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Abstract

Multiple sequence alignment (MSA) is one of the most useful tools in
bioinformatics. MSA plays a key role in protein/RNA structure prediction,
phylogenetic analysis or pattern identification among other important bioin-
formatic applications. However, the growth of sequencing data imposes fur-
ther difficulties to aligning it with traditional tools. For large-scale align-
ments with thousands of sequences or even whole genomes, it will be neces-
sary to use and take advantage of high performance computing (HPC). This
paper, focused on a consistency-based MSA tool called T-Coffee, presents
several innovative solutions; the Balanced Guide Tree, the Optimized Li-
brary Method and the Multiple Tree Alignment. The results obtained by
the methods presented have demonstrated that it is possible to improve effi-
ciency, scalability and accuracy.
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1. Introduction

Due to the advent of the era of comparative genomics, it has become
increasingly important to be able compare a large number of homologous
sequences simultaneously [17]. Sequence Alignment, particularly Multiple
Sequence Alignment (MSA), is of central importance to bioinformatics and
computational biology [8]. The main idea behind MSA is to put protein
residues in the same column according to selected criteria. These criteria
can be the structural, evolutionary, functional or sequence similarities.

Accurate and fast construction of multiple sequence alignments has been
extensively researched in recent years. There are many MSA heuristics, and
the progressive alignment method is one of the most widely used [3]. How-
ever, the exponential growth of biological data and the inability to treat
them efficiently have led to many of the existing methods becoming obso-
lete through not being able to align thousands of sequences. This problem
has highlighted the need for biologists, bioinformatics and computer scien-
tists to work jointly. Thus, some MSA methods introduce High Performance
Computing capabilities to take advantage of the new technologies and infras-
tructures.

MSA tools have exhibited scalability problems when the number of se-
quences increases. The authors’ research is focused on allowing such tools
to take advantage of HPC systems and so improve their efficiency, scalabil-
ity and accuracy. In the present paper, the study is based on the T-Coffee
MSA tool [10]. T-Coffee is a multiple sequence alignment package that allows
DNA, RNA, protein sequences and structures to be aligned. Thus, in order
to improve the efficiency and scalability of T-Coffee, this paper proposes the
integration of 3 different solutions:

e The Balanced Guide Tree method (BGT). The multiple sequence align-
ment process follows the order given by a guide tree that identifies the
closely related sequences and their alignment precedences. The guide
tree structure exhibits parallel optimizations in the alignment process.
The proposed BGT method is capable of overcoming the initial degree
of parallelism by taking advantage of increasing computer resources.

e The Optimized Library Method (OLM). Consistency-based MSA tools
store the sequence relationship in a dedicated library. The more se-
quences that are aligned, the more data is stored, the larger the amount
of memory needed and processing time also increases. The OLM is a



new library-building method able to optimize the consistency library,
thus allowing bigger sets of sequences to be processed and reducing the
execution time.

e The Multiple Tree Alignment process (MTA). The guide tree is defined
by heuristic methods that try to obtain the best accuracy. However,
determining the best guide tree is a difficult challenge and a slight varia-
tion in the guide tree could produce a better result. The MTA provides
different variations of any guide tree, preserving the original criteria of
aligning first the most related sequences. Then, it processes all of them
in parallel and finally trys to select the most accurate alignment.

The rest of the paper is organized as follows: Section 2 presents a brief
state of the art of MSA tools. In Section 3 some of the scalability problems of
T-Coffee MSA tool are analyzed. In Section 4, we present our approaches to
solving the previously presented problems. The performance, scalability and
accuracy evaluation are shown in Section 5 and finally the main conclusions
are presented in Section 6.

2. State of Art

The computation of an optimal mathematical alignment is an NP-Com-
plete problem [23]. For this reason, current implementations of the MSA
algorithms are heuristic and none of them guarantees full optimization. The
progressive alignment is one of the most widely used heuristic. It assembles
a multiple alignment by making a series of pairwise alignments of sequences,
which are added one by one following the order established by a guide tree.
The most popular progressive alignment implementation is the Clustal family
20].

Although this heuristic provides a great advantage in speed and simplicity,
progressive methods are very dependent on the initial alignments, and several
studies have shown that the alignment may be sensitive to errors in the guide
tree. To correct or minimize errors made in progressive alignment steps, two
techniques are frequently used: iterative refinement and consistency scoring.

Iterative refinement is based on performing a progressive alignment and
then refining the result by repeatedly dividing the aligned sequences into sub-
alignments and realigning the sub-alignments. The most relevant iterative
aligners are MAFFT [5], Muscle [15] and Clustal€ [18].



