store 2kP delimiter strings).

3.2.3. Global suffix array with local text
As we have seen, with MULTIPLEXED we are able to uniformly distribute queries among processors, but we must store the

pruned suffixes to avoid (or reduce) the references to remote suffixes. Strategy LOCAL, on the other hand, avoids remote ref-
erences, yet has poor concurrency. We now present a suffix array distribution strategy that solves both the load imbalance
and references to remote suffixes. The idea is to redistribute the original global array so that the local array stored in pro-
cessor Pj contains only pointers to the local text corresponding to processor Pj, as shown in Fig. 2(e). In this way, the pruned
suffixes are not needed. We call this strategy GLOCAL. As opposed to MULTIPLEXED, the local suffix arrays in GLOCAL are formed by a
non-regular sampling of the global suffix array (see Fig. 3(b)).

This strategy has the advantages of LOCAL, as it only contains pointers to local text. The difference is that in this case the
local arrays are constructed from the global array. Hence, we can keep global information—such as, for instance, the order of
the global array entries—that will help us avoid the P parallel binary searches (for the same pattern) and broadcasts per
query that are carried out by LOCAL.

Just as for MULTIPLEXED, a local search yields a global-suffix-array interval that is usually a subinterval of the one containing
the pattern occurrences. Unfortunately, because of the non-regular sampling of the global suffix array, Property 1 is not valid
for GLOCAL. Therefore, we are no longer able to carry out the inter-processor binary search as in MULTIPLEXED. To support an effi-
cient search we need, instead, to store extra information about where the remaining array cells are stored. We have illus-
trated this in Fig. 2(e), where we show (in a separate array below each local suffix array) the global position of the
corresponding local position. Thus, for instance, we have that SA3½1� corresponds to the global entry SA½1�, as indicated by
r. An important difference with the MULTIPLEXED strategy is that, for the GLOCAL approach, the sampling of the global array
is not uniform, as it can be seen in Fig. 3(b). Hence, in a pathological case, the global difference between two consecutive
local array entries can be up to OðnÞ.

Search algorithm. We propose an Oð‘ n
2‘

GÞ cost strategy to perform the inter-processor search, at the cost of storing ‘ values
(or ‘‘pointers’’) per suffix array entry (instead, we do not need to store pruned suffixes). The method works for any ‘ P 1, as
follows. For ‘ ¼ 1, each local suffix array entry stores a pointer to the next global array entry. Each pointer consists of the
processor that owns the next global entry, plus the local address of that entry within the local suffix array. Hence, every poin-
ter requires log P þ log n

P ¼ log n bits of space, for a total of n log n bits. This can be thought of as a linked list of the global
suffix array entries. After we perform the initial local binary search using Algorithm 1, we must follow the linked list in order
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Fig. 4. Extra information stored by each suffix array entry SA½i�. This information allows us to search the global interval SA½i . . . iþ 2r � 1� in order to quickly
find the processor storing the starting/ending point of the target interval containing the answers to the query.
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to find the precise endpoints of the interval containing the occurrences. The cost is one superstep per linked-list node
traversed.

Hence, once a processor Pj finds the answer between its local consecutive cells SAj½i01 . . . i02�, mapped to global cells SA½i1; i2�,
it retrieves from its linked-list information the processor Pj0 that owns cell i2 þ 1, as well as the position of that cell in the
local suffix array of processor Pj0 . Then Pj requests Pj0 to determine whether its text pointed by suffix array cell i2 þ 1 is lex-
icographically larger than the query. If it is so, then iþ d is the right answer. If it is not, then Pj0 is now in charge of finding the
right position, by finding the processor Pj00 that owns cell i2 þ 2, and so on. The process is similar for i1 � 1; i1 � 2, etc. (as we
do not have ‘‘previous’’ pointers but only ‘‘next’’ in the lists, we must run the search from the local cell i01 � 1). On average, the
distance to traverse in the global suffix array between two cells that are consecutive in some local suffix array is OðPÞ, but in a
bad case it can be as large as n, and the cost of the search is one superstep per traversed cell. Note that, as before, all the Q
patterns can be broadcast to all the machines in QmGþ L time, so they do not need to be transmitted later.

This can be improved for larger ‘ as follows. Each suffix array entry SA½i� keeps ‘ pointers to the global entries
SA½iþ 1�; SA½iþ 3�; . . ., SA½iþ 2‘ � 1�, such that iþ 2‘ � 1 6 n. See Fig. 4 for an illustration. The extra space is then increased
by ‘n log n bits. Note that the pointer to the next entry SA½iþ 1� is essential to ensure the correctness of the algorithm,
because this is the only efficient way to know where the next suffix array entry is. That is, we need at least n log n extra bits
on top of the suffix array itself. The remaining ‘� 1 pointers are just optional accelerators.

To achieve a performance comparable to that of the inter-processor binary search of the MULTIPLEXED strategy, assume that
processor Pj finds that the target interval starts between the global suffix array entries i� s and i, which are consecutive in its
local suffix array. Hence, we must find the largest k such that 2k � 1 < s, and then find the processor Pj0 owning the entry
SA½i� 2k þ 1�. If Pj0 answers that the query is lexicographically smaller than the suffix corresponding to its suffix array entry,
then processor Pj sets s 2k � 1 and goes on with k� 1. Otherwise, processor Pj0 takes care of the search, with
i i� 2k þ 1; s s� 2k þ 1, and k k� 1.

