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Abstract

Upcoming HPC clusters will feature hybrid memories and storage devices per compute node. In this work,

we propose to use the MPI one-sided communication model and MPI windows as unique interface for

programming memory and storage. We describe the design and implementation of MPI storage windows,

and present its benefits for out-of-core execution, parallel I/O and fault-tolerance. In addition, we explore the

integration of heterogeneous window allocations, where memory and storage share a unified virtual address

space. When performing large, irregular memory operations, we verify that MPI windows on local storage

incurs a 55% performance penalty on average. When using a Lustre parallel file system, “asymmetric”

performance is observed with over 90% degradation in writing operations. Nonetheless, experimental results

of a Distributed Hash Table, the HACC I/O kernel mini-application, and a novel MapReduce implementation

based on the use of MPI one-sided communication, indicate that the overall penalty of MPI windows on

storage can be negligible in most cases in real-world applications.
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1. Introduction

Emerging storage technologies are evolving so

rapidly that the existing gap between main mem-

ory and I/O subsystem performances is thinning

[1]. The new non-volatile solid-state technologies,
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such as flash, phase-change and spin-transfer torque

memories [2] provide bandwidth and latency close

to those of DRAM memories. For this reason, mem-

ory and storage technologies are converging and

storage will soon be seen as an extension of mem-

ory. Because of these new technological improve-

ments, next-generation supercomputers will feature

a variety of Non-Volatile RAM (NVRAM), with

different performance characteristics and asymmet-

ric read / write bandwidths, next to traditional

hard disks and conventional DRAM [3, 4]. In such

systems, allocating and moving data often require
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the use of different programming interfaces to pro-

gram separately memory and storage. For instance,

MPI provides one sided-communication to access

shared, intra-node memory, and distributed, inter-

node memory. On the other hand, the MPI I/O

interface separately provides support to read and

write from files on storage.

In the same way that storage will seamlessly ex-

tend memory in the near future, programming in-

terfaces for memory operations will also become in-

terfaces for I/O operations. In this work, we aim

at raising the level of programming abstraction by

proposing the use of MPI one-sided communica-

tion and MPI windows as a unified interface to any

of the available memory and storage technologies.

MPI windows provide a familiar interface that can

be used to program data movement among hybrid

memory and storage subsystems (Figure 1). Sim-

ple put / get operations can be used for access-

ing local or remote windows. Support for shared

memory programming using MPI windows is also

possible, where these operations can be replaced by

simple store / load memory operations [5, 6]. In

addition, we foresee the potential of heterogeneous

allocations that include memory and storage using

a single virtual address space.

We design and implement MPI windows on stor-

age, and evaluate its performance using two differ-

ent testbeds. First, we use a single node with local

hard disk and SSD, that serves us to mimic future

computing nodes with memory and local storage.

Additionally, we use a cluster that mounts a dis-

tributed file system, as in the majority of the cur-

rent supercomputers. By evaluating our implemen-

tation with the Intel MPI RMA Benchmarks, we

demonstrate that MPI windows on storage shows

a negligible performance overhead for small data

transfers compared to MPI windows in memory,

when no storage synchronization is enforced. When

performing large amounts of consecutive memory

operations and enforcing data synchronization with

storage, the penalty of MPI windows on local solid-

state drives of a single computing node is approxi-

mately 55% on average when compared to the per-

formance of MPI windows in memory. When using

a Lustre parallel file system, we observe an “asym-

metric” performance of put and get operations,

with over 90% degradation in put operations.

Despite these limitations, MPI windows on stor-

age provide benefits for HPC applications by en-

abling transparent out-of-core execution. The ap-

proach also defines a simple interface for performing

I/O operations with MPI windows, as an alterna-

tive to POSIX I/O or MPI I/O. Furthermore, it en-

ables the definition of novel use-cases, such as trans-

parent fault-tolerance. Big Data applications and

data analytics workloads are ideal candidates for us-

ing MPI windows on storage, as they process large

amounts of data, stress the I/O subsystem with

millions of read / write operations, and require

support for checkpoint-restart mechanisms [7]. In

this paper, we describe how MPI windows can be

effectively used in this kind of applications and we

show the performance of the approach using a Dis-

tributed Hash Table, the HACC I/O kernel, and a

novel MapReduce implementation based on the use

of MPI one-sided communication. Moreover, we il-

lustrate the benefits of combining memory and stor-

age window allocations, as a mechanism for seam-

lessly supporting hybrid memory hierarchies.
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Figure 1: With MPI storage windows, MPI implementors can enable HPC applications to seamlessly access different types of

storage technologies, while maintaining a unified interface.

The contributions of this work are the following:

• We design and implement MPI storage win-

dows to map MPI windows into storage de-

vices. We provide a reference, open-source im-

plementation atop the MPI profiling interface,

and consider how the approach could be inte-

grated inside MPICH.