Consistency-based methods were designed to overcome the accuracy lim-
its caused by the greediness problems of progressive and iterative aligners,
using sequences information to avoid the mistakes in the alignment. The com-
mon idea of consistency-based approaches is to evaluate pairwise alignments
through the comparison of third sequences. This consistency information can
then be used to construct the alignments or evaluate them, depending on
the approach. However, the introduction of more information increases the
memory requirements. The first combination of a consistency-based scoring
scheme with a progressive alignment algorithm was described by Notredame
in T-Coffee [10]. Other common MSA programs that use consistency to
produce accurate alignments are Probcons [2], Probalign [16], and Dialign
9].

T-Coffee (TC), is a multiple sequence aligner method that combines the
consistency-based scoring function COFFEE [11] with the progressive align-
ment algorithm. TC introduces a library generated using all-against-all pair-
wise alignments computed with a pair of Hidden Markov Models (HMM)
in order to reduce the greediness and increase the accuracy compared with
other methods based on a progressive strategy.

In spite of the improvement in speed introduced by the heuristics, the
computational requirements for large-scale alignments (thousands of sequen-
ces) clearly exceed workstation performance. Therefore, parallel implemen-
tations based on the main heuristics, such as ClustalW-MPI [6], Parallel-
TCoffee [24] or DialignP, were implemented. More recently, different ap-
proaches have used graphics processing units (GPUs) to reduce the execu-
tion time of MSA applications [4]. The development of MSA-CUDA [7] or
MUMmerGPU [22] are examples of such applications. Although all of these
approaches improve their original algorithm, these methods exhibit scalabil-
ity problems when the number of sequences increases. These are due to data
dependencies and memory requirements.

3. T-Coffee Scalability Issues

T-Coffee provides an improvement in accuracy over most methods based
on a progressive strategy. However, the introduction of these improvements
has penalized T-Coffee in speed when it is compared with the most commonly-
used alternatives.

The overhead introduced by the consistency-based scheme can be under-
stand if we analyze the T-Coffee algorithm, presented in Figure 1. As can be
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Figure 1: T-Coffee algorithm

seen, T-Coffee is divided into three main steps:

1. Primary Library. The primary library contains a set of pairwise
alignments from among all the sequences to be aligned. In the library,
each alignment is represented as a list of pairwise residue matches (con-
straints). A sequence identity weight is assigned to each pair of aligned
residues in order to reflect the correctness of a constraint. This stage

is the most time and memory consuming.

2. Extended Library. The extension of the library is a re-weighting
process where the new weights for a given pair of sequences also depend
on information from the other sequences in the set.

3. Progressive Alignment strategy. The MSA is produced by the
progressive alignment strategy introduced in Section 2. First of all,



all-against-all pairwise alignments are made to construct a distance
matrix between all the sequences. The distance matrix is then used to
generate the guide tree. Finally, the sequences are aligned progressively
by following the order of the guide tree. The main difference is that
the alignments are done with a profile pairwise alignment technique
and maximizing the COFFEE objective function using the weights in
the extended library instead of using the substitution matrix weights
and gap penalties.

The increasing complexity of the progressive alignment, added to the
rising computing cost from the generation of all pairwise alignments needed to
build the library, means that the CPU execution time increases significantly,
turning T-Coffee into a very slow method compared with other MSA tools
and restricting its use to aligning a small number of sequences.

Figure 2 analyzes the execution time depending on the number of se-
quences. It can be seen that runtime requirements grows quadratically with
the number of sequences extracted from the PFAM, a protein family database
[19]. As a result, T-Coffee is incapable of aligning more than 200 sequences
of 500 residues on a standard desktop computer.

The parallelization of TC is a manner to increase its performance and
scalability. This way, the latest versions of TC have parallelized some parts to
take advantage of the shared-memory multi-core architectures [21]. This new
concurrent version is capable of reducing the execution time. However, the
problem of the TC scalability remains due to the high memory requirements
to maintain the consistency-based library.

In the following subsections, we present the TC analysis from the point of
view of its parallelism capabilities and the memory resources usage in order
to clarify the way in which our proposed methods are applied.

3.1. Parallelism Performance Analysis

In this section, we study the T-Coffee performance and scalability fea-
tures. Our objective is to detect possible bottlenecks in the scalability of
T-Coffee or any of its five different stages. Thus, we analyze the evolution of
execution time for each step of the T-Coffee algorithm when more processors
are used.