In order to carry out the inter-processor search in optimal Oðlog nÞ steps, we must use ‘ ¼ log n pointers per suffix array
entry, which implies an extra space of nlog2n bits over the suffix array.

Cost analysis. Using ‘ ¼ log n, the interprocessor search can be supported in Oðlog nÞ supersteps under this distribution
strategy. Thus the cost of this strategy is given by
7 If w
QmþmQGþ Lð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
broker cost

þ qm log nþ q log nGþ log nLð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
server cost

: ð5Þ
Compared with Eqs. (1) and (3), we can see the effect of using local suffixes (i.e., the communication costs are not mul-
tiplied by m), and, in exchange, the cost of the irregular sampling (i.e., the searches require log n supersteps, not log n

q). We
remind that pruned suffixes may make strategies GLOCAL and MULTIPLEXED perform better than what our complexity formulas
suggest.

A space-efficient way to represent the inter-processor pointers. Although strategy GLOCAL can achieve Oðlog nÞ supersteps to
find the target interval containing the answers to a query, in practice we may not have enough space to reach this optimum
(recall that we need Oðlog nÞ pointers per suffix array entry). We introduce a space-efficient alternative to represent these
pointers, based on the use of bit vectors. Given a bit vector B½1 . . . n�, we define the operation rank1 ðB; iÞ as the number of
1s occurring in B½1 . . . i�. The operation select1 ðB; jÞ is defined as the position of the j-th 1 in B. If n0 is the total number of
1s in B, then the data structure of [56] requires n0 log n

n0 þ Oðn0Þ þ oðnÞ bits of space, and supports the above operations in
Oð1Þ time. An alternative data structure by [53] requires n0 log n

n0 þ 1:92n0 þ oðn0Þ bits of space, and supports rank in
Oðlog n

n0Þ time and select in Oð1Þ time.7
e use a constant-time rank/select data structure (e.g., by Munro [49]) on its internal bitmap H.



Table 1
Comparison of the cost for the different alternatives to distribute suffix arrays. The broker cost is always Qmþ QmGþ L, dominated by the server cost. For
strategy GLOBAL we assume a uniform distribution of queries over the processors.

Method CPU cost Communication cost (G) Synchronization cost (L)

Sequential Qm log n
GLOBAL qm log n

P qm log n
Q log n

Q

LOCAL Qm log n
P Qm 1

MULTIPLEXED qm log n qðm log n
Q þ log PÞ log n

q

VMULTIPLEXED qm log n
2k P

qm log n
2k Q

log n
2kQ

GLOCAL qm log n q log n log n
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We propose to replace the ‘ pointers per suffix array entry by a single bit vector per processor. This will reduce the space
usage significantly. Let Bj½1::n� denote the bit vector stored at processor Pj, such that Bj½i� ¼ 1 if and only if processor j stores
the global suffix array entry SA½i�. In other words, bit vector Bj keeps track of the global array entries stored at processor Pj.
Fig. 2(e) shows the bit vectors associated to each processor for our running example. Notice how each bit vector marks with a
1 the global positions that are indexed at each processor. For instance, in our example we have that, in processor P3; SA3½2�
corresponds to the global entry SA½9� (as the 2nd 1 in the bit vector is B3½9�). Conversely, given the global position SA½9�, we
know that processor P3 stores it, as B3½9� ¼ 1 . Also, SA½9� corresponds to SA3½2�, as there are 2 bits set to 1 in B3½1 . . . 9�.

Notice that each bit vector has n
P bits set to 1 . We represent Bj using the sarray data structure of [53] for sparse bit vec-

tors, which uses n
P log P þ 1:92 n

P þ oðnPÞ bits of space per processor. This amounts to n log P þ 1:92nþ oðnÞ bits overall for the P
processors. This means that we require only about dlog P þ 1:92e bits per suffix array entry. Note that, using pointers, even for
‘ ¼ 1 each suffix array entry needs log n bits. Moreover, by using the bit vectors we will be able to simulate the performance
of any ‘ P 1, thus this reduced amount of information shall be enough to simulate the inter-processor pointers.

Overall, the local data stored by a processor Pj is the local suffix array SAj, plus the bit vector Bj marking which global
entries have been stored in SAj. Given this representation, if Bj½i� ¼ 1 , the global entry SA½i� equals the local entry
SAj½rank1ðBj; iÞ�. On the other hand, given a local entry SAj½i0�, the corresponding global entry is SA½select1 ðBj; i

0Þ�. In other
words, by using rank and select we can efficiently map between local and global positions (and vice versa). We show next
how to use, at search time, the information provided by the bit vectors.

