
17 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Controlling NUMA effects in embedded manycore applications with lightweight nested parallelism support
/ Marongiu, Andrea; Capotondi, Alessandro; Benini, Luca. - In: PARALLEL COMPUTING. - ISSN 0167-8191. -
ELETTRONICO. - 59:Special issue(2016), pp. 24-42. [10.1016/j.parco.2016.02.002]

Published Version:

Controlling NUMA effects in embedded manycore applications with lightweight nested parallelism support

Published:
DOI: http://doi.org/10.1016/j.parco.2016.02.002

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/575138 since: 2020-06-01

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.parco.2016.02.002
https://hdl.handle.net/11585/575138

IN COPYRIGHT - NON-COMMERCIAL USE PERMITTED

This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is
permitted by the copyright and related rights legislation that applies to your use. In addition, no
permission is required from the rights-holder(s) for non-commercial uses. For other uses you need to
obtain permission from the rights-holder(s).

This is the post peer-review accepted manuscript of:

Marongiu, Andrea, Alessandro Capotondi, and Luca Benini. "Controlling NUMA effects in embedded
manycore applications with lightweight nested parallelism support." Parallel Computing 59 (2016):
24-42.

DOI: http://dx.doi.org/10.1016/j.parco.2016.02.002

The published version is available online at:
https://www.sciencedirect.com/science/article/pii/S016781911600044

Controlling NUMA effects in embedded manycore

applications with lightweight nested parallelism support

Andrea Marongiua,b,∗, Alessandro Capotondib, Luca Beninia,b

aD-ITET, Swiss Federal Institute of Technology in Zurich (ETHZ). Gloriastrasse 35, 8092
Zurich, Switzerland.

bDEI, University of Bologna. Viale Risorgimento 2, 40136 Bologna, Italy.

Abstract

Embedded manycore architectures are often organized as fabrics of tightly-

coupled shared memory clusters. A hierarchical interconnection system is used

with a crossbar-like medium inside each cluster and a network-on-chip (NoC)

at the global level which make memory operations nonuniform (NUMA). Due

to NUMA, regular applications typically employed in the embedded domain

(e.g., image processing, computer vision, etc.) ultimately behave as irregular

workloads if a flat memory system is assumed at the program level. Nested par-

allelism represents a powerful programming abstraction for these architectures,

provided that i) streamlined middleware support is available, whose overhead

does not dominate the run-time of fine-grained applications; ii) a mechanism to

control thread binding at the cluster-level is supported. We present a lightweight

runtime layer for nested parallelism on cluster-based embedded manycores, in-

tegrating our primitives in the OpenMP runtime system, and implementing a

new directive to control NUMA-aware nested parallelism mapping. We explore

on a set of real application use cases how NUMA makes regular parallel work-

loads behave as irregular, and how our approach allows to control such effects

and achieve up to 28× speedup versus flat parallelism.

Keywords: Manycores, nested parallelism, OpenMP

∗Corresponding author
Email address: a.marongiu@iis.ee.ethz.ch (Andrea Marongiu)

Preprint submitted to Elsevier Parallel Computing February 17, 2016

1. Introduction

The multi-core paradigm has allowed system-on-chip (SoC) designers to suc-

cessfully tackle many technology walls in the past decade [1] [2] and has now

entered the manycore era, where hundreds of simple processing units (PU) are

integrated on a single chip. To overcome the scalability bottlenecks encoun-

tered when interconnecting such a large amount of PUs, several recent embedded

manycore accelerators leverage tightly-coupled clusters as building blocks. Rep-

resentative examples include NVIDIA X1 [3], Kalray’s MPPA 256 [4], PEZY-SC

[5], ST Microelectronics STHORM [6]. These products leverage a hierarchical

design, which groups PUs into small-medium sized subsystems (clusters) with

shared L1 memory and high-performance local interconnection. Scalability to

larger system sizes employs cluster replication and a scalable interconnection

medium like a network-on-chip (NoC). A shared memory model is often as-

sumed, where each cluster can access local or remote (i.e., belonging to another

cluster) L1 storage, as well as L2 or L3 memories. However, due to the hier-

archical nature of the interconnection system, memory operations are subject

to non-uniform accesses (NUMA), depending of the physical path that corre-

sponding transactions traverse.

NUMA has been historically a key architectural feature of large-scale high

performance computing (HPC) systems. Regular applications parallelized with

a flat memory system in mind ultimately behave as highly irregular workloads

in a NUMA system. Indeed regular workload parallelization assumes that nom-

inally identical shares of computation and memory will be assigned to threads.

If such threads are mapped to processors which feature a different access time

(latency/bandwidth) to the target memory, such threads will experience very

different execution times. Table 1 shows the execution time (in 100K cycles) of

several applications running on the multi-cluster accelerator considered in this

work1. The first row refers to a high-locality configuration, where the applica-

1for more details on the benchmarks and the platform see Sections 4 and 2.

2

Color Tracking FAST Mahalanobis Strassen NCC SHOT

High-locality 5 49 25 201 47 4

Poor-locality 136 223 102 638 245 16

Variance 22× 5× 4× 3× 5× 4×

Table 1: Irregular behavior induced by NUMA in regular workloads [×100KCycles].

tions are executed on a single cluster and the data is accessed from the same

cluster’s L1 memory. The second row refers to a poor-locality configuration,

where the applications are executed on a single cluster and the data is accessed

from a remote cluster’s L1 memory. Even if the applications have completely

regular access pattern, NUMA effects lead to up to 22× variance between clus-

ters, if data is not distributed in an architecture-aware manner. The barrier

semantics implied at the end of a fork/join contruct will force fast clusters to

sit idle waiting for the slow clusters to complete.

Well consolidated programming practices have been established in the HPC

domain for the control of NUMA, but such practices need to be revisited for

adoption in the embedded manycore domain, due to some key differences be-

tween the latter and HPC systems. First, large-scale HPC systems rely on the

composition of several SMP nodes, where inter-node communication leverages

orders-of-magnitude slower channels than the coherent multi-level cache hierar-

chy within each node (intra-node memory hierarchies are in fact transparent to

the program). In embedded manycores L1 and L2 memories are typically im-

plemented as scratchpads (SPM), which are explicitly managed by the program

via DMA transfers. Inter-cluster communication is much costlier than local

memory access, yet it is way faster compared to inter-node communication in

HPC systems, as it leverages on-chip interconnection.

For these reasons, in HPC systems it is common to use a combination of

message passing (MPI), for inter-node communication, and fork/join thread par-

allelism (e.g., OpenMP [7]) within a node. Direct access to a remote note from

within parallel threads is typically disallowed. The locality of memory oper-

ations within a node is managed transparently by caches. Intra-node NUMA

3

effects in multi-socket systems are mitigated by pinning threads to specific cores

(thread binding). In embedded manycores remote cluster access is sometimes

allowed (e.g., if data produced in a remote cluster needs to be accessed only

once or has in general poor reuse), thus while MPI could still be used for intra-

cluster communication [8], there is in general wider consensus towards simpler

and unified programming interfaces such as OpenMP.

Another important difference between HPC and embedded manycore sys-

tems is found at the level of applications and software stacks. Applications in

HPC typically leverage coarse-grained parallel tasks, capable of tolerating large

overheads implied by underlying runtime systems running on top of legacy oper-

ating system (OS), libraries, etc. Applications in the embedded domain leverage

fine-grained parallelism and run on top of native hardware-abstraction-layers

(HAL), while a full-fledged OS is typically lacking. Support for programming

models such as OpenMP is usually designed as a streamlined SW layer on top

of bare metal [9] [10] [11].

Nested (or multi-level) parallelism represents a powerful programming ab-

straction for cluster-based embedded manycores, addressing the issues of effi-

cient exploitation of i) a large number of processors and ii) a NUMA memory

hierarchy. Nested parallelism has been traditionally used to increase the ef-

ficiency of parallel applications in large systems. Exploiting a single level of

parallelism means that there is a single thread (master) that produces work

for other threads (slaves). Additional parallelism possibly encountered within

the unique parallel region is ignored by the execution environment. When the

number of processors in the system is very large, this approach may incur low

performance returns, since there may not be enough coarse-grained parallelism

in an application to keep all the processors busy. Nested parallelism implies the

generation of work from different simultaneously executing threads. Opportu-

nities for parallel work creation from within a running parallel region result in

the generation of additional work for a set of processors, thus enabling better

resource exploitation.

In this paper we explore the applicability of nested parallelism plus thread-

4

binding capabilities as an afficient means of controlling NUMA effects in cluster-

based embedded manycore. Matching the key requirements of embedded appli-

cations, the focus is on two key aspects: i) enabling fine-grained parallelism via

streamlined support of nesting; ii) leveraging the ability of clustering threads

hierarchically, where outer levels of coarse-grained (task) parallelism could be

distributed among clusters, and data (e.g., loop) parallelism could be used to

distribute work within a cluster.