The analysis, which was done using the TC parallel implementation (PTC)
[24], varied the numbers of processor from 16 to 120, to align the PF00231
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Figure 2: T-Coffee execution time analysis

sequence set from the Pfam database. This is made up of 554 sequences and
a maximal length of 331 amino-acids.

Figure 3 shows the total execution time and the five main stages of the
TC algorithm (Initialization, Distance Matrix, Primary Library calculation,
Extension of the Consistency Library and the Progressive Alignment) in func-
tion of the number of processors. As can be observed, PTC can reduce the
TC execution time. However, with more than 64 processors, the speedup
stagnates, limiting the scalability of PTC.

With regards to the PTC stages, the most time-consuming steps are the
calculation of the Primary Library and the Progressive Alignment. These two
stages consume more than the 98% of the execution time. The library gen-
eration shows good scalability while the progressive alignment stage remains
linear up to 48 processors. This is because the generation of the primary
library can be divided into several completely independent tasks, which is
an ideal situation to be implemented by the master-worker paradigm. How-
ever, it is known that the progressive alignment stage is bounded by task
dependencies extracted from the guide tree, thus limiting its scalability.

3.2. Memory Constraint

In TC, consistency is achieved through a collection of pairwise alignments
called library, L, and represented by a NxN matrix, N being the number
of sequences and position L(i,7j) is a list of a pairwise residue matches for
sequences i and j (i # j), called constraints. Each constraint is a 3-tuple
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Figure 3: T-Coffee stage execution time

{57, Sj-’, W, ;}, where S¥ denotes residue = of sequence ¢, there is some pair-
wise alignment or other evidence supporting the alignment of S7 with 5]3,47
and W ; is the weight of the constraint used to identify the correctness of a
constraint in the sequence identity. TC assigns this weight to each constraint
in order to give more priority to the most reliable residue pairs.

The size of the library is N2 x [, where [ is the average length of the input
sequences. Figure 4 shows the growth of memory based on N and [. The
memory requirements grow quadratically, turning TC into a non-scalable
method incapable of aligning large numbers of long sequences.

To deal with this problem, TC incorporates a new library generation
method that reduces memory requirements by using BLAST [1] to build
it from a subset of sequences, instead of doing all-against-all pairwise align-
ments (TC-BLAST). BLAST identifies the most representative sequences for
building the library and thus reduces the number of pairwise alignments and
the memory requirements. However, this approach reduces the quality of the
alignments considerably.

4. MTA-TCoffee (Multiple Tree Alignment - TCoffee)

In this section, we present our method, called MTA-Coffee, which inte-
grates different solutions to lessen the existing MSA parallelization problems.
These solutions deal with the limited parallelism in the progressive alignment
stage and the high memory requirements of the consistency based methods
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Figure 4: Analysis T-Coffee memory requirements.
without loss of accuracy in the final result.

4.1. Balanced Guide Tree (BGT)

As shown above, what limits the speedup on TC is the progressive align-
ment stage. This stage is driven by the neighbor-joining guide tree (NJ),
which fixes the order of the partial alignments in the progressive alignment.
Therefore, the guide tree is the key that defines the dependences among these
tasks.

Figure 5 shows a guide tree generated by the NJ algorithm. The PT-nodes
define the progressive alignment tasks. The leaf nodes are the sequences to
be aligned and the tree represents the order in which such progressive align-
ments must be performed. Only PT-nodes with all dependencies resolved
can be executed as independent tasks. In the example, there are three initial
tasks, grey PT-nodes, which can be launched in parallel. The critical path
defines the sequential iterations that the algorithm has to perform. The more
sequential iterations that must be done, the lower the parallelism, the lower
the performance and the higher the execution times. In the example, the
maximum degree of parallelism is three tasks and the critical path length is
7 tasks, thus requiring 7 sequential iterations to complete the alignment.

We evaluated some of the NJ guide trees from the Pfam database to
determine the parallelism features. The evaluation shows that NJ builds
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Figure 5: Guide tree generated with standard NJ heuristic

are very unbalanced guide trees with long critical paths and low degrees
of parallelism. In [14], the authors proposed a new tree generation method
called Balanced Guide Tree (BGT) that reduces the critical path and obtains
a higher degree of parallelism, without losing accuracy.

The BGT algorithm is derived from the original NJ algorithm with the
aim to maintain the high-related-sequences-first criteria and also balancing
the guide tree. Thus, BGT tries to join the maximum number of pairs of
sequences locating them at the base of the tree in order to reduce the number
of tree levels and then reducing the critical path. It is important to note that
BGT evaluates the similarity of the sequences and determines if they can be
re-allocated but with the aim of maintaining the alignment accuracy.