Search algorithms for the space-efficient version. Let Pj be the processor to which a given search pattern X has been assigned.
Let SAj½i01; i

0
2� be the local suffix array interval corresponding to X, found using Algorithm 1 on SAj. Let SA½i1 . . . i2� be the cor-

responding global suffix array interval, computed using i1 ¼ selectðBj; i
0
1Þ and i2 ¼ selectðBj; i

0
2Þ. Further, let

i1 � s ¼ selectðBj; i
0
1 � 1Þ be the global suffix array cell corresponding to local cell i01 � 1. Our idea is to binary search the global

interval SA½i1 � s . . . i1� in order to find the starting point of the target interval (the process is similar for i2). Notice the dif-
ference with the MULTIPLEXED strategy, where the global interval SA½i1 � P þ 1 . . . i1� is binary searched instead. Moreover, this
time we do not know in advance which processor stores each of the suffix array entries SA½i1 � s . . . i1�.

First, processor Pj asks (using a broadcast) for the processor Pj0 owning the global entry SA i� s
2

� �
(i.e., processor Pj0 is such

that Bj0 i� s
2

� �
¼ 1 ), spending one extra superstep. In the next superstep, only processor Pj0 answers to Pj Thus, Pj needs two

supersteps to reconstruct the pointer to entry SA i� s
2

� �
. Processor Pj then sends the query to Pj0 , which goes on with the bin-

ary search. At each step, the current processor tries to reduce as much as it can the search interval, by using the 1 s in its own
bit vector, and then it obtains the corresponding pointer (spending two extra supersteps per pointer). Notice that we can
simulate the effect of any value of ‘, without requiring any extra space. In particular, we choose the optimum ‘ ¼ log n. Thus,
we add 2 log n extra supersteps in the worst case, and an extra communication cost of P log nG per query (because of the
broadcasts at every step in the search). Therefore, the cost is as in Eq. (5), except that the communication cost raises to
Q log nG.

Table 1 shows a comparison of the search performance of our techniques to distribute suffix arrays.

4. Experiments

In this section we experimentally compare the alternatives for distributing suffix arrays, and the respective query pro-
cessing algorithms, that we have proposed.

4.1. Experimental setup

Our experiments are carried out on five data collections:

1. A 300-megabyte XML collection from the Pizza&Chili Corpus [24]. The resulting global (or sequential) suffix array for this
text requires 2.50 GB;

2. a 400-megabyte DNA text from the Pizza&Chili Corpus. This is a sequence of symbols ‘A’, ‘C’, ‘G’, and ‘T’, plus a few occur-
rences of other special characters. The resulting suffix array requires 3.16 GB;
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3. a 200-megabyte text collection crawled from the Chilean Web (http://www.todocl.cl). The resulting suffix array
requires 1.50 GB. This text allows us to test the proposed algorithms over natural-language applications;

4. a 390-megabyte text with characters generated at random, giving a higher probability to the four most popular Spanish
characters (‘A’, ‘C’, ‘M’, and ‘P’). The corresponding frequencies are: 7:80% for letter ‘A’, 12:00% for letter ‘C’, 8:40% for letter
‘M’, and 9:30% for letter ‘P’. We call 4Letters this text, and the resulting suffix array requires 3.10 GB. This collection is suit-
able for testing our algorithms in situations of load imbalance; and

5. a 395-megabyte Uniform text collection, where each character has the same probability of occurrence. The size of the
suffix array obtained for this collection is 3.10 GB. This synthetic text is designed to test the case of unbiased queries.

Overall, these datasets yield suffix arrays containing more than 1500 million elements.
We used q ¼ 50;000 queries per processor—we tried with several values of q 6 900;000, and obtained basically the same

conclusions as the ones presented in this paper. We used patterns of length 5 and 10 extracted from each text at random
positions (later in this section we also show results for patterns of length 100). The only exception is for the Chilean
Web, where we used queries from a query log of the todoCl Web search engine (http://www.todocl.cl). These queries
were truncated to the corresponding length.

Our results were obtained on the HECToR cluster (www.hector.ac.uk) with 1856 nodes. Each node has two 12-core AMD
Opteron 2.1 GHz Magny Cours processors, sharing 16 GB of memory. The hardware used for communication among cluster
nodes is Infiniband, with an MPI point-to-point bandwidth of at least 5 MB/s. The latency between two nodes is around 1.0–
1.5 microsecond. We implement our algorithms using the BSPonMPI library [9]. We test with P ¼ 2;4;8;16;32;64, and 128
processors. We assume that all the data (both text and suffix array) are kept in main memory.

In order to fairly compare all the algorithms, the sequential algorithm also solves Q ¼ qP queries. In all cases we show
results normalized in order to (1) better illustrate the comparative performance among them and (2) present a global view
of comparative performance across several figures covering all datasets tested [36,34,41]. To this end, in each figure, we
divide all the experimental times by the observed maximum in the particular experiment. In this way, we can easily estimate
the percentage of improvement achieved by all strategies in each experiment with respect to the sequential baseline and
across datasets. It is important to note that we measure the whole processing time for queries. This includes the CPU time
needed to solve a query, as well as the time used for inter-node communication. In our experiments, the fraction of the total
time corresponding to communication cost grows logarithmically with the number of processors, from 5% of the total time
with P ¼ 2 processors to 35% with P ¼ 128.