Our work is based on the STMicroelectronics STHORM [6] manycore, plus

a cycle-accurate SystemC simulator of an architectural template modeled after

STHORM or similar cluster-based platforms (e.g., Kalray MPPA [4]). The

simulator is used to explore hardware extensions to accelerate critical (cost-

wise) operations for nested fork/join thread management.

More in details, we make the following contributions:

1. We present a lightweight runtime layer for nested parallelism on cluster-

based embedded manycores, identifying the most critical operations to

fork and join nested parallelism, and proposing SW-only and HW-accelerated

solutions for their efficient implementation.

2. We integrate our fork/join primitives in the OpenMP runtime system,

and implement an extension to expose an abstract notion of clusters at

the programming interface level, so as to make nested parallelism mapping

NUMA-aware.

3. We show with several real application use cases how a regular workload

partitioning scheme that considers flat memory translates into irregular

thread behavior due to NUMA effects, and how this ultimately impacts

the performance. We show that our solution allows to achieve very high

speedups even for very fine-grained workloads.

The rest of the paper is organized as follows. In Section 2 we present the

target architectural template. Our optimized implementation of the support for

nested parallelism is described in Section 3, and the experimental evaluation

and results are discussed in Section 4. Section 5 discusses previous work on

5

nested parallelism support, while Section 6 contains conclusive remarks.

2. Architectural Template

In this section we describe the cluster -based manycore architecture targeted

in this paper. Clusters are the central building block of several recent manycores

[4] [6] [3] [5] [12]. These products consider a hierarchical design, where simple

processing units (PU) are grouped into small-medium sized subsystems (the

clusters) sharing high-performance local interconnection and memory. Scaling

to larger system sizes is enabled by replicating clusters and interconnecting them

with a scalable medium like a NoC.

…

Data Interconnect
(MoT)

Bank 31
TCDM (32 banks)

.

Bank 0 …

Crossbar

CORE 15

I$

CORE 0

I$

NI

DEMUX DEMUX

test and set

Peripheral

Interconnect

DMA

(MoT)

Figure 1: On-chip shared memory cluster

The simplified block diagram of the target cluster is shown in Figure 1.

It contains up to sixteen RISC32 processor cores, each featuring a private in-

struction cache. Processors communicate through a multi-banked, multi-ported

Tightly-Coupled Data Memory (TCDM). This shared L1 TCDM is implemented

as explicitly managed SRAM banks (i.e., scratchpad memory), to which pro-

cessors are interconnected through a low-latency, high-bandwidth data inter-

connect. This network is based on a logarithmic interconnection design which

6

allows 2-cycle L1 accesses (one for request, one for response). This is compatible

with pipeline depth for load/store for most processors, hence it can be executed

in TCDM without stalls – in absence of conflicts. Note that the interconnec-

tion supports up to 16 concurrent processor-to-memory transactions within a

single clock cycle, given that the target addresses belong to different banks (one

port per bank). Multiple concurrent reads at the same address happen in the

same clock cycle (broadcast). A real conflict takes place only when multiple

processors try to access different addresses within the same bank. In this case

the requests are sequentialized on the single bank port. To minimize the prob-

ability of conflicts i) the interconnection implements address interleaving at the

word-level; ii) the number of banks is M times the number of cores (M=2 by

default).

Processors can synchronize by means of standard read/write operations to

an area of the TCDM which provides test-and-set semantics (a single atomic

operation returns the content of the target memory location and updates it).

Since the L1 TCDM has a small size (256KB) it is impossible to permanently

host all data therein or to host large data chunks. The software must thus

explicitly orchestrate data transfers from main memory to L1, to ensure that

the most frequently referenced data at any time are kept close to the processors.

To allow for performance- and energy- efficient transfers, the cluster is equipped

with a DMA engine.

The overall manycore platform is composed of a number of clusters, inter-

connected via a NoC as shown in Figure 2. The topology we consider in our

experiments is a simple 2×2 mesh, with one cluster at each node, plus a memory

controller to the off-chip main memory.

Overall, the memory system is organized as a partitioned global address

space. Each processor in the system can explicitly address every memory seg-

ment: local TCDM, remote TCDMs and main memory. Clearly, transactions

that traverse the boundaries of a cluster are subject to NUMA effects: higher

latency and smaller bandwidth.

This architectural template captures the key traits of existing cluster-based

7

SWITCH SWITCH

SWITCHSWITCH
MEM

CTRL

MAIN

MEMORY

MAIN MEMORY

TCDM 3

TCDM 2

TCDM 1

0x00000

0x40000

0x80000

0xc0000

CLUSTER

0

NI

TCDM

0

CLUSTER

2

NI

TCDM

2

CLUSTER

1

NI

TCDM

1

CLUSTER

3

NI

TCDM

3

TCDM 0

0x100000

Figure 2: Multi-cluster architecture

manycores such as STMicroelectronics STHORM [6] or Kalray MPPA [4] in

terms of core organization, number of clusters, interconnection system and mem-

ory hierarchy. As a concrete instance of this template we built a cycle-accurate

SystemC simulator, based on the VirtualSoC virtual platform [13]. VirtualSoC

is a prototyping framework developed at University of Bologna, targeting the

full-system simulation of massively parallel heterogeneous SoCs. It allows to eas-

ily instantiate several manycore templates, as the number of cores and clusters,

the interconnect type and the memories are fully parameterizable. The platform

also comes with tools and libraries for software developments, on top of which

we built our runtime system for lightweight nested parallelism support, plus

accurate counters for performance measurement and execution traces, which we

use to evaluate the effectiveness of our techniques. The VirtualSoC simulator

can also be easily extended thanks to a fully modular design. We exploit this

feature to explore the benefits of adding custom HW blocks to the platform to

accelerate the execution of critical parts of fork/join mechanisms (see Section

3.2.1).

The VirtualSoC simulator, the HW extensions and the programming model

described in this paper can be downloaded (currently as beta version) by

8

contacting the authors through the group website (http://www-micrel.deis.

unibo.it/virtualsoc/).

3. Nested Parallelism Support

In this section we present our lightweight support for nested parallelism, tar-

geting the STHORM and the VirtualSoC platforms. Similar to most embedded

parallel platforms, the presented runtime system sits on top of bare metal, as an

OS is lacking. More specifically, we build upon native hardware abstraction layer

(HAL) support for basic services such as core identification, memory allocation

and lock (test and set memory) reservation. In the following we first intro-

duce the basic design choices to enable compact support data structures and

low-cost fork/join primitives (Section 3.1). Then, we identify critical operations

for scalable nested parallelism support, discussing several optimizations to their

implementation and deal with NUMA memory effects (Section 3.2). This sec-

tion also describes a NUMA-aware core binding extension to OpenMP for data

locality. Performance characterization and experimental results throughout this

section focus on highlighting the benefits of NUMA-aware thread manage-

ment only, enabled by our proposal. The additional benefits of NUMA-aware

core binding on data access behavior in real applications are evaluated in the

next Section Benchmarks (Section 4).

3.1. Key Design Choices for Streamlined Nested Parallelism Support

A central design choice for our lightweight nested parallelism support is the

adoption of a fixed thread pool (FTP) approach. At boot time we create as many

threads as processors, providing them with a private stack and a unique ID

(matching the hosting processor ID). We call these threads persistent, because

they will never be destroyed, but will rather be re-assigned to parallel teams as

needed. Persistent threads are non-preemptive. We promote the thread with

the lowest ID as the global master thread. This thread will be running all the

time, and will thus be in charge of generating the topmost level of parallelism.

9

The rest of the threads are docked on the global pool, waiting for a master

thread to provide work. At startup, all the persistent threads other than the

global master (hereafter called the global slaves) execute a microkernel code

where they first notify their availability on a private location of a global array

(Notify-Flags, or NFLAGS), then they wait for work to do on a private flag of

another global array (Release-Flags, or RFLAGS). To minimize the probability

of banking conflicts on the TCDM when multiple processors are accessing these

data structures, we allocate them in such a way that consecutive elements of

the arrays are mapped on contiguous memory banks. In this way each processor

insists on a different TCDM bank. The status of global slaves on the thread

pool (idle/busy) is annotated in a third global array, the global pool descriptor.

When a master thread encounters a request for parallelism creation, it fetches

threads from the pool and points them to a work descriptor.

Besides the global data structures above described, each thread team has an

associated team descriptor. This data structure relies on a simple bitmask to

describe the composition of the nested teams. The mask has as many bits as

the number of persistent threads. Bits corresponding to the IDs of the threads

belonging to the team are set to 1. This allows multiple coexisting teams by

masking only the fields of the global data structures that are of interest for the

current team, as shown in Fig. 3. Furthermore, the use of bitmasks allows to

0 0

Master Slaves

1 0 00 1 1
Team

mask

x x 1 x xx - 1NFLAGS

GLOBAL SLAVE

No�fy

Availability

(1=available)

Wait for

new work

GLOBAL MASTER

Gather

Workers

Release

workers

Significant

flags

x x 0 x xx - 0RFLAGS

Writes

Reads

TEAM_DESC

Fill work

descriptor

Read descriptor

Busy wai�ng

void ** fn

void * data

BITMASK team_mask

char LCL_THR_IDS[]

char PST_THR_IDS[]

TEAM_DESC * parent

THREAD INFO

TEAM INFO

Team descriptor

Figure 3: Thread docking, synchronization and team descriptor

10

quickly inspect the status of individual threads and update team composition

through fast bitwise logic operations.