Table 1 compares the critical path (CP) and maximum degree of paral-
lelism (MPD) of the original NJ clustering algorithm with those obtained
by the BGT method. The results show that, on average, BGT reduces the
critical path by 42.8% and increases the degree of parallelism by 84.2%.

Thus, we can conclude that by using the balanced guide trees obtained
it may be possible to take advantage of parallel computing infrastructures
given that they can execute more parallel tasks.

4.2. Optimization Library Method (OLM)

To reduce the memory requirements of T-Coffee we propose a new library
building method, called OLM, which optimizes the library size by reducing
the consistency data stored [12]. This reduction means lower execution times
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Critical path (CP) Max Parall (MPD)
Sequences NJ BGT A NJ BGT A

PF00074 28 11 -25.0% 107 172 60.7%
PF00349 23 19 -17.3% 143 252 73.2%
PF00231 26 18 -30.7% 164 270 64.6%
PF01057 94 14 -85.1% 71 187 163%
PF00200 29 17 -41.3% 173 295 70.5%
PF08443 68 29 -57.3% 215 365 69.7%
Average -42.8% 84.2%

Table 1: NJ and BGT comparison for the Pfam database

and allows TC to handle a large number of sequences.

The Library optimization is based on two complementary methods. The
first of these, the Essential Library Method, is applied to the Primary Library
construction and identifies the information that will be useful during the
alignment stage and the information that can be discarded without affecting
the quality of the alignment excessively. It consists of building the library
in a similar way to the standard method, but identifying those entries in
the library that are less representative during the next progressive alignment
stage.

The proposed method, shown in Algorithm 1, interprets the sequence
identity weight of a constraint (line 5) and compares it against other con-
straints from the same residue in the library (line 6). If the constraint pro-
vides more accurate consistency information, then it replaces the existing
one in the library.

The second method, called Threshold Library, discards the constraints
that provide little or no information for the alignment. It identifies the con-
straints with some influence on the alignment and evaluates the deviation of
their weight with regard to the maximum in the library. The user defines the
maximum allowed deviation, i.e. threshold. The residues with values lower
than the threshold are discarded. The threshold determines how aggressive
the reduction of the library can be. The more aggressive the reduction of the
library, the faster it can be built, the bigger the dataset can be computed, but
less accurate the alignments that will be obtained. Conversely, the smaller
the reduction, the slower it is to build and the bigger, but more accurate,
the alignments will be.

11



Algorithm 1 Essential Library method
1. For each sequence S; € S;..Sy and S; # S;
2. For each sequence §; € S;..Sy where S; # Sy
PA;;=Pairwaise-Alignment(S;, 5;)

3
4 For each residue x € S;,y € 5| are aligned in PA, ;
. W > OCCURRENCE(PA,;)
(e:9) RESIDUES(PA,)
6. L(S?,5Y) = max(L(SF,5Y), W)
7
8
9.

70 j 1) _]
end_for

end_for
end_for

Both methods, Essential and Threshold Library, can be applied together.
In Algorithm 2, the threshold verification is applied in line 6. If the W, ) is
lower than the threshold weight then it is discarded. However, if its greater,

the same criterion will be applied as in the Essential Library Method (line
7).

Algorithm 2 Threshold Library method
1. For each sequence S; € S;..Sy and S; # 5
2. For each sequence §; € S;..Sy where S; # Sy

3 P A;j=Pairwaise-Alignment(S;, S;)
4 For each residue z € S;,y € 5| are aligned in PA, ;
- . _ S OCCURRENCE(PAy)
(e:0) RESIDUES(PA,)
6. If (Wizy) > threshold x max L(x,*)) then
7 L(Szxa S]y) = maX(L(va S]y>’ W(x,y))
8 end_if
9 end_for
10.  end_for
11. end_for

This optimization of the library is done during its generation and not
after. On the other hand, if the optimization were done when the library
has already been built, the huge amount of data stored in the library would

12



saturate the memory system and the alignment could not be completed. This
way, it is possible to reduce the time cost of building the library and also it
allows a smaller library to be obtained, which is able to store the consistency
data needed to compute bigger alignments.

In order to determine the impact of the threshold parameter, we con-
ducted an experimental study over the alignment accuracy and also the ex-
ecution time, applying threshold values from 10% to 80%. Table 2 shows
the accuracy, library size and execution time for the original T-Coffee and
eight OLM approaches applying also the Essential library reduction in all
cases. For this experimentation, we used all sequence sets from the PRE-
FAB database [15].