• We show that MPI storage windows introduce

only a relatively small runtime overhead when

compared to MPI memory windows and MPI

I/O, in most cases. However, it provides a

higher level of flexibility and seamless integra-

tion of the memory and storage programming

interfaces.

• We present how to use MPI storage windows

for out-of-core execution, parallel I/O and

fault-tolerance in reference applications, such

as Distributed Hash Table, HACC I/O kernel,

and MapReduce “One-Sided”.

• We illustrate how heterogeneous window al-

locations can provide performance advantages

when applications benefit from combined mem-

ory and storage allocations.

The paper is organized as follows. We provide

an overview of MPI windows and present the de-

sign and implementation of MPI storage windows

in Section 2. The experimental setup and perfor-

mance results of the Intel MPI RMA Benchmarks,

a STREAM-inspired microbenchmark, Distributed

Hash Table, HACC I/O kernel, and MapReduce

mini-applications are presented in Section 3. We

extend the discussion of the results and provide fur-

ther insights in Section 4. Related work is described

in Section 5. Lastly, Section 6 summarizes our con-

clusions and outlines future work.

2. MPI Storage Windows

The MPI “windows” concept was introduced in

MPI-2 to support the one-sided communication

model. With MPI windows, a process can ac-

cess the address space of local or remote processes

without explicit send plus receive communication.

The term window is used because only a limited
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part of the local memory is exposed to other MPI

processes. This is similar to a window in a window

pane [5]. The memory space that is not explicitly

exposed through the MPI window still remains pri-

vate, making the model safe against programming

errors (e.g., buffer overflow).

The basic operations defined by the MPI stan-

dard to access and update an MPI window are put

and get. These operations can be used in local or

remote MPI processes. MPI-2 also introduced ac-

cumulate functions and synchronization operations

on the exposed window. These synchronization op-

erations are important to ensure the data availabil-

ity after put and get operations. They also help

to avoid race conditions on the window. MPI-3, on

the other hand, extended the one-sided communi-

cation with functionality that supports the passive

target synchronization, consolidating the one-sided

communication model by allowing decoupled inter-

action among the processes [8]. The new revision

of the standard additionally defined atomic oper-

ations, such as Compare-And-Swap (CAS). It also

extended the concept of MPI window by introduc-

ing MPI dynamic windows and MPI shared memory

windows [5, 6]. The shared memory windows sup-

port direct load / store operations for intra-node

communication. This represents an alternative to

shared memory programming interfaces, such as

OpenMP.

In this regard, extending the MPI window con-

cept to storage requires no change to the MPI stan-

dard. The reason is that the standard does not

restrict the type of allocation that an MPI win-

dow should be pinned to. Therefore, MPI windows

can be easily allocated on storage if proper perfor-

mance hints are given via the MPI Info Object. The

performance hints are tuples of key / value pairs

that provide an MPI implementation with informa-

tion about the underlying hardware. For instance,

certain hints can improve the performance of col-

lective operations by providing network topology.

Also, MPI I/O operations can be optimized if the

I/O characteristics of an application are provided

through hints. Thus, performance hints can deter-

mine the location of the mapping to storage and

define other hardware-specific settings, such as the

file striping size of Lustre. In addition, applications

might configure allocations to combine memory and

storage. This would create a unified virtual address

space, where part of the window allocation is refer-

ring to memory and the rest to storage (Figure 2).

Support for MPI windows on storage can be ide-

ally provided at MPI implementation level. The

feature can be easily integrated at library-level as

well. Understanding the type of allocation is pos-

sible through the attribute caching mechanism of

MPI. This feature enables user-defined cached in-

formation on MPI communicators, datatypes and

windows. In this case, metadata about the alloca-

tion attached to the MPI window object can be

stored. Hence, it is possible to differentiate be-

tween traditional in-memory allocations, storage-

based, or combined allocations. The location of

the mapping and its properties can be retrieved by

querying the MPI window object.

In this section, we present the design and imple-

mentation details of MPI storage windows. Note

that, from now on, the term MPI memory window

is used to refer to the traditional MPI window allo-

cation in memory. The term MPI storage window is

4
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Figure 2: (a) Storage window allocations are defined by reserving a range of virtual addresses and establishing a map to

storage. (b) Combined window allocations are defined by dividing the reserved range of virtual addresses, and then mapping

each subrange individually. Thus, applications are provided with a single address space that contains both allocation types.

used to refer to our proposed extension. Addition-

ally, the term combined window allocation is used

to refer to heterogeneous allocations.

2.1. Design and Implementation

We design and implement MPI storage windows

as a library1 on top of MPI using the MPI profiling

interface [9]. We also integrate the approach in-

side the MPICH MPI implementation (CH3) [10].