A more detailed description of the team descriptor and its data structures

is provided in the following.

3.1.1. Forking threads

Nested parallelism allows multiple threads to concurrently act as masters and

create new thread teams. The first information required by a master to create

a parallel team is the status of the global slaves in the pool. As explained, this

information in stored in the global pool descriptor array. Since several threads

may want to concurrently create a new team, accesses to this structure must be

locked.

Let us consider the example shown in Fig. 4. Here we show the task graph

C

E

D

F
A B

TEAM 0

TEAM 1 TEAM 2

t1

t2

Parallel

Loop

�
m

e

t0

E F

t3

Figure 4: Application with nested parallelism

of an application which uses nested parallelism. At instant t0 only the global

master thread is active, as reflected by the pool descriptor in Figure 5. Then

parallel TEAM 0 is created, where tasks A, B, C and D are assigned to threads

0 to 3. The global pool descriptor is updated accordingly (instant t1). After

completing execution of tasks C and D, threads 2 and 3 are assigned tasks E

and F, which contain parallel loops. Thus threads 2 and 3 become masters of

TEAM 1 and TEAM 2. Threads are assigned to the new teams as shown in

11

Fig. 5 at instant t2. Note that the number of slaves actually assigned to a team

may be less than what requested by the user, depending on their availability.

1 0 0 0 00 0 0

TEAM 0

t0

1 1 1 1 00 0 0t1

1 1 1 1 11 1 1t2TEAM 1

TEAM 2

Global Master

(always ac�ve)1

Free threads0

0 1 2 3

0 1 2 3 4 5 6 7 Persistent THREAD ID

0 1

0 1 2

0 1 2

Team-local THREAD ID

Team-local THREAD ID

0 1 2 3 4 5 6 7 Persistent THREAD ID

0 1 2 3 4 5 6 7 Persistent THREAD ID

Figure 5: Global pool descriptor

Besides fetching threads from the global pool, creating a new parallel team

involves the creation of a team descriptor (Fig. 3), which holds information

about the work to be executed by the participating threads. This descriptor

contains two main blocks:

1. Thread Information: A pointer to the code of the parallel function, and

its arguments.

2. Team Information: when participating in a team, each thread is assigned a

team-local ID. The ID space associated to a team as seen by an application

is expressed in the range 0,..,N-1 (N being the number of threads in the

team).

To quickly remap local thread IDs into the original persistent thread IDs and

vice versa, our data structure maintains two arrays. The LCL THR IDS ar-

ray is indexed with persistent thread IDs and holds corresponding local thread

IDs. The PST THR IDS is used for services that involve the whole team (e.g.,

joining threads, updating the status of the pool descriptor), and keeps the dual

information: it is indexed with local thread IDs and returns a persistent thread

ID. Moreover, to account for region nesting each descriptor holds a pointer to

the parent region descriptor. This enables fast context switch at region end.

12

The memory footprint for this descriptor grows with the number N of cores

with the following formula:

F (N)bytes = ceil[
N

8
] + 2N + 12

For the 64-core system implementation considered in this paper a team de-

scriptor occupies 148 Bytes. Once the team master has filled all its fields,

the descriptor is made visible to team slaves by storing its address in a global

TEAM DESC PTR array (one location per thread). Fig. 6 shows a snapshot

of the TEAM DESC PTR array and the tree of team descriptors at instant t2

from our previous example.

Team

Desc 0

Team

Desc 1
Team

Desc 2

Dummy

Team

Desc

PARENT

0x430 0x4300x430 0x460 0x460 0x4600x400 0x400

PARENT

0 1 2 3 4 5 6 7

PARENT

TEAM 0

TEAM 1

TEAM 2

TEAM DESC PTR

0x400

0x430

0x460

Figure 6: Tree of team descriptors to track nesting

3.1.2. Joining Threads

Joining threads at the end of parallel work involves global (barrier) synchro-

nization. Supporting nested parallelism implies the ability of independently

synchronizing different thread teams (i.e., processor groups). To this aim, we

leverage the mechanism described previously to dock threads, which behaves as

a standard Master-Slave (MS) barrier algorithm, extended to selectively syn-

chronize only the threads belonging to a particular team. The MS barrier is a

two-step algorithm. In the Gather phase, the master waits for each slave to no-

tify its arrival on the barrier on a private status flag (our NFLAGS array). After

arrival notification, slaves check for barrier termination on a separate private

13

location (our RFLAGS array). The termination signal is sent by the master in

these private locations during the Release phase of the barrier. Fig. 3 shows

how threads belonging to TEAM 1 (instant t2 of our example) synchronize

through these data structures.

An implementation for a single-cluster architecture of this basic support

infrastructure for nested parallelism has been presented in our earlier work [11].

For more details interested readers are referred to this paper. In the following

sections we describe how the basic concepts illustrated here need to be extended

when multi-cluster architectures with NUMA memory hierarchy are concerned.

3.2. Nested Parallelism on Multi-Clusters

The most straightforward solution to extend the described nested paral-

lelism support to a multi-cluster manycore is that of enlarging data structures

(RFLAGS, NFLAGS, global pool and team descriptors) to accommodate infor-

mation for a very large number of cores, while maintaining an identical, non-

hierarchical mechanism for thread docking and recruiting. This naive extension

leverages centralized data structures and centralized control, and is subject to

two main sources of inefficiencies. First, many operations which depend on the

number of involved slaves are sequentialized on a single (master) thread. Sec-

ond, when we cross the physical boundary of a cluster, NUMA memory effects

impact the cost for team creation and close.

Using nested parallelism provides a natural solution to the first issue. Here,

the global master should be able to create a first (OUTER) team composed

of as many threads as clusters, and to map each of these threads on the first

core of each cluster. These slaves would then become local masters of a nested

(INNER) team on each cluster. This parallelizes the creation of teams spanning

multiple clusters over multiple cluster controllers (local masters).

To deal with the second issue we need to design a mechanism that creates

local team descriptors for the inner regions, confining the accesses to the data

structures within a cluster and preventing NUMA effects. The first modification

in this direction is the distribution of all the runtime support structures. To

14

guarantee locality of bookkeeping operations when inner regions are created, all

these structures must be reorganized per-cluster.

Cluster 0

TCDM

Cluster 1

TCDM

Cluster 2

TCDM

Cluster 3

TCDM

RELEASE FLAGS

(RFLAGS)

NOTIFICATION FLAGS

(NFLAGS)

GLOBAL

THREADS POOL

TEAM DESCRIPTOR

POINTERS

1 0 0…

0 1

0 0 0… 0 0 0 …0 0 0…

1…1 1 …

0 1 n-1

1 0 0…

0 1

0 0 0… 0 0 0 …0 0 0…

0x400

0x400

0x400

…

0

1

m-1

0x400

0x400

0x400

…

0

1

m-1

0x400

0x400

0x400

…

0

1

m-1

0x400

0x400

0x400

…

0

1

m-1

1…1 1 …

0 1 n-1

1…1 1 …

0 1 n-1

1…1 1 …

0 1 n-1

Figure 7: Distributed runtime support data structures

Figure 7 shows how this is done. RFLAGS for all threads on a given cluster

are allocated in the same TCDM. The way “virtual” (team-specific) thread IDs

are calculated is also made cluster-aware. Given M (the number of threads on

a cluster) - and CLid (the cluster ID), RFLAGS on a TCDM are indexed in the

range [CLid ×M ; (CLid + 1)×M − 1].

The global thread pool and per-thread team descriptor pointers are dis-

tributed in the same manner.

NFLAGS must be organized differently, since they are used by team masters

to synchronize with slaves during the join phase. Thus, to ensure that polling

on these flags is always performed on local memory, we replicate the whole

NFLAGS array (one flag per each core in the system) over every TCDM.

Another key feature that we need to support is fetching threads in a cluster-

aware manner during the fork phase. To this end, we modify the team fetch

algorithm to selectively allow scanning the global thread pool with a stride M,

starting from the current master thread ID.

Figure 8 shows the breakdown of fork and join execution time on VirtualSoC

as the total number of threads is increased. Here the OUTER thread team is

15

composed of 4 threads (one per cluster), while the INNER teams have 1 to 16

threads each. We show in the plot as many bars as the number of local mas-

ters. The total time is broken down in three main contributions for both outer

and inner regions: INIT (memory allocation and data structure initialization);

FETCH (thread recruitment) and RELEASE (thread start). All these contri-

butions increase linearly with the number of involved threads, and it is where

we will focus our optimization effort in the next section. The Y-axis reports

execution cycles, but along this direction the plot can be read as a timing dia-

gram. It is possible to notice that the start time of different INNER masters is

not aligned, since creating the OUTER team is done on a single master, which

starts new threads in sequence. This clearly affects the overall duration of the

fork operation and, eventually, of the parallel computation synchronization.