Aligner Acc. Lib Size (MB) Time (s)
TC 0.709 1,642.60 1,646
OLM TC-Lib.10 0.700 649.60 1,216
OLM TC-Lib.20 0.698 613.36 1,210
OLM TC-Lib.30 0.695 579.98 1,198
OLM TC-Lib.40 0.692 550.60 1,190
OLM TC-Lib.50 0.689 523.42 1,184
OLM TC-Lib.60 0.686 497.86 1,176
OLM TC-Lib.70 0.675 474.80 1,171
OLM TC-Lib.80 0.661 451.71 1,163

Table 2: Comparison between different OLM TC-Library configurations varying the level
of library optimization

It can be observed that the best results are obtained with the OLM TC-
Library10 with obtains similar accuracy to TC but is 26.12% faster. With re-
gards to the library, the memory requirements are drastically reduced (from
1,642MB to 649MB). Also, the cut-off maintains linear behavior with the
threshold (each 10% decreases the library by 27 MB). We selected the OLM
TC-Library10 as a good compromise between memory requirements, accu-
racy and execution time, and also the OLM TC-Library50 as a more ag-
gressive configuration in order to evaluate the effectiveness of using higher
library reductions.

To sum up, we can conclude that the OLM is able to reduce the size of
the consistency library, which has a very important impact on further opti-

13



mizations that increase the TC scalability and which would not be possible
any other way.

4.8. Multiple Tree Alignment (MTA)

The guide tree determines the accuracy of the final alignment. Slight
modifications to it can produce different results. Thus, it is possible to
improve the final alignment accuracy by applying little modifications to the
guide tree. However, determining the modifications that must be applied is
an important challenge as these must reduce the noise generated by possible
bad alignments performed in the first iterations of the algorithm.

To reveal the potential of this approach for increasing accuracy of T-
Coffee and to quantify the error introduced by the guide tree, an experiment
was conducted in which the best guide tree could always be selected by using
a benchmark score. The experiment (Figure 6) shows the evolution of the
alignment accuracy depending on the number of trees treated (up to 300
trees). It uses the whole PREFAB datasets as the input sequences and the Q
score as the validation score to measure the improvements in accuracy. The
Q Score is also used as the selection metric to determine the best alignment.

Figure 6 indicates that the average alignment accuracy rises as the number
of trees analyzed increases. Specifically, it is shown that, evaluating 300 trees,
the Q accuracy improves from 0.709 to 0.759. It is noteworthy that when
only one guide tree is used, the first graph value corresponds to the accuracy
obtained by the default T-Coffee.

These results show that the error introduced by the guide tree is signifi-
cant and could be mitigated if more trees were evaluated. It is known that
benchmarking scores cannot be used because they are based on reference
alignments, which are not always available. However, the use of this bench-
marking scores is useful for validating the new method, because they allow
the maximum degree to which the quality of the alignments can be improved
to be determined, depending on the number of trees evaluated.

To cope with the errors from the progressive alignment due to the guide
tree, we propose the Multiple Tree Alignment (MTA). MTA is a new method
implemented in T-Coffee that consists of creating, aligning and evaluating
multiple guide trees in parallel, in order to improve the biological accuracy of
the alignment. The MTA method can be applied to any progressive aligner
that accepts guide trees as an input parameter. MTA is capable of improving
the accuracy of these aligners without modifying the original methods.

14
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Figure 6: Multiple tree validation using the Q benchmark score as the evaluation metric

Owing to the fact that MTA produces multiple alignments from multiple
guide trees, one of the biggest challenges of this new method is to choose the
best alignment. This is because it is possible that the best computational
match alignment does not exhibit the best biological meaning. Thus, we
carried out an extensive comparison study to analyse different evaluation
metrics in order to decide which one provides a better correlation between
the computational score and biological quality.

In order to apply the MTA method, two additional steps were introduced
into the T-Coffee algorithm:

e Guide Tree Generation step. During this step, the method pro-
duces N different guide trees based on the NJ clustering algorithm, N
being defined by the user. The variation introduced in the guide tree
is low enough to keep the distance criteria but significant enough to
provide the necessary flexibility to generate multiple alternative trees.

e Evaluation step. During the evaluation step, the obtained alignments
are scored using an evaluation function/metric in order to identify the
best alignment that corresponds to the best guide tree. The alignment
with the best score is the final result of MTA method. This method
allows the user to choose among different external evaluation functions.
MTA is capable of evaluating the accuracy of the alignments with the

15



following single scores: SP, NoRMD, COFFEE, TRIPLET, iRMSD and
STRIKE. The authors also propose the use of two meta-scores obtained
through genetic algorithms: the Weighted-Score chromosome (WSC-
GA) and the Meta-score Code Chromosome (MCC-GA) [13]. The main
idea of these meta-scores is to combine the main characteristics of the
various metrics and thus, finding more accurate alignments.