4.2. Implementing GLOCAL

Recall that in Section 3.2.3 we proposed two ways to implement the inter-processor pointers for GLOCAL: either using raw
pointers or using sparse bit vectors. We study now what is the best way to implement the GLOCAL strategy, both in space usage
and query time.

Table 2 shows the space usage of the bit-vector implementation of the inter-processor pointers, both as a fraction of the
original pointers using ‘ ¼ 1 (that is, storing just a single pointer to the next suffix array entry, assuming that 32 bits are used
for each pointer) and as a fraction of the text size. We show results just for DNA text and the Chilean Web; the other texts
yield similar results. Notice that the space occupied by the MULTIPLEXED strategy is similar to the space occupied by GLOCAL with
raw pointers and ‘ ¼ 1.

As it can be seen, the bit vectors use up to half the space of the single pointers for P ¼ 128. In addition, the bit vectors
support binary searching the processors to find the target suffix array interval. Pointers for ‘ ¼ 1, on the other hand, use more
space and support only sequential search (after the initial internal binary search has been carried out). When compared with
the text size, the bit vectors use from 0.6 (P ¼ 2) to 2.0 (P ¼ 128) times the space of the text. The latter also means that for
P ¼ 128 the bit vectors for GLOCAL use about the same space as for pruned suffixes with t ¼ 2. This fact will be used when
comparing GLOCAL with the techniques using pruned suffixes such as the MULTIPLEXED strategy.

Now we compare the query time of both implementations of GLOCAL. Fig. 5 shows the running times for some of the tested
collections, for patterns of length m ¼ 5. We call GLOCAL-LIST the alternative using pointers (for ‘ ¼ 1), and just GLOCAL the alter-
native using bit vectors. As it can be seen, GLOCAL improves upon GLOCAL-LIST by about 20%–25% in all the tested collections,
except DNA where the improvement is of about 35%. This shows that not only the bit vectors use less space, but also provide
Table 2
Total size of the bit vectors added to GLOCAL to implement the inter-processor pointers. Sizes are shown as a fraction of the space used by the pointer
implementation (for ‘ ¼ 1) and of the text size.

Text Processors Size as a fraction of pointers (‘ ¼ 1) Size as a fraction of text size

DNA P ¼ 2 0.15 0.61
P ¼ 128 0.48 1.93

Chilean Web P ¼ 2 0.16 0.63
P ¼ 128 0.51 2.03

http://www.todocl.cl
http://www.todocl.cl
http://www.hector.ac.uk
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better performance at query time. As a result, in the experiments of the following sections we will use GLOCAL as the realiza-
tion of the alternative using bit vectors.

4.3. Scalability evaluation

In this section we test the scalability achieved by the distributed suffix array approaches on different data collections.
Scalability is evaluated by increasing the workload (i.e., Q ¼ qP queries) as we increase the number of processors P. In this
scenario, an algorithm obtaining optimal speedup achieves a stable running time as P grows. Otherwise the time increases
with P; the time of an algorithm with no speedup increases linearly with P. This way of measuring is also interesting because
it reflects the real-world scenario, where the number of processors will be increased according to the workload.

To provide a glimpse of the actual running times, Table 3 shows total running times (in seconds) required to process
50;000� P queries for three of the strategies proposed in this paper, with P ¼ 16 and 128. The speedups obtained over
the sequential algorithm is very clear. Translation to the other strategies should be straightforward from the normalized
results we present later.

We use VMULTIPLEXED with parameter k ¼ 5, and pruned suffix size of 4 characters for both MULTIPLEXED and VMULTIPLEXED.

4.3.1. Results on uniform text
We start with the Uniform collection, which displays an idealized scenario free from biases on the text and on the queries

(recall that queries are generated from the text, so they follow a uniform distribution as well). Fig. 6 shows the normalized
running times of all the strategies, with patterns of length m ¼ 5 in Fig. 6(a) and of length m ¼ 10 in Fig. 6(b). It can be seen
that all the global-partition algorithms (GLOBAL, MULTIPLEXED, VMULTIPLEXED and GLOCAL) show a much better performance than the
LOCAL algorithm. This is because, as expected from the analysis, the cost of LOCAL grows as a function of Q rather than of q. Thus
its time improvement over the sequential algorithm is explained not because each processor runs fewer queries, but because
the queries run binary searches over smaller arrays, with higher locality of reference.

Among the global partitioning techniques, GLOCAL algorithm displays the best performance for P 6 16, but it is outper-
formed by MULTIPLEXED for P P 32. One can expect that GLOCAL performs better than the others but degrades faster as P grows.
Although it permits perfect load balance and avoids communication at all in the first part of the search, that is run on its local
Table 3
Total running time (in seconds) required to process Q ¼ 50; 000� P queries of length m ¼ 10. GLOCAL implements the bit-vector strategy of Section 3.2.3.