0

1

2

3

4 8 16 32 64

T
im

e
 (

K
cy

cl
e

s)

Outer team INIT Outer team FETCH Outer team RELEASE

Inner team INIT Inner team FETCH Inner team RELEASE

OpenMP call OVERHEAD

0

0,5

1

1,5

4 8 16 32 64

T
im

e
 (

K
cy

cl
e

s)

Inner team GATHER Inner team CLOSE Inner team UPDATE

Outer team CLOSE Outer team UPDATE

Threads

FORK

JOIN

Figure 8: Execution cycles scaling for explicit nesting. One bar per cluster (local master).

Overall, the time to fork a 64-thread team is ≈2700 cycles. This is 33%

faster compared to the naive centralized approach.

For the join operation we measure the contribution for three main phases:

GATHER (verify that all threads have joined), CLOSE (dispose of allocated

memory and data structures) and UPDATE (point global data structures to

16

current parallel team). In this case GATHER increases linearly with the number

of threads, which is what we try to minimize in the following.

Overall, joining 64 threads has a cost of ≈800 cycles, which is 20% faster

compared to the centralized approach.

0

1

2

3

4 8 16 32 64

T
im

e
 (

K
cy

cl
e

s)

Outer team INIT Outer team FETCH Outer team RELEASE

Inner team INIT Inner team FETCH Inner team RELEASE

OpenMP call OVERHEAD

0

0,5

1

1,5

4 8 16 32 64

T
im

e
 (

K
cy

cl
e

s)

Inner team GATHER Inner team CLOSE Inner team UPDATE

Outer team CLOSE Outer team UPDATE

Threads

FORK

JOIN

Figure 9: Execution cycles scaling for explicit nesting on STHORM. One bar per cluster (local

master).

Results for this same experiment running on the STMicroElectronics

STHORM development board are shown in Figure 9. Overall, it is possible

to see that the fork cost for 64 threads increases to ≈3000 cycles (10% higher

than VirtualSoC). This is mainly due to the higher cost for the memory allo-

cation primitives provided with the official STHORM SDK, which we did not

optimize. This effect is even more evident for the join operation, where the

free primitives issued by multiple threads are sequentialized on a single clus-

ter controller processor. By optimizing the memory management libraries on

the STHORM SDK we could clearly achieve nearly identical results to those

obtained on the VirtualSoC simulator.

17

3.2.1. Hardware-accelerated nested parallelism

From Figure 8 we see that during the concurrent creation of the INNER

(nested) parallel teams, there are basically three sections of the algorithm that

require linearly increasing time with the number of slaves, and which deserve

more attention. Thread fetch and release for the fork phase, and thread gather

for the join phase, as shown in the leftmost plot in Figure 10.

Threads

C
y

cl
e

s
x

 1
0

0

0

1

2

3

4

5

6

7

8

1 2 4 8 16 1 2 4 8 16

SW HW

fetch (FORK)

release (FORK)

gather (JOIN)

Figure 10: Execution cycles scaling of fork and join.

It has to be observed that:

1. during release the team master sequentially writes into RFLAGS (one

write per slave). This could be made a constant-time operation having

the ability to broadcast this information to all the slaves at the same time.

2. during gather the team master sequentially checks that all slaves have

written into NFLAGS. This could be made a constant-time operation

having the ability to put the team master in sleep and notify it when

all slaves have joined.

3. during fetch the team master i) sequentially selects slaves to recruit by

inspecting their status, then ii) points them to the team descriptor by

writing the address into each slave’s field of the TEAM DESC PTR ar-

ray. ii) could also be made a constant-time operation if the broadcast

mechanism mentioned above allowed 32-bit word broadcast.

To this aim, we enhance our simulation infrastructure with a hardware syn-

18

chronizer (HWS) block that implements the discussed features. The HWS is

implemented as a functional SystemC module annotated with timing informa-

tion extracted from a HW implementation based on our previous work [14].

Each cluster in the system integrates a HWS block, which can be configured

via memory-mapped registers to broadcast signals (or one 32-bit word) to a set

of processor in a cluster, identified by a bitmask. Hierarchically interconnected

HWS blocks allow inter-cluster synchronization.

The rightmost plot in Figure 10 shows the execution time scaling for the most

critical parts of fork and join using the hardware-accelerated primitives. The

HWS allows to make release and gather constant-time operations, comparable

to the cost of SW primitives for 4 threads. The word-broadcast feature allows to

speed up thread fetch by ≈13% on the fast on-cluster interconnection considered

in this work. This value would significantly increase if a slower interconnection

medium was considered (e.g., a NoC).

We obtain the results shown in Figure 11 for the HW-accelerated nested

parallelism support. Comparing to Figure 8, the HWS allows a net reduction of

≈10% and ≈28% of the fork and join time, respectively. Moreover, the HWS

allows perfectly aligned start time of the nested teams on various clusters, which

has a significant impact on overall parallel region duration.

Function call overhead (time spent invoking primitives for fork and join) and

inner team init (time spent to allocate memory for the inner team descriptor

and populate it) are two important contributors to overall fork/join cost. In the

common case where the goal is to spawn a parallel region that involves all the

cores in the system, we can avoid those costs. In fact, all the threads/cores need

to be pointed to a unique team descriptor and destroyed jointly. To that aim we

provide dedicated functions to transparently synchronize threads and clusters

in a hierarchical manner, without the need for explicit calls to outer level and

inner level parallelism creation functions. Figure 12 shows the fork/join cost

when these functions are used. Overall, a net reduction of ≈37% and ≈36% of

the fork and join time, respectively, is achieved compared to SW.

19

0

1

2

3

4 8 16 32 64

T
im

e
 (

K
cy

cl
e

s)
Outer team INIT Outer team FETCH Outer team RELEASE

Inner team INIT Inner team FETCH Inner team RELEASE

OpenMP call OVERHEAD

0

0,5

1

1,5

4 8 16 32 64

T
im

e
 (

K
cy

cl
e

s)

Inner team GATHER Inner team CLOSE Inner team UPDATE

Outer team CLOSE Outer team UPDATE

Threads

FORK

JOIN

Figure 11: Execution cycles scaling for explicit nesting with HW support

3.2.2. NUMA-aware nested parallelism in OpenMP

Due to the relevance of affinity control in the context of ccNUMA machines,

the OpenMP architecture review board has included in the recent specification

v4.0 the definition of a new proc bind construct, to be coupled to the parallel

directive.

proc_bind (master | close | spread)

The master policy assigns every thread in the team to the same place as the

master thread. The close policy assigns the threads to places close to the place

of the parent’s thread. The master thread executes on the parent’s place and the

remaining threads in the team execute on places from the place list consecutive

from the parent’s position in the list, with wrap around with respect to the place

list. The spread policy creates a sparse distribution for a team of T threads

among the P places of the parent’s place partition. It accomplishes this by first

subdividing the parent partition into T subpartitions if T is less than or equal

to P, or P subpartitions if T is greater than P. Then it assigns 1 (T≤P) or a

set of threads (T>P) to each subpartition. The subpartitioning is not only a

20

0

1

2

3

4 8 16 32 64

T
im

e
 (

K
cy

cl
e

s)
Outer team INIT Outer team FETCH Outer team RELEASE

Inner team INIT Inner team FETCH Inner team RELEASE

OpenMP call OVERHEAD

0

0,5

1

1,5

4 8 16 32 64

T
im

e
 (

K
cy

cl
e

s)

Inner team GATHER Inner team CLOSE Inner team UPDATE

Outer team CLOSE Outer team UPDATE

Threads

FORK

JOIN

Figure 12: Execution cycles scaling for implicit nesting with HW support

mechanism for achieving a sparse distribution, it is also a subset of places for a

thread to use when creating a nested parallel region.

We believe that such an extension could also be very useful to mitigate

NUMA effects within a cluster-based manycore SoC with explicitly managed

memory hierarchy. Thus, we implemented the proposed extension and inte-

grated our framework for lightweight nested fork/join in the OpenMP runtime

library. In Section 4 we describe how this simple extension allows to control

nested thread management so as to achieve regular data behavior and to ex-

tract high degrees of fine-grained parallelism.

3.2.3. Multi-level nesting

In the previous sections we have discussed the optimization of the support

for two-level nested parallelism, which is the most common case for deploying

computation with high data locality in out target system. However, our frame-

work is capable of supporting multiple levels of parallelism nesting. In this

section we use the EEPC benchmarks [15] to characterize the cost of nesting

up to 5 OpenMP parallel regions. The original methodology has been extended

21

to account for nested parallel regions as described in [16]. This methodology

basically computes runtime overheads by subtracting the execution time of the

parallel microbenchmark from the execution time of its reference sequential im-

plementation. The parallel benchmark is constructed in such a way that it

would have the same duration of the reference in absence of overheads.