4.4. Paralellization Approach

From version 8.0 onwards, TC has been parallelized using a multi-process
implementation taking advantage of shared-memory multi-processor/multi-
core architectures [21]. However, this parallelization has two main problems:
1) The poor degree of parallelism on the progressive alignment stage; 2) The
consistency library memory requirements that restrict TC to aligning a small
number of sequences on a single machine.

We propose the BGT and OLM methods to solve these problems. The
BGT increases the degree of parallelism, improving the efficiency of T-Coffee,
while the OLM method is dedicated to enhancing its scalability. And finally,
we propose the use of the MTA method to minimize the impact on the
accuracy of the original method. The tool resulting from the integration of
all the proposed techniques is called MTA-T Coffee.

In order to design our proposed MTA-TCoffee, it is firstly necessary to
determine the parallel infrastructure to be used. The proposal is based on
two main architectures: a distributed architecture based on a cluster of work-
stations where each one of these corresponds to a shared-memory multicore.
The proposed design is presented in Figure 7.

In such an infrastructure, the MTA-TCoffee assign to each multicore
workstation a single guide tree that it is processed in a parallel manner,
applying the BGT method. In this situation, the OLM is applied to reduce
the total amount of memory required to maintain the consistency library, and
thus it is possible to increase the number of sequences to be aligned. The
accuracy quality parameter is ensured as the MTA allows multiple variations
of the guide tree to be processed and the best one selected. As all guide trees
are processed concurrently, the total execution time is similar to the needed
to process only one.

5. Experimentation

In this section we present the analysis of the performance, scalability and
accuracy of MTA-TCoffee proposal. In the experimentation we compare the

16
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Figure 7: Parallelization of MTA-TCoffee.

performance of the original T-Coffee (TC) with the MTA T-Coffee with-
out OLM (MTA-TC) and the MTA-TC after applying two configurations
of the OLM method, with the library reduction of 10% and 50%(MTA-TC
T-Library10 and MTA-TC T-Library50 respectively). Furthermore, MTA is
configured to build 95 guide trees.

The parallel infrastructure is based on a cluster composed of 12 computing
nodes. Each computing node contains two 2.4GHz Intel quad cores and 8Gb
of RAM, giving a total of 96 cores. The interconnection network is a Gigabit
Ethernet.

5.1. Performance Analysis

In this section, we study the execution times of the MTA-TCoffee, com-
paring it with the original method using a prefabricated 200-sequence set
from Pfam. Naturally, the serial version of MTA cannot compete with origi-
nal aligners on executing time, because the trees have to be aligned serially.
However, owing to the fact that each individual alignment is independent and
can be done separately from the others, MTA was developed to be capable
of aligning the alignments in parallel on a distributed system.

The main goal is to determine the ability of our proposal to reduce its
execution time while increasing the number of assigned process units. To
do so, we increased the number of assigned cores from 8 to 96, one being

17
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the master that maintains the consistency library. All configurations require
the use of the interconnection network to avoid any advantage from the
architecture.

Figure 8 compares the parallel MTA-TC T-Library10, T-Library50 against
the MTA-TC (without any library reduction) and the standard T-Coffee. As
can be observed, the execution times of the MTA-TC T-Library10, MTA-TC
T-Library50 and MTA-TC decrease when the number of processors increases.
It is also observed that the library reduction has a great impact on the fi-
nal execution time. Thus, with 8 cores, the MTA-TC needs 15,905 seconds,
while the MTA-TC T-Library10 takes 8,415 sec. (47.09%) and the MTA-TC
T-Library50, 3,171 (80.06%) sec. When the number of cores increases, the
execution time also decreases, being 39.15% and 49.24% respectively. How-
ever the differences narrow due to the bottleneck of access to the centralized
consistency library. Finally, it is also observed that our proposals are slower
than the original TC, independently of the number of processors used because
of the network contention access to the centralized library.

To analysis the impact of the BGT method, we performed another exper-
iment comparing the BGT and the original Neighbor-Joining (NJ) methods.
In this case, we did not use any library reduction, the MTA-TC being the
selected method.