P Strategy Collection

DNA XML 4Letters Chilean Uniform

16 SEQUENTIAL 15.2 15.8 15.1 13.6 14.6
LOCAL 3.8 3.2 2.3 2.9 2.8
MULTIPLEXED 1.2 1.4 1.2 1.4 1.2
GLOCAL 2.4 1.7 0.8 1.6 1.1

128 SEQUENTIAL 121.7 126.6 120.8 108.5 117.2
LOCAL 17.1 22.9 10.8 10.1 9.4
MULTIPLEXED 3.5 5.3 3.0 4.5 2.8
GLOCAL 9.3 9.2 4.7 5.9 4.1
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Fig. 6. Running times obtained for synthetic collections.
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suffix array and local text, the second part of the search, when all the processors have to participate to refine the final inter-
val, becomes heavier in cost with larger P (the interval to refine is of average size P).

This text is the best case for GLOBAL, which suffers from biased queries. Yet, even in this case, the small statistical deviations
make some processors more loaded than others, and the total completion time per query is that of the slowest processor.
This effect, plus the extra cost incurred by the broker to choose the right processor, makes the GLOBAL slightly slower than
MULTIPLEXED, which can perfectly balance the work load. The latter is the fastest with large P, showing that the final binary
search on P processors is not significant (this binary search is much lighter than the one performed by GLOCAL, because we
know which processor owns each cell). As expected, the performance of VMULTIPLEXED stays between those of GLOBAL and
MULTIPLEXED. Note that VMULTIPLEXED must also incur the cost of choosing the processor at the broker.

4.3.2. Results on biased synthetic texts
Fig. 6 also shows the results for the 4Letters text, with m ¼ 5 in Fig. 6(c) and m ¼ 10 in Fig. 6(d). Recall that this text was

especially designed to produce biased queries. These results clearly show how sensitive is the GLOBAL strategy to biased que-
ries. Its performance degrades sharply compared to that in the Uniform distribution. The other global strategies, instead, per-
form basically the same. This shows that the new strategies we have designed in this paper fulfill the goal of being resistant
to biased queries.

Note that the degradation of GLOBAL is sharper on shorter patterns. This owes to a different problem: it is more likely that
different processors handle the start and end of the suffix array interval of suffixes that start with a popular 5-letter pattern
(especially as P grows and the local arrays are shorter). Thus two processors may have to get involved in a single search,
whereas in the other global techniques we can always assign the query to a single processor.

4.3.3. Results on XML text
Fig. 7(a) and (b) show the normalized running time on the XML collection. The results are more or less between those of

Uniform and 4Letters. On long patterns, the GLOBAL strategy performs as in the 4Letters text, owing to the same biased-queries
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Fig. 7. Running times obtained for the real collections.
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phenomenon. On short patterns, however, the degradation observed in 4Letters does not occur, because the XML alphabet is
much larger and thus it is much less likely that a query spans two processors.

As before, MULTIPLEXED performs best when sufficient processors are used. An interesting difference with the previous col-
lections is that GLOCAL performs slightly worse on the real collections. A problem with GLOCAL that does not show up on our
synthetic collections is that real texts tend to have some locality, and thus if we choose a processor to solve a query that
rarely appears in its local text, the final interval it will have to refine with the other processors will be much larger.
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4.3.4. Results on DNA text
Fig. 7(c) and (d) show the running time obtained by the algorithms on the DNA collection. This text should in principle

behave close to the Uniform one. However, since DNA has a very small alphabet, the suffix array ranges for suffixes that start
with the same character are very long. This impacts, much more than in 4Letters, on the performance of GLOBAL, which will
frequently need to involve two processors in solving each query. The effect is also apparent in VMULTIPLEXED, which has the
same problem, especially for m ¼ 10, where the search cost is higher. As in the other cases, the MULTIPLEXED algorithm is
the best choice when sufficiently many processors are involved.

4.3.5. Results on natural language text
Fig. 7(e) and (f) show the performance on the Chilean Web, whose letter distribution is not very different from 4Letters

but it is a real text using a real query log.
Once again, MULTIPLEXED outperforms the other strategies for P P 16. For P 6 8, the GLOCAL algorithm is the best choice,

improving upon MULTIPLEXED by 50% on average. While real-life text collections have locality (that is, some words are more
frequent in some parts of the collection), and this impacts negatively on GLOCAL, its competitor, GLOBAL, suffers much more from
the load imbalance of real-life queries. This is in contrast to the other texts, where we choose queries randomly from the text.
We note that VMULTIPLEXED is effective in improving the performance of GLOBAL upon work imbalance, but still it is never better
than both MULTIPLEXED and GLOCAL.

4.4. Load balance evaluation

Fig. 8 reports results regarding the load imbalance for the LOCAL, MULTIPLEXED and GLOBAL strategies. To this end, let us denote
Ts the time taken for a given superstep in the execution of a batch of queries. Let Ts;i be the time spent by processor Pi at
superstep s. We define the load balance for Ts as the efficiency ratio averageðTs;iÞ=maxðTs;iÞ 6 1, for each processor i and aver-
aged across supersteps. An efficiency value close to 1 means that the workload among processors is well distributed. A value
close to the minimum 1=P, on the other hand, indicates a poor load balance. We used patterns of length m ¼ 10 executed on
the 4Letters and Chilean Web datasets, which are our most skewed scenarios. In this experiment we keep fixed the total
number of newly arriving queries per processor q, and vary the total number of processors P. The results show that the
MULTIPLEXED strategy achieves competitive balance compared to the LOCAL strategy, with the advantage of requiring less com-
putation and communication cycles per query. As expected, the GLOBAL strategy suffers from high imbalance due to its strong
dependency on biased query patterns. Notice that even though in LOCAL each processor searches for the same queries, there is
a slight imbalance. This is because the local texts and suffix arrays are different in each processor, and hence the number of
character comparisons varies among processors. A similar effect can be observed in MULTIPLEXED.