In Fig. 13 we show the task graph representation of the microbenchmarks

used to assess the cost of nested parallelism with depth 1 and 2, as an example.

The computational kernel (indicated as W in the plots) is composed uniquely

WW WW

get_cycle()

get_cycle()

WW WWWW WW

PAR

WW WW

get_cycle()

SEQ

W = workload

W

get_cycle()

= overhead

A

WW WW

W

get_cycle()

get_cycle()

WW

W

WWWW

W

WW

PAR

WW WW

W
get_cycle()

SEQ

W = workload

W

= overhead

W

B

get_cycle()

Figure 13: EEPC microbenchmark for nested parallelism overhead assessment. A) 1 level, B)

2 levels

of ALU instructions, to prevent memory effects from altering the measure. We

consider a simple pattern where a parallel region is opened, then the block W

is executed. This pattern is nested up to 5 times. The thick gray lines in our

plots represent the sources of overhead that we intend to measure.

The difference between the parallel and sequential versions of the mi-

crobenchmark represents the total overhead for opening and closing as many

parallel regions as the nesting depth indicates.

Figure 14 shows this overhead for varying granularities of the work unit (W).

The upper plot refers to VirtualSoC, the bottom plot to STHORM. There are

22

as many curves as the considered levels of nesting.

0

4

8

12

.01 2 4 6 8 10 12

C
y

cl
e

s
[x

1
0

0
0

]

[cycles x 1000]

VirtualSoC

1-lv

2-lv

3-lv

4-lv

5-lv

0

4

8

12

.01 2 4 6 8 10 12

C
y

cl
e

s
[x

1
0

0
0

]

[cycles x 1000]

STHORM 5-lv

1-lv

2-lv

3-lv

4-lv

Figure 14: Cost of multi-level nested parallelism

The total number of threads created for each experiment is always 64 (all the

processors in the system are involved in parallel computation). For example,

the curve marked as 1-lv refers to the experiment where we create a single

parallel region composed of 64 threads. The 2-lv experiment considers two

nested parallel regions with 4 spread threads on the first level and 16 close

threads on the second. The 5-lv experiment considers an outermost parallel

regions with 4 spread threads and 4 nested parallel regions composed of 2 thread

each.

Using NUMA-aware nested parallelism is always faster than single-level par-

allelism in cluster-based architectures. As we already discussed in Section 3.2,

this is expected, since single-level parallelism creation beyond a single cluster

involves a significant number of remote NUMA memory transactions. When the

granularity of the parallel workload is very small (tens to few hundreds of cycles)

the cost for nested parallelism creation has a slightly higher overhead, mostly

due to contention for shared data structures (the accesses to these structures

from multiple masters trying to concurrently create additional parallelism are

sequentialized). However, for workload granularities in the order of thousand

23

cycles and above these overheads are fully amortized.

With respect to VirtualSoC, the prototype STHORM implementation has

slightly higher cost for multi-level nested parallelism support. As already men-

tioned previously, this is largely due to the lack of optimization for on-chip

memory allocation primitives. The STHORM SDK provides centralized mem-

ory allocation services (i.e., requests for memory allocation from multiple mas-

ters are diverted to a single cluster controller, which services the requests in a

FIFO manner). This implies that most of the initialization phases in our nested

parallelism support library have bigger fixed (i.e., independent of the size of the

parallel region) costs on STHORM. These costs become relevant when the size

of the thread team being created is small.

3.3. Nested parallelism support cost scaling

Table 2 summarizes how the cost for a fork/join operation for different ap-

proaches scales with the number of cores involved. Flat parallelism scales lin-

early with the number of cores in the platform; for 64 cores fork/join cost reaches

8.5KCycles. Nested fork/join shows better scalability considering that a part of

the computational cost to recruit/park threads is parallelized among different

clusters. The cost thus increases linearly with the number of clusters plus the

number of cores per cluster, rather than with the total number of cores.

Pattern Scaling
Number of cores

2 4 8 16 32 64

Flat O(Cores) 0.4 0.5 0.9 1.7 3.6 8.5

Nested O(Clusters + Cores

Clusters
) 1.6 2.3 2.3 2.5 2.9 3.4

Nested HW O(Clusters + Cores

Clusters
) 1.7 2.3 2.3 2.4 2.6 2.9

Implicit Nested HW O(Clusters + Cores

Clusters
) 1.1 1.5 1.6 1.7 1.8 2.1

Table 2: Fork/Join cost [KCycles] scaling increasing the number of cores using different parallel

patterns.

24

4. Benchmarks

In this section we validate our nested parallelism support runtime for NUMA

embedded manycores using six benchmarks (summarized in Table 4) from the

computer vision, image processing and linear algebra domain, typically targeted

by the manycore accelerators considered in this work. Such applications employ

a regular computation and memory access structure, but deploying the parallel

workload on all the available cores with no awareness of the clustered platform

organization (referred to as “flat” parallelization) leads to varying execution

times for nominally identical threads. This irregular behavior is consistently

observed for every benchmark, due to the OpenMP memory model and lack of

NUMA-awareness in the flat parallelization scheme.

FAST Corner detector

CT Object tracking based on a specific color

Mahalanobis Mahalanobis distance between two point clouds

Strassen Matrix multiplication using Strassen decomposition

NCC Normalized cross-correlation algorithm

SHOT 3D descriptor for surface matching. Two main kernels:

1) local reference frame radius; 2) histogram interpola-

tion

Table 3: Benchmarks

In the following, we first provide details about the various parallelization

schemes used in the evaluation, using the Color Tracking application as an

example. Second, we show the speedup achieved by all the benchmarks when

various approaches are adopted to deploy parallelism over the whole manycore

platform.

4.1. Parallelization Patterns

To parallelize the six target benchmarks we have used a couple of patterns,

enabled by the availability of NUMA-aware nested parallelism support. As an

25

#pragma omp parallel
{

for(stripe = 0;
stripe < N_STRIPES;
++stripe){

#pragma omp master
{ dma_in(in[stripe]); }

CSC (in[stripe], tmp1[stripe]);

cvTHR (tmp1[stripe], tmp2[stripe]);

cvMOM (tmp2[stripe], xy[stripe]);

}

#pragma omp barrier

for(stripe = 0;
stripe < N_STRIPES;
++stripe){

#pragma omp master
{ dma_in(in[stripe]);

dma_in(track[stripe]); }

cvADD (in[stripe], track[stripe], out[stripe]);

#pragma omp master
{ dma_out(out[stripe]); }

}

}

A

B

Stripe 0 Cl0

Stripe 1 Cl0

Stripe 2 Cl0

Stripe 3 Cl0

Stripe 4 Cl0

Stripe 5 Cl0

Stripe 6 Cl0

Stripe 7 Cl0

void CSC(in, tmp1) {

#pragma omp for
for(i = 0; i < … ; i++){

[A L G O R I T H M]

}

}

void cvTHR(tmp1, tmp2) {

#pragma omp for
for(i = 0; i < … ; i++){

[A L G O R I T H M]

}

}

void cvMOM(tmp2, xy) {

#pragma omp for
for(i = 0; i < … ; i++){

[A L G O R I T H M]

}

}

void cvADD(in1, in2, out) {

#pragma omp for
for(i = 0; i < … ; i++){

[A L G O R I T H M]

}

}

R R

R R

PE0

TCDM
LOCAL

DATA

PE15

TCDM

PE31PE16

TCDM

PE47PE32

TCDM

PE64PE48

flat parallel thread team

Figure 15: Flat parallelization scheme.

example, we illustrate in the following how we have partitioned and parallelized

Color Tracking with the various schemes.

Color-based tracking consists of a cascade of four functional kernels. Color

space conversion (CSC), threshold-based color filter (cvTHR), motion vector cal-

culation (cvMOM) and motion vector to reference frame addition (cvADD).

Input and output frames are stored in the main memory, as well as the

temporary output buffers for every kernel. To improve locality of computation,

data must be moved to TCDMs using the DMA engine. To achieve efficient

data transfers we use standard double buffering techniques. The input image

is split in several stripes; while one stripe is being processed the next one can

be pre-loaded to the TCDM. The same mechanism is used for output data.

The size of stripes is an important parameter to achieve efficiency, and strictly

depends of the parallelization strategy.

26

4.1.1. Flat Parallelization

In the flat parallelization scheme only one single level of parallelism is cre-

ated, i.e., only one parallel thread team. Logically, we are abstracting the plat-

form as a flat (i.e., assumed homogeneous computing and memory resources)

team of 64 threads, headed by the master thread mapped on PE 0 within cluster

0. As the code snippet in Figure 15 shows, the master thread is responsible for

bringing in and out data from the main memory into the local TCDM (DMA

primitives are enclosed within a #pragma omp master directive). However,

since the parallel team spans multiple clusters, threads belonging to clusters 1,

2 and 3 will experience longer memory access (the corresponding transactions

are transported through the NoC).