The results obtained are shown in Figure 9. It can be noted that the
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Figure 9: BGT impact on the execution time

NJ guide three not scale well due to its very unbalanced structure, which
limits the number of parallel alignment tasks that can be performed. This
behaviour can be explained by the fact that as new processors are added,
only the first iterations of progressive alignment are able to take advantage.
After these first iterations, the degree of parallelism decreases quickly, with
an increasing number of processors being kept idle. Instead of this behavior,
the BGT method drastically reduced the execution time by a 62% (from 1587
to 600 sec.), obtaining a better scalability. However, this is also limited by
the fact that even if the tree is perfectly balanced, the number of scheduled
task is halved at each iteration, and after a few iterations, there are not
enough tasks for fill all the processors.

Finally, the main conclusion of this experimental study is that, by using
the OLM library reduction combined which the BGT method, our proposal
is able to reduce the execution time of the progressive alignment.

5.2. Scalability Analysis

In this section, the scalability problem of our proposal, MTA-T Coffee, was
analysed and compared with TC. The experiment consisted of increasing the
number of sequences to be aligned, and then analysing how the performance
and resource requirements behaved.

The experiments consisted of running first TC on a node of the cluster,
and then, launching MTA-TC T-Library10 and T-Library50 in parallel. In
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order to facilitate the comparison with TC, for MTA we only took into con-
sideration the memory requirements and the execution time for aligning one
guide tree.

Figures 10a and 10b show the evolution of the library memory require-
ments and the total execution time on increasing the number of aligned
sequences from the Pfam database 100 to 2000. In Figure 10a the TC and
the MTA-TC approaches are compared. It can be observed that with 900
sequences, the library size is reduced by 69.31% and 82.24% respectively. In
this experimental study TC is unable to align more than 900 sequences due
to the huge amount of memory needed to maintain the consistency library. In
contrast, both the MTA-TC approaches can align more than 2,000 sequences.
This study demonstrates that the MTA-TC is more scalable than TC as it
could align up to twice as many sequences. The behavior of the MTA-TC
T-Libraryl0 and T-Library50, are similar, growing more slowly than the
original TC, and needing less memory in the case of the T-Library50.

Analyzing the execution time, Figure 10b shows similar behavior, where
both approaches in MTA-TC are faster than TC, which is impractical over
900 sequences. In this study, the MTA-TC T-Libraryl0 runs slower than
MTA-TC T-Library50 due to the fact that the access to its larger consistency
library is slower.

5.8. Accuracy Analysis

In this section, we analyze how the number of trees affects the alignment
quality and compare the accuracy of MTA-TCoffee with other aligners.

5.8.1. Impact of the number of guide trees

Figure 11 shows the evolution of the alignment accuracy with the number
of trees treated by the MTA. The experiment evaluates up to 100 trees using
the whole PREFAB datasets as the input sequences, the Q score as the
validation score to measure the improvements in accuracy and NiRMSD score
as the selection metric. We also added the T-Coffee accuracy obtained to
emphasize MTA’s ability to improve the final result.

As the theoretical results suggested, Figure 11 indicates that, in all the
MTA-TC configurations, the average alignment accuracy rises as the number
of trees analyzed increases. Specifically, it is shown that when evaluating 100
trees, MTA-TC is able to improve the Q accuracy from 0.709 to 0.731. If
Figure 11 is analyzed in more detail, it can be seen that the largest increase
in the accuracy of alignments is achieved with 10 trees. Then, the quality
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Figure 11: Accuracy varying the number of trees

grows progressively up to 20 trees, but from then on, the improvement is
smaller, at the same time that the number of trees analyzed increases. These
results demonstrate that the MTA-TC method is able to improve the quality
of an alignment obtained from an MSA method by selecting a better guide
tree.

We should also note that the inclusion of MTA lets us more than regain
the quality lost due to the library reduction (OLM). Thus, both the MTA-TC
T-Library10 (0.721) and MTA-TC T-Library50 (0.713) are able to recover
and exceed the quality obtained by the original method (0.709)

5.8.2. MSA Applications Comparison

The main aim of the last experimental was to compare the alignment
accuracy obtained with MTA-TC proposal against some of the most common
consistency-based, iterative or progressive-alignment MSA applications. To
do it, we used the MTA-TC without any library reduction, and both the
MTA-TC T-Libraryl0 and T-Library50 cases studies. The selection metric
used was the NiRMSD score. The experiment was done using the whole
PREFAB benchmark sequence sets divided into five groups according to the
percent identity of the sequences. The accuracy results were obtained by
using the PREFAB Q score. The obtained results are shown in the Table 3,
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where the rows identify the method compared and the columns identify the
range of identity. The best results obtained are highlighted in bold.