4.5. Searching big texts and long patterns

We now study how the techniques scale with bigger texts and longer search patterns. We test with DNA (a 3.2 GB text
corresponding to the Human Genome8) and 4Letters (a 1.9 GB version of this text). The resulting suffix arrays require 25.40 GB
for DNA, and 15.70 GB for 4Letters.

Fig. 9 shows the results on these big texts, for patterns of length 5 and 10. As it can be seen, we can conclude almost
exactly as for previous experiments. The only effect of dealing with a larger amount of data is that the most efficient alter-
natives are slightly slower than for the smaller texts.

Fig. 10 shows results for long patterns, m ¼ 100. In this case, the performance slightly degrades when compared to the
results of Fig. 9. A reason for this is that longer patterns must be transmitted, increasing the communication overhead. There
is, however, another reason: observe that the difference between MULTIPLEXED and GLOCAL is much smaller than for previous
results (this is more noticeably for P ¼ 128). This means that MULTIPLEXED degrades faster than GLOCAL. This is because we
use pruned suffixes of length 4 for MULTIPLEXED. For long patterns, this increases the amount of pruned suffixes that need to
be transmitted. Additional experiments with pruned suffixes of length 20 confirmed this fact.

4.6. Efficiency evaluation

In this section we compare the local and global indexing strategies in terms of classical parallel efficiency Ef , which is
defined as the speedup divided by the total number of processors:
8
htt
Ef ¼
1
P

total sequential running time
total parallel running time

:

We show results for all the datasets. In these experiments, we no longer increase the total number of queries Q ¼ qP with the
number of processors. Instead, we keep the number of queries constant in Q ¼ 50;000� 128.
p://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/est.fa.gz.

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/est.fa.gz
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Fig. 9. Running times obtained for big text collections.
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Figs. 11(a)–(e) show the results for m ¼ 5. The GLOCAL strategy has the best efficiency when P 6 16: It is always over 0.8,
and in many cases near 0.95. For larger P, as expected from previous experiments, MULTIPLEXED takes over, keeping efficiency
over 0.7 even for P ¼ 128. In all cases, VMULTIPLEXED stays as a close second best, thus it is interesting if we have to stick to one
strategy for every P. We note that the efficiency degrades fastest on LOCAL, as expected, and GLOBAL is the second worst strategy
in terms of efficiency. The other strategies degrade much slower.
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Fig. 10. Running times obtained for patterns of length m ¼ 100.
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Note also that, in general, the worse efficiency with few processors is obtained on the Chilean Web dataset, which empha-
sizes the problems posed by skewness in real-life queries. With more processors, however, the difference with the other col-
lections is not so marked.

Fig. 11(f) shows that efficiencies are generally even better for longer patterns, for example improving up to 14% for large P
in the 4Letters dataset. A similar effect is observed in the other datasets.

4.7. Case study: a distributed text search engine

We finish with a complex realistic scenario where the cost of the memory consumption of the different strategies has a
direct impact on performance. We consider a distributed suffix array supporting a complementary pattern search service in a
Web search engine. More precisely, we use suffix arrays to perform substring searches in the vocabulary table supporting the
main search index. This allows, for example, offering autocompletion searches based on substrings and not only prefix
matches.The vocabulary is made up of all terms found in the Web sample kept in the search engine. In practice this means
searching over tens of millions of strings, and thereby parallelization on distributed memory is a sensible approach. This
time, the relatively small size of the collection will allow us maintaining several copies of each data partition. The more
memory-efficient approaches will be able to use more copies within the same space, which will increase their throughput.

In this context, it is relevant to be efficient at processing large streams of queries. To this end, typically for this application
domain, the P processors supporting the search service are organized as a P ¼ p� r two-dimensional array, where p is the
number of partitions in which the text T½1 . . . n� is divided, and r is the number of copies (replicas) of each partition. That
is, the suffix array is partitioned into p parts of size n=p each, and we maintain r replicas of each part. This kind of setting
is also useful for fault tolerance in search engines [11]. We compare the traditional LOCAL partitioning strategy with
MULTIPLEXED, which has performed best in general in our previous experiments.

Let TrðpÞ ¼maxfdi þ siðpÞ þ Gg be the individual query response time of a query, where di is a processor delay producing a
query waiting time, si is the query service time, G is the communication latency, and the maximum is taken over all the pro-
cessors i involved in solving the query in parallel. The values of p and r of the system are set to meet the following three
requirements [18]:

1. Ensure that the individual query response time is bounded above by TrðpÞ 6 B, where B is a target upper bound. That is,
we want to ensure that every query is solved within time B.