4.1.2. Nested data parallelization

The second recurrent parallelization pattern in our application kernels dis-

tributes single-program, multiple-data computation all over the available cores

in the system. Figure 16 shows the pseudo code for the data-parallelization

pattern. A first level of parallelism creates as many threads as clusters.

Associating the proc bind clause to this parallel region ensures that the four

threads are mapped on different clusters (local masters). Data parallelism

is implemented at the stripe level within each cluster by exploiting a second

level of parallelism. To improve the computation to communication ratio

(CCR) we merge the CSC, cvThresh and cvMOM kernels into a single kernel. As

already explained, cvADD can not be merged with the previous kernels because

it requires as an input the motion vectors for the whole image. A barrier is

required between the two nested parallel regions, since the barrier implied at

their end would only synchronize threads within each cluster independently (no

inter-cluster synchronization).

Again, if the proc bind clauses were not used, the composition of the nested

teams would still span multiple clusters and NUMA effects would still be present.

27

#pragma omp parallel num_threads(4) \

{

#pragma omp for

{

dma_in(in[stripe]);

CSC (in[stripe], tmp1[stripe]);

cvTHR (tmp1[stripe], tmp2[stripe]);

cvMOM (tmp2[stripe], xy[stripe]);

}

dma_in(in[stripe]);

dma_in(track[stripe]);

cvADD (in[stripe], track[stripe], out[stripe]);

dma_out(out[stripe]);

}

}

B

CL0

NI

CL2
NI

CL1

NI

CL3
NI

A

EG

A

EE

A

EF

A

EH

B

EG

B

EE

B

EF

B

EH

Stripe 0 Cl0

Stripe 1 Cl1

Stripe 2 Cl2

Stripe 3 Cl3

Stripe 4 Cl0

Stripe 5 Cl1

Stripe 6 Cl2

Stripe 7 Cl3

proc_bind(spread)

for(stripe = 0;
 stripe < N_STRIPES;
 stripe++)

{

for(stripe = 0;
 stripe < N_STRIPES;
 stripe++)

#pragma omp for

void <KERNEL> (args)
{

#pragma omp parallel for \

for(i = 0; i < … ; i++)
[A L G O R I T H M] }

num_threads(16) \
proc_bind(close)

{

A

Figure 16: Nested data parallel color tracking.

4.2. Evaluation of Nested Parallelism Support

In this Section we evaluate the effectiveness of our nested parallelism sup-

port, comparing the performance of the various presented policies to spawn

parallelism throughout the whole platform:

1. Flat - A single parallel region of 64 threads is created (no nesting);

2. Nested (non-NUMA) - Two nested parallel regions are created, but

with no use of the proc bind clause (no NUMA awareness);

3. Nested (NUMA) - Two nested parallel regions are created, using the

proc bind clause (NUMA-aware nesting);

4. Nested HW (NUMA) - Same as before, with HW-accelerated nesting

support.

Note that all the policies are evaluated on the same lightweight implementation

presented in Section 3, so the focus here is on the effect of NUMA-aware core

28

0

16

32

48

64

A (small) A (large) B (small) B (large) Chess

(small)

Chess

(large)

1 2

Color

Tracking

FAST Mahalan Strassen NCC SHOT AVG

S
p

e
e

d
u

p

Flat Nested (non-NUMA) Nested (NUMA) Nested HW (NUMA)

Figure 17: Comparison of various approaches to nested parallelism support.

binding2. As a main metric of performance we consider speedup of the parallel

application versus the sequential.

Results for this experiment are shown in Figure 17. The flat parallelization

scheme, as expected, severely limits the maximum achievable speedup, due to

irregular memory behavior among nominally identical threads. It is interest-

ing to note that NUMA-unaware nesting can exhacerbate this irregularity and

achieve poorer locality that the flat scheme. Indeed, besides poor data locality,

in this case we are sistematically enforcing costly inter-cluster communication

due to thread management (i.e., implied by fork/join of parallel regions spanning

multiple clusters). This confirms that the ability of creating nested parallelism

alone is not sufficient to achieve good performance, if it is not augmented with

NUMA-awareness. When nesting is made NUMA-aware we can achieve up to

63× speedup (46× on average). This solution can get up to 28× faster than

flat parallelism (for Color Tracking, 7× on average). HW-accelerated nesting

improves SW-only nesting by ≈20% for very fine-grained and short-running

workloads (FAST, small images).

Some benchmarks leverage very fine-grained parallelization, for which the

overhead introduced by runtime support for nested parallelism has a higher

impact. This is the case of FAST [17]. FAST is a corner detection algorithm,

which operates by comparing the intensity value of a target image point px with

all the surrounding pixels in a circular area. px is classified as a corner if there

2For the effect of NUMA-aware thread management see the previous Section 3.2.

29

exists a set of contiguous pixels within the circle that are all brighter (minimum)

or darker (maximum) of px (within a tolerance threshold). The parallelization

pattern adopted here is the same already shown in Figure 16, but in this case

only one parallel region is required. The granularity of the workload distributed

to parallel threads in FAST depends of two parameters: i) overall duration

of the computation and ii) corner density (number of corners detected). To

allow studying the impact of these factors on the overall speedup we perform

experiments on two types of images. The first is a chess pattern, which we use as

a sort of synthetic use-case, useful to understand the scalability of the algorithm

when increasing the size of the input image. We consider the following image

sizes: 32×32, 64×64, 128×128, 256×256 and 512×512 pixels. For this type of

image the corner density is 15%. The ratio between the number of corners and

the total number of pixels remains constant when scaling the image, but the

amount of processed pixels increases, which has an effect on the granularity of

the parallel work, and – consequently – on the parallelization overhead. The

second type of image is a real urban traffic scene, representative of what could

be captured by a camera on a driver assistance system, showing the road and

cars and buildings on the background. Typically, these real-life images have

much lower corner density. We consider two real images with corner density

1,5% and 6%, respectively, in two sizes: small (320×240) and large (640×480).

In Figure 18 we show the execution time and speedup for the experiment

with the synthetic image pattern when increasing the input image size. We

show normalized execution cycles (bars, left Y-axis) and speedup (lines, right

Y-axis) for HW-accelerated nested parallelism versus sequential execution. For

image sizes around 256×256 the speedup gets closer to the ideal one (≈60×).

Figure 19 shows the results for the two real images. Image A (≈ 1.5%

corner density) reaches up to 27× and 46× speedups for small and large images,

respectively. Image B (≈ 6% corner density) reaches 35× and 50× speedups.

Since the computation time varies depending on whether the current pixel

is a keypoint or not, and being the keypoints clustered in specific regions of the

image, some load imbalance between parallel threads is present. This is shown

30

C
y

cl
e

s
(n

o
rm

a
li

ze
d

)

 chess pa�ern

(32x32)

0

16

32

48

64

.000

.025

.050

.075

FAST (high corner density case)

Image size
S

p
e

e
d

u
p

Cycles Speedup

Figure 18: FAST performance for Chess pattern images.

in the bottom part of Figure 19, where we indicate the variance in execution

time among threads.

Overall, the results demonstrate that our nested parallelism support layer

is capable of extracting high degrees of parallelism even for very fine-grained

workloads.

4.3. Impact of fork/join on application scalability

In Table 2, at the end of Section 3, we have shown the fork/join cost scal-

ing for our nested parallelism support. The way this impacts the speedup of

real applications depends of the granularity of the parallel workload. As a last

experiment, we have measured the duration of parallel regions in each bench-

mark for increasing core count and matched the numbers to those reported in

Table 2. Figure 20 shows the impact of the fork/join overhead on real work-

loads for various core counts when using HW-accelerated nested parallelism.

In general, reducing the number of cores i) reduces fork/join cost; ii) increases

the granularity of parallel regions (the same amount of work is shared between

less workers). Thus, the results for parallelization over 64 cores (what we have

shown previously in this section) represent the worst case in terms of overhead

impact. Even in this case, it is possible to see that fork/join overhead is always

31

FAST (real images)

A

B

Cycles Speedup

C
y

cl
e

s
(n

o
rm

a
li

ze
d

)

S
p

e
e

d
u

p

A
 (s

m
al

l)
A

 (l
ar

ge)

B
 (s

m
al

l)
B

 (l
ar

ge)

C
y

cl
e

s
x

 1
0

0
0

0

0

16

32

48

64

.00

.02

.04

.06

.08

0

5

10

15

Figure 19: FAST performance for real images.

negligible.

In conclusion, in terms of application scalability for all the benchmarks con-

sidered in this work fork/join does not impact at all the scalability of the em-

ployed parallelization scheme.

5. Related Work

There are two main research areas related to the work presented in this

paper: support for scalable thread fork/join in large systems considering multi-

level parallelism, and management of fork/join parallelism in NUMA systems.

We describe related work in the two areas in separate sections.