The results show that although the alignment accuracy of the MTA-
TC T-Libraryl0 was 1.5% worse than the same method without consistency
optimization (MTA-TC), its quality is still better than the standard TC,
being the fourth most accurate of the methods compared. Specifically, the
MT-TC T-Libraryl0 was 1.55% more accurate than TC.

Regarding the accuracy of the MTA-TC T-Library50, as expected and
due to the further memory optimization, was 2.74% lower than MTA-TC
and 1.25% less than the MTA-TC T-Libraryl0. However, its accuracy was
still better than the standard TC by 0.28%, thus becoming the eighth most
accurate method.

Aligner 0-15 15-25 25-35 35-100 Avg.
MSAProbs 0.454 0.756 0.900 0.961 0.738
MTA-TC 0.470 0.743 0.885  0.953 0.731
MAFFT 0.431 0.743 0.887  0.958  0.724
MTA-TC T-Lib.10 0.449 0.733 0.878 0.946  0.720
Probalign 0424 0.732 0.891  0.962 0.719
MTA-TC T-Lib.50 0.428 0.723 0.877 0.948 0.711
T-Coffee 0421 0.721 0.876  0.951  0.709
Clustal2 0.395 0.708 0.878 0.965 0.700
Muscle 0.365 0.684 0.860  0.951  0.677
ClustalW 0.289 0.605 0.816  0.941  0.617

Table 3: Comparison of the accuracy of the MSA methods.

6. Conclusions

Due to the entry into the area of comparative genomics, the simultaneous
comparison of a large number of homologous sequences has become increas-
ingly important. Therefore, there is no doubt that Sequence Alignment, in
particular Multiple Sequence Alignment (MSA), is by far the most common
task in bioinformatics. MSA constitutes an extremely powerful means of re-
vealing the constraints imposed by structure and function on the evolution of
a protein family. However, MSA is a NP-Complete problem, whose solution
stands at a crossroads between biology and computation.
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The present paper shows the effectiveness of the integration of three differ-
ent methods focused on allowing the use of the high-performance computing
capabilities of the consistency-based multiple sequence alignment tools used
by Bioinformatics. These methods are:

e The Balanced Guide Tree (BGT), which is devoted to solving the scala-
bility problems of MSA parallel implementations while maintaining the
accuracy of the alignments. The BGT is a new guide tree construction
heuristic that consists of modifying the tree generation method to take
into account not only the similarity between sequences, but also the
balancing features. The BGT is designed to produce more balanced
guide trees in order to eliminate the bottleneck generated by the high
dependencies between different iterations of the progressive alignment
step. The BGT is not only able to improve the performance of T-Coffee
but also does so without a lost of quality in the resulting alignment.

e The Optimized Library Method (OLM), which consists of an optimiza-
tion method for the T-Coffee library to reduce the memory and CPU
time requirements. This optimization was defined in two steps. The
first one identified the information useful during the alignment stage
and the information that can be discarded without affecting the quality
of the alignment excessively. The second one discards all the residues
that are below a threshold defined by the user. This second approach
provides the user with greater flexibility to choose how aggressive the
reduction of the library can be in order to trade off between alignment
time and quality. The results of one test in the experimentation showed
that our optimization approach decreases the memory requirements of
T-Coffee by 75%, reduces the execution time by 92%, and finally, al-
lows T-Coffee to align 2000 sequences while the standard T-Coffee is
only able to align 1000 sequences.

e The Multiple Tree Alignment (MTA), which is designed to cope with
the errors from the progressive-alignment strategies caused by the guide
tree in order to improve the biological accuracy. The proposed method-
ology consisted of building multiple guide trees from the same input
sequences, aligning them with the default algorithm of T-Coffee and
finally evaluating the resulting alignments to select the best one as the
final result. The results show that MTA are able to recover and exceed
the quality lost by the performance improvements.
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The results obtained by applying the previous methods demonstrated
that it is possible to improve the scalability of the consistency-based multiple-
sequence aligners in both the execution time and also the number of sequences
to be processed. In order to allow these improvements, it is necessary to
use a High-Performance Computing infrastructure because of the greater
computing and memory resources needed.

Our future work will be focused on aligning large-scale sequences (hundred
of thousands). With the increasing performance of sequencing hardware, the
need to align the genome of hundreds or thousands of individuals is not so
far off. Taking the huge volume of information required for this task into
consideration, Large-Scale aligners will require a drastic change in design.
Some consistency may be mandatory to guarantee a minimal quality for those
alignments. However, to guarantee scalability, their memory requirements
have to be limited. The intensive use of HPC infrastructures is required in
order to address this problem. The knowledge provided by the present paper
will allow us to continue with this future work.
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