2. Ensure that the system query throughput X0ðp; rÞ is capable of achieving X0ðp; rÞP k0, for a given target query arrival rate
k0. That is, we want to ensure that the system can process the queries at the rate they arrive.

3. Minimize the total number of processors P ¼ p� r provided that no processor utilization gets above a target utilization
bound U 6 1. In practice, search engines are over-provisioned so that they are prepared to cope with sudden peaks in
query traffic [6,18]. This means that they maintain processor utilization well below 100% at steady state operation.

For the LOCAL strategy on a p� r system, the Q queries are broadcast to the p partitions, as usual. In each such partition,
every processor gets Q=r queries. For MULTIPLEXED, on the other hand, each partition gets Q=p queries, and each processor in a
partition gets Q=ðprÞ queries. That is, each processor in LOCAL gets p times the number of queries of a processor in MULTIPLEXED.
As a result, more processors will be necessary to cope with requirements (1) to (3).

On the other hand, LOCAL uses less memory than MULTIPLEXED, since the former does not store auxiliary data such as pruned
suffixes. Let us assume that MULTIPLEXED uses pruned suffixes of length 2k (assuming 1 byte per symbol, and 4 bytes per inte-
ger) with k P 2. Given an amount of space used by MULTIPLEXED, strategy LOCAL requires fewer partitions (p) to hold the index,
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Fig. 11. Parallel efficiency Ef , for m ¼ 5.
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and thus can increase the number of replicas (r), improving its performance because each processor recieves fewer queries.
To use about the same space in both cases, once we set p and r for for MULTIPLEXED, the number of partitions LOCAL can be
decreased to p� ¼ p=ð1þ 2k�2Þ, and thus the number of replicas can be increased to r� ¼ rð1þ 2k�2Þ.

The trade-off for requirement (2) can be stated as follows. Let us assume a server where processing a batch of Q
queries takes time TQ in steady-state operation, that is X0 ¼ Q=TQ . Therefore, for LOCAL we have that TQ is
OððQ=rÞm logðn=pÞ þ ðQ=rÞmGþ LÞ ¼ Oðqpm logðn=pÞ þ qpmGþ LÞ. Notice that this is a generalization of Eq. (2), where
r ¼ 1 is assumed (and hence p ¼ P holds).
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For MULTIPLEXED, on the other hand, the total query time TQ is OððQ=ðprÞÞm log nþ ðQ=prÞðm logðn=QÞ þ log pÞGþ
logðn=QÞLÞ ¼ Oðqm log nþ qðm logðn=QÞ þ log pÞGþ logðn=QÞLÞ. Again, notice that this is a generalization of Eq. (3).

From the cost analysis above, and for fixed P ¼ p� r, it can be noticed how the cost of LOCAL can be improved if we increase
the number of replicas r (i.e., we decrease p in the same proportion). This is not the case for MULTIPLEXED. This effect will be
observed experimentally in what follows.

4.7.1. Processor utilization
We first measure individual query response time TrðpÞ, as we vary the query traffic intensity, such that the maximum

processor utilization is 15%, 25% and 50%, approximately. We use MULTIPLEXED with 4 characters per pruned suffix, so LOCAL

needs half the space and thus can use twice the number of replicas of MULTIPLEXED. Fig. 12(a) shows the results for the three
processor-utilization values tested, for a total of Q ¼ 50;000� P queries. The results indicate that only when the processor
utilization is low (because we have many replicas) the LOCAL indexing strategy performs faster than MULTIPLEXED.

Fig. 12(b) shows the effect of the different processor utilization thresholds in the total running time TQ . The results yield
similar conclusions. However, the differences in performance for very low utilization (15%) between LOCAL and MULTIPLEXED are
at most 20%, whereas MULTIPLEXED is better suited for higher utilization. Finally, it can be seen that MULTIPLEXED scales up more
efficiently with P. In the remaining experiments we use utilization U = 50%.

4.7.2. Evaluation under similar memory usage
We study more in depth the effect of varying the number of replicas. Fig. 13 shows the results for r ¼ 1;2;4 and

P ¼ 2;4;8;16;32;64, where p ¼ P=r was adjusted consequently to achieve the target P indicated in the x-axis. The y-axis
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Fig. 12. Experimental results for different query-traffic conditions, over the XML dataset, queries of length m ¼ 10, and a total of Q ¼ 50;000� P queries.
Similar results are obtained for the remaining datasets.
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shows the normalized total running times required to process a total number of queries given by Q ¼ 50;000� P, with
P ¼ p� r. Fig. 13(a) shows results for the Uniform dataset, and Fig. 13(b) shows results for the 4Letters dataset.

Note that, for example, in LOCAL r ¼ 1 we assume that each node holds n=P suffix array cells, whereas for r ¼ 2 we assume
that each node holds 2n=P cells, and r ¼ P assumes that each node holds a copy of the whole suffix array. So they are not
comparable because they assume the nodes have different amounts of memory, and results are obviously better as we have
more replicas.