5.1. Nested Parallelism Support

Nested parallelism can be implemented in different ways [23] [24] [25] [26]

[27]. In the literature many techniques exist, which can be categorized into two

main approaches:

32

2 4 8 16 32 64

Color Tracking 0,02% 0,06% 0,12% 0,26% 0,61% 1,43%

FAST 0,00% 0,00% 0,00% 0,01% 0,02% 0,05%

Mahalanobis 0,00% 0,01% 0,01% 0,03% 0,06% 0,14%

Strassen 0,00% 0,00% 0,00% 0,01% 0,01% 0,04%

NCC 0,00% 0,00% 0,01% 0,02% 0,04% 0,10%

SHOT1 0,00% 0,01% 0,02% 0,03% 0,08% 0,18%

SHOT2 0,01% 0,02% 0,04% 0,10% 0,22% 0,52%

core count

Figure 20: Impact of fork/join overhead for real benchmark as the number of cores is scaled.

Dynamic thread creation (DTC): whenever the application asks

for additional parallelism, it is mapped on a lightweight thread from some

standard package (e.g., pthreads). This approach allows very flexible creation

of parallelism as needed, but it is very expensive [18] [20] [21]. Table 4 shows

the cost (in cycles) to fork and join a thread team for different approaches.

The last column of the table shows normalized cycles for 16 cores, to allow

for a direct comparison to our own solution. The first four rows show several

implementations that realy on DTC. On average this approach has ≈32×

higher overheads compared to us (and up to ≈113×).

Fixed thread pool (FTP): A fixed number of lightweight threads

(typically as many as the number of processors) is created at system startup

and constitute a fixed pool of workers. When a program requests the creation

of parallelism, threads are fetched from the pool [28] [22] [19]. If the number

of logical threads created at an outermost parallel construct is less than the

number of threads in the pool, some of them will be left unutilized and available

for nested parallelism. The last four rows of Table 4 show fork/join cost for

FTP solutions published in literature. While being much faster than DTC,

state-of-the-art FTP solutions have on average ≈6× higher overheads compared

to us (and up to 14×).

33

Ref. Architecture Kind #Cores

Fork/Join Projected

Cost 64-core Cost

(KCycles) (KCycles)

[18] Intel Xeon Phi DTP 240 ≈1700 453.6

[19]

Intel Xeon X5650 GCC

DTP

8 ≈5.7 45.6

Intel Xeon X5650 ICC 8 ≈4.3 34.4

Samsung Exynos 4412 4 ≈2.4 38.4

TI ARMA15 CorePac 4 ≈3.4 54.4

[20] Intel Xeon X5355 DTP 4 ≈9.3 148.8

[21] IBM Cyclops-64 FTP 160 ≈30 12

[22] STM STHORM FTP 16 ≈1.5 6

[19] TI c66x DSP FTP 8 ≈7.1 56.8

This work FTP 64 ≈4 4

Table 4: Fork/Join cost and projected cost for 64 cores for several implementations [KCycles].

There also are many hybrid approaches, which combine in some ways DTC

and FTP. Some techniques start with a FTP approach, and dynamically create

new threads when there are no idle workers on the pool [21]. Other solutions

leverage thread creation at the outermost level of parallelism, where the com-

putation is assumed to be coarse enough to amortize the overhead, and a simple

work descriptor shared by threads at the innermost level of parallelism [23] [29].

The work from Tanaka et al. [27] relies on a fixed thread pool, but allows

multiple logical threads to be mapped on a single physical thread and maintains

a work queue from which threads which become idle can fetch (or steal) work.

The latter approach is based on the widely adopted abstraction of a work queue

[30][31], and is an orthogonal technique to nesting. OpenMP itself, since specifi-

cation v3.0, provides tasks or dynamic loop scheduling, also based on the notion

of a work queue, which allow to specify work units at a finer granularity than

threads. In these programming models, once a thread team has been defined,

34

to extract more parallelism it is not necessary to create additional threads: the

more lightweight abstraction of the work queue allows existing threads to push

and fetch work from there. This offers in many situations a more flexible means

to creating parallelism than that offered by nesting alone.

However, while work queues allow very flexible parallelism creation, they do

not support the logical clustering of threads in the multilevel structure, which

is key to achieving data locality and balancing of static workload partitioning.

When considering the cluster-based design of our target architecture, the ca-

pability of confining a thread team within the boundaries of a cluster is key

to achieve locality and balancing. We thus believe that a lightweight support

for the creation of nested thread teams is fundamental to enabling fine-grained

parallelism. In this paper we present our streamlined and optimized implemen-

tation of nested parallelism. Work queue-based parallelism can orthogonally be

provided within our support.

5.2. Thread Affinity Control for NUMA Systems

Thread binding and affinity are major concerns on NUMA architectures,

and in literature different approaches and programming model extensions exist

to deal with this issue. OpenMP is a powerful and easy-to-use programming

model for shared memory multiprocessors, but it has no awareness of the un-

derlying memory system organization. Early solutions to this problem were

offered inside specific software development environments. All these solutions

use core identifiers and environment variables to specify the binding between

cores and threads. GNU and Intel compilers provide environment variables

(GOMP CPU AFFINITY and KMP AFFINITY) to specify a list of CPUs to which to

bind threads. These variables enumerate a set or a range of core IDs where the

threads are allowed to be placed. The Intel compiler also provides two speci-

fiers: scatter and compact, which define how the threads must be allocated

to cores. This is similar to the OpenMP extension that we consider in this pa-

per, but it works well only for a single level of parallelism, because the thread

binding policy cannot be changed at runtime. Moreover, thread to processor

35

binding ultimately relies on costly operating system primitives such as linux

sched setaffinity, which can not be used on the manycore systems targeted

in this paper, for two reasons. First, the lack of full-fledged operating systems.

Second, the necessity of supporting very fine-grained parallel workloads, which

can not tolerate high-overheads for parallelism creation. The PGI compiler [32]

enables thread binding via the MP BIND variable. The user specifies on a second

variable (MP BLIST) the core list where the threads can be allocated.

Extensions to the Intel compiler (the subscatter and subcompact policies)

have been proposed to manage thread binding for nested parallel regions [33].

However, the bind mechanism is still based on environment variables, which

makes it difficult to use and to change at runtime.

A more generic approach extends the standard processor GROUP to repre-

sent complex hierarchical memory architectures and allows the programmer to

assign work to these groups [34]. The main limitation of this solution is that

it puts on the programmer the burden of in-depth hardware knowledge and

exploitation.

ForestGOMP[35] introduces a different notion of thread groups, called bub-

bles. These bubbles can have a hierarchical structure to describe a nesting rela-

tion. A scheduler (BUBBLESCHED) assigns the threads to specific cores of the

system taking NUMA concerns into account, then a thread stealing mechanism

allows to change the mapping and migrate threads as necessary. A disadvantage

of this approach is that it is hard for the programmer to understand what the

scheduler does, and thus to optimize the code.

A recent work from Eichenberger et al. [36] tries to put together previous

approaches in a more generic, portable and flexible way. Two basic concepts

are defined: places and affinity. The first describes the platform topology and

memory hierarchy, defining a set of places where the threads can be allocated;

the second allows to implement different allocation patterns throughout the

places: spread maximizes the distance between places and compact puts all

threads in a single place.

We implement the affinity control directives proposed in OpenMP v4.0, and

36

integrate our lightweight support to nested parallelism in the runtime library.

6. Conclusion

To scale to the manycore paradigm several recent embedded MPSoCs have

been architected as fabrics of tightly-coupled, shared memory clusters. Key to

extract the massive peak parallelism offered by these systems is the availability of

an easy-to-use yet powerful programming model and associated runtime layer.

When considering the computing systems at hand, two main concerns arise.

First, since the target platform is typically meant to run very fine-grained par-

allel workloads, it is fundamental to provide very lightweight primitives to create

and manage parallelism over a very large number of cores. Second, since cluster-

based manycores feature NUMA memory architectures, the runtime system and

the programming model should be made aware of this hardware peculiarity to

prevent scalability bottlenecks and performance blockers.

Nested parallelism provides an intuitive conceptual framework to address

the second point, provided that i) an efficient implementation of the first is

available and ii) the capability of binding thread teams to specific cores and

clusters is provided. In this paper, we have presented an efficient runtime layer

for nested parallelism on cluster-based embedded manycores, identifying the

most critical operations to fork and join nested parallelism, and proposing SW-

only and HW-accelerated solutions for their implementation. Our fork/join

primitives have been integrated in the OpenMP programming model, and the

associated compiler implements an extension to expose an abstract notion of

clusters at the programming interface level, which makes nested parallelism

mapping NUMA-aware.

This extended OpenMP interface allowed us to explore on a set of real ap-

plication use cases how NUMA affects the performance of flat parallelism, and

how our approach provides control over such effects and achieves up to 28×

speedup versus flat parallelism. In terms of fork/join cost, our solution scales

better than the original flat approach, as it is a function of the number of clus-

37

ters (plus the number of cores in a single cluster) rather than the total number

of cores. In terms of application scalability, for all the benchmarks considered

in this work the impact of fork/join is always negligible and does not affect at

all the scalability of the employed parallelization scheme.