What are comparable are the results for LOCAL with value 2r and MULTIPLEXED with value r, which assume the same amount of
memory, as explained. The results show that, even with this memory handicap, the MULTIPLEXED strategy achieves better per-
formance than the LOCAL strategy for both datasets.
5. Conclusions

In this paper we have presented alternative ways of efficiently performing parallel query processing on distributed suffix
arrays. We have studied how to process large streams of on-line queries by using local and global indexing approaches to
suffix array distribution on processors.

Local indexing is always appealing to data center engineers as it is simple to implement and deploy on production sys-
tems. The text is evenly distributed on processors and a local suffix array is constructed in each processor. Queries are broad-
cast to all processors and the partial results are then merged to produce the final results for each query. Our experimental
study shows that this approach does not scale up efficiently with the number of processors. In the cases where replicas can
be used, local indexing is only efficient for cases of excessive over-provisioning of hardware resources where processors are
kept operating at very low utilization in steady state operation.

On the other hand, global indexing offers the potential of much better scalability than local indexing as queries are not
required to reach all the processors. However, the straightforward realization of this strategy, that is, evenly distributing a
global suffix array in lexicographic order on processors, is prone to significant load imbalance when query contents are
biased. This arises in many realistic cases, most clearly in search engines, where the load imbalance is sharp and varies rap-
idly over time.

In this paper we have proposed three strategies to distribute global suffix arrays on processors and corresponding parallel
query processing algorithms so that load imbalance is prevented. Our experimental study shows that each strategy has its
own merits with respect to practical performance. The most efficient strategy in terms of running time under a large number
of processors is MULTIPLEXED, where each processor holds a regular sampling of the suffix array and any processor can solve any
query. Instead, the GLOCAL strategy achieves competitive performance by using a local-like partitioning so that the result can
later be mapped to the global suffix array, and thus any processor can handle the query with its local text. For a small number
of processors, the GLOCAL strategy is more efficient than the MULTIPLEXED strategy. A strategy called VMULTIPLEXED, a hybrid between
plain global and MULTIPLEXED strategies, is always second-best and becomes a good choice when a single strategy must be cho-
sen for any number of processors. We note that, for various of datasets, the GLOCAL strategy achieves similar performance than
the VMULTIPLEXED strategy for a large number of processors, with the advantage of lower memory usage. We also tested a ver-
sion of the MULTIPLEXED strategy where pruned suffixes were kept compressed to reduce memory usage. However, the cost of
pruned suffix decompression required to support binary search was too detrimental to the performance.

The running time results for different datasets show that the MULTIPLEXED and GLOCAL strategies significantly outperform the
local indexing strategy and the straightforward realization of the global indexing strategy. The datasets used in experimen-
tation were chosen to expose global indexing to different degrees of imbalance. The new strategies developed in this paper
were shown to be resistant to load imbalance, keeping high parallel efficiency even for 128 processors. Among those,
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MULTIPLEXED was the one showing the least degradation in efficiency. All of our new distribution strategies can be generated as
an easy postprocessing on top of the existing distributed suffix array construction algorithms cited in Section 1.3.3 (which
essentially build the GLOBAL partitioning).

We have focused on count queries in this paper, as they are the most interesting algorithmically. In many realistic scenar-
ios, it is also necessary to retrieve some or all of the occurrence positions, and even some text snippet around them. In this
regard, it is fortunate that our best-performing strategies are also promising for this task: MULTIPLEXED and VMULTIPLEXED offer
perfect balancedness for retrieving the occurrences, whereas GLOCAL is unique in that it can return the text snippets without
requesting text from other processors. The amount of extra communication required to send all the results back to the broker
is not too significant, however. Fig. 14 shows that, even for short patterns of length m ¼ 5 on a small alphabet (4Letters),
where a fair amount of occurrences are found, the extra communication cost is very low. In this experiment we use the
MULTIPLEXED strategy and P ¼ 2 to P ¼ 128 nodes.

In this work we have only considered classical suffix array representations. There are, however, compressed representa-
tions of suffix arrays with the same functionalities as the classical ones, yet using space proportional to that of the com-
pressed text [51]. Previous work [38] proposes a distributed implementation of compressed suffix arrays [25] that achieves
qm log nþ qmþ qL processing time for Q ¼ qP queries. Notice that this is quite interesting compared to the complexities
of Table 1, especially for short patterns. Our GLOCAL strategy proposed in the conference version [43] also inspired the devel-
opment of compressed distributed suffix trees and arrays (in a theoretical stage) aimed at reducing the time of individual
queries of more complex types, like computing matching statistics and maximal repeats [58].

Another variant of compressed suffix arrays, called FM-indexes [23], use a search strategy called backward search, which
has nothing to do with a binary search. The FM-index represents a permutation of the text symbols plus little extra infor-
mation. It needs access only to this permuted text to compute the suffix array interval that enables counting queries, thus
there are no problems regarding accessing remote text positions. Backward search for a pattern of length m requires 2m
access to arbitrary positions in this permuted text. Distributing this permuted text naturally yields a search algorithm with
cost qm log rþ qmGþmL. Implementing a distributed search on this compressed suffix array is a promising future work
direction.
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