Acknowledgements

This work has been supported by EU FP7 project P-SOCRATES (contract

number: 611016).

References

[1] A. Munir, S. Ranka, A. Gordon-Ross, High-performance energy-efficient

multicore embedded computing, Parallel and Distributed Systems, IEEE

Transactions on 23 (4) (2012) 684–700.

[2] J. Diaz, C. Munoz-Caro, A. Nino, A survey of parallel programming models

and tools in the multi and many-core era, Parallel and Distributed Systems,

IEEE Transactions on 23 (8) (2012) 1369–1386.

[3] Nvidia Inc., NVIDIA Tegra X1 - NVIDIA’S New Mobile Superchip.

[4] Kalray, MPPA 256 - Programmable Manycore Processor, www.kalray.eu/

products/mppa-manycore/mppa-256/.

[5] PEZY Computing, PEZY-SC Many Core Processor,

http://www.pezy.co.jp/en/products/pezy-sc.html.

[6] D. Melpignano, L. Benini, E. Flamand, B. Jego, T. Lepley, G. Haugou,

F. Clermidy, D. Dutoit, Platform 2012, a many-core computing accelerator

for embedded SoCs: performance evaluation of visual analytics applica-

tions, in: Proceedings of the 49th Annual Design Automation Conference,

ACM, 2012, pp. 1137–1142.

[7] OpenMP, ARB, OpenMP application program interface, v. 4.0, no. July,

2013.

38

[8] J. Joven, A. Marongiu, F. Angiolini, L. Benini, G. De Micheli, An in-

tegrated, programming model-driven framework for NoC–QoS support in

cluster-based embedded many-cores, Parallel Computing 39 (10) (2013)

549–566.

[9] G. Mitra, E. Stotzer, A. Jayaraj, A. P. Rendell, Implementation and opti-

mization of the OpenMP accelerator model for the TI Keystone II archi-

tecture, in: Using and Improving OpenMP for Devices, Tasks, and More,

Springer, 2014, pp. 202–214.

[10] B. Chapman, L. Huang, E. Biscondi, E. Stotzer, A. Shrivastava, A. Gath-

erer, Implementing OpenMP on a high performance embedded multicore

MPSoC, in: Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE

International Symposium on, IEEE, 2009, pp. 1–8.

[11] A. Marongiu, P. Burgio, L. Benini, Fast and lightweight support for nested

parallelism on cluster-based embedded many-cores, in: Design, Automation

& Test in Europe Conference & Exhibition (DATE), 2012, IEEE, 2012, pp.

105–110.

[12] H. Xu, J. Tanabe, H. Usui, S. Hosoda, T. Sano, K. Yamamoto, T. Kodaka,

N. Nonogaki, N. Ozaki, T. Miyamori, A low power many-core SoC with two

32-core clusters connected by tree based NoC for multimedia applications,

in: VLSI Circuits (VLSIC), 2012 Symposium on, 2012, pp. 150–151.

[13] D. Bortolotti, C. Pinto, A. Marongiu, M. Ruggiero, L. Benini, VirtualSoC:

A Full-System Simulation Environment for Massively Parallel Heteroge-

neous System-on-Chip, in: IPDPS Workshops, 2013, pp. 2182–2187.

[14] J. L. Abellán, J. Fernández, M. E. Acacio, D. Bertozzi, D. Bortolotti,

A. Marongiu, L. Benini, Design of a collective communication infrastruc-

ture for barrier synchronization in cluster-based nanoscale MPSoCs, in:

Proceedings of the Conference on Design, Automation and Test in Europe,

ACM, 2012, pp. 491–496.

39

[15] J. M. Bull, D. O’Neill, A microbenchmark suite for OpenMP 2.0, ACM

SIGARCH Computer Architecture News 29 (5) (2001) 41–48.

[16] V. V. Dimakopoulos, P. E. Hadjidoukas, G. C. Philos, A microbenchmark

study of OpenMP overheads under nested parallelism, in: OpenMP in a

New Era of Parallelism, Springer, 2008, pp. 1–12.

[17] E. Rosten, R. Porter, T. Drummond, Faster and better: A machine learning

approach to corner detection, Pattern Analysis and Machine Intelligence,

IEEE Transactions on 32 (1) (2010) 105–119.

[18] D. Schmidl, T. Cramer, S. Wienke, C. Terboven, M. S. Müller, Assessing

the performance of OpenMP programs on the Intel Xeon Phi, in: Euro-Par

2013 Parallel Processing, Springer, 2013, pp. 547–558.

[19] E. Stotzer, A. Jayaraj, M. Ali, A. Friedmann, G. Mitra, A. P. Rendell,

I. Lintault, Openmp on the low-power ti keystone ii arm/dsp system-on-

chip, in: OpenMP in the Era of Low Power Devices and Accelerators,

Springer, 2013, pp. 114–127.

[20] P. E. Hadjidoukas, G. C. Philos, V. Dimakopoulos, Exploiting fine-

grain thread parallelism on multicore architectures, Scientific Programming

17 (4) (2009) 309–323.

[21] J. del Cuvillo, W. Zhu, G. Gao, Landing openMP on Cyclops-64: An effi-

cient mapping of openmp to a many-core system-on-a-chip, in: Proceedings

of the 3rd conference on Computing frontiers, ACM, 2006, pp. 41–50.

[22] Y. Lhuillier, M. Ojail, A. Guerre, J.-M. Philippe, K. B. Chehida, F. Thabet,

C. Andriamisaina, C. Jaber, R. David, Hars: a hardware-assisted runtime

software for embedded many-core architectures, ACM Transactions on Em-

bedded Computing Systems (TECS) 13 (3s) (2014) 102.

[23] E. Ayguade, X. Martorell, J. Labarta, M. Gonzalez, N. Navarro, Exploit-

ing multiple levels of parallelism in OpenMP: a case study, in: Parallel

40

Processing, 1999. Proceedings. 1999 International Conference on, 1999, pp.

172 –180.

[24] S. Karlsson, A portable and efficient thread library for OpenMP, in: In

Proc. 6th European Workshop on OpenMP, KTH Royal Institute of Tech-

nology, John Wiley, 2004, pp. 43–47.

[25] X. Martorell, E. Ayguadé, N. Navarro, J. Corbalán, M. González,

J. Labarta, Thread fork/join techniques for multi-level parallelism exploita-

tion in NUMA multiprocessors, in: Proceedings of the 13th international

conference on Supercomputing, ACM, 1999, pp. 294–301.

[26] P. E. Hadjidoukas, V. V. Dimakopoulos, Nested parallelism in the ompi

openp/c compiler, in: Euro-Par 2007 Parallel Processing, Springer, 2007,

pp. 662–671.

[27] Y. Tanaka, K. Taura, M. Sato, A. Yonezawa, Performance evaluation of

openmp applications with nested parallelism, in: Languages, Compilers,

and Run-Time Systems for Scalable Computers, Springer, 2000, pp. 100–

112.

[28] S. N. Agathos, V. V. Dimakopoulos, A. Mourelis, A. Papadogiannakis,

Deploying OpenMP on an embedded multicore accelerator, in: Embed-

ded Computer Systems: Architectures, Modeling, and Simulation (SAMOS

XIII), 2013 International Conference on, IEEE, 2013, pp. 180–187.

[29] M. Gonzalez, J. Oliver, X. Martorell, E. Ayguade, J. Labarta, N. Navarro,

Openmp extensions for thread groups and their run-time support, in: Lan-

guages and Compilers for Parallel Computing, Springer, 2001, pp. 324–338.

[30] N. Brookwood, AMD fusion family of APUS: enabling a superior, immer-

sive pc experience, Insight 64 (1) (2010) 1–8.

[31] V. Nahavandipoor, Concurrent Programming in Mac OS X and iOS: Un-

leash Multicore Performance with Grand Central Dispatch, ” O’Reilly Me-

dia, Inc.”, 2011.

41

[32] The Portland Group, PGI Compiler User Guide, http://www.pgroup.com/

doc/pgiug.pdf.

[33] D. Schmidl, C. Terboven, D. an Mey, M. Bücker, Binding nested OpenMP

programs on hierarchical memory architectures, in: Beyond Loop Level

Parallelism in OpenMP: Accelerators, Tasking and More, Springer, 2010,

pp. 29–42.

[34] G. Zhang, Extending the openmp standard for thread mapping and group-

ing, in: OpenMP Shared Memory Parallel Programming, Springer, 2008,

pp. 435–446.

[35] F. Broquedis, N. Furmento, B. Goglin, P.-A. Wacrenier, R. Namyst, Forest-

GOMP: An Efficient OpenMP Environment for NUMA Architectures, In-

ternational Journal of Parallel Programming 38 (5-6) (2010) 418–439.

[36] A. E. Eichenberger, C. Terboven, M. Wong, D. an Mey, The design of

OpenMP thread affinity, in: Proceedings of the 8th international conference

on OpenMP in a Heterogeneous World, IWOMP’12, Springer-Verlag, 2012,

pp. 15–28.

42