The library version allows us to quickly prototype

the MPI storage window concept and to understand

which features are required for supporting storage-

based allocations in the future. The MPICH inte-

gration allows us to understand the complexity of

defining this concept in a production-quality MPI

implementation. Here, we mostly re-use the exist-

ing code developed for MPI windows and expand

1https://github.com/sergiorg-kth/mpi-storagewin

the window structure with certain attributes (e.g.,

new window flavor). Nonetheless, both implemen-

tations support the same functionality, consist of

approximately 500 lines of code, and feature iden-

tical performance. In this section, we will provide

details about the main concepts behind both imple-

mentations.

We define seven different performance hints to

enable and configure MPI storage windows. If the

specific MPI implementation does not support stor-

age allocations, the performance hints are simply

ignored. These are the new hints introduced:

• alloc type. If set to “storage”, it enables

the MPI window allocation on storage. Other-

wise, the window will be allocated in memory

(default).

• storage alloc filename. Defines the path
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and the name of the target file. A block de-

vice can also be provided, allowing us to sup-

port different storage technologies. In addi-

tion, shared files are allowed if the same target

is defined among all the processes of the com-

municator.

• storage alloc offset. If the target file ex-

ists, the offset identifies the MPI storage win-

dow starting point. This offset is also valid

when targeting block devices directly.

• storage alloc factor. Enables combined

window allocations, where a single virtual ad-

dress space contains both memory and storage.

A value of “0.5” would associate half of the

addresses into memory, and half into storage.

Using “auto” would set the correct allocation

factor if the requested window size exceeds the

main memory capacity.

• storage alloc order. Defines the order of

the allocation when using the combined win-

dow allocations. A value of “memory first”

sets the first part of the address space into

memory, and the rest into storage (default).

• storage alloc unlink. If set to “true”, it

removes the associated file during the deallo-

cation of an MPI storage window (i.e., useful

for writing temporary files). This hint has no

effect when targeting block devices.

• storage alloc discard. If set to “true”,

avoids to synchronize to storage the recent

changes during the deallocation of the MPI

storage window.

Applications that use MPI one-sided communi-

cation can continue to allocate windows in mem-

ory by avoiding to provide the alloc type hint,

or by setting this hint with a value of “memory”.

To enable MPI storage windows, the alloc type

hint has to be set to “storage”. Applica-

tions are then expected to provide, at least, the

storage alloc filename hint, which is required

to specify the path where the window is set to

be mapped (e.g., a file). The rest of the de-

scribed hints are optional and will strictly de-

pend on the particular use-case where MPI stor-

age windows is integrated. For instance, using the

storage alloc factor, part of the virtual mem-

ory address space can be divided into a traditional

memory allocation plus a storage allocation, while

still maintaining a unified virtual address space.

The storage alloc order hint defines the order

of the mapped addresses, that can correspond to

memory first and then storage, or vice versa. Ap-

plications can additionally opt to define a factor

value of “auto” for out-of-core execution using MPI

storage windows. In such case, when the requested

allocation exceeds the main memory capacity, the

factor will be adapted to map the part that exceeds

the main memory into storage. Otherwise, the win-

dow allocation remains in memory by default. Fig-

ure 3 illustrates the differences using a fixed factor

of 0.5, 0.8, and finally auto.

We also integrate some of the reserved hints de-

fined in the MPI I/O specification. These are

mostly designed to optimize the data layout and

access patterns on parallel file systems, such as Lus-

tre. The hints supported are described below:
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Figure 3: Combined window allocations are configured through a “factor” hint. The example illustrates allocating a certain

window size using a factor of 0.5 (a), 0.8 (b), or auto (c). In this latter case, the aim is to let the MPI implementation decide

the optimal factor.

• access style. Specifies the access pattern

of the target file or block device used for

the MPI storage window (e.g., “read mostly”

when mainly read operations are required).

• file perm. Establishes the file permissions

when creating a new file for the window. This

hint has no effect when targeting existing files

or block devices.

• striping factor. Defines the number of I/O

devices that the MPI storage window should be

striped across (e.g., number of OST devices on

Lustre). This hint has no effect when targeting

existing files or block devices.

• striping unit. Sets the striping unit to be

used for the MPI storage window (e.g., stripe

size of Lustre). This hint has no effect when

targeting existing files or block devices.

Our implementation of MPI storage windows is

based on the use of memory-mapped file I/O [11].

Target files or block devices from an MPI storage

window are first opened, mapped into the virtual

memory space of the MPI process, and then asso-

ciated with the MPI window. A similar procedure

is followed when creating combined window alloca-

tions. In this case, the allocation is separated in two

steps, as previously illustrated in Figure 2. First, a

range of virtual memory addresses that corresponds

to the requested allocation size is reserved. This

ensures that applications obtain a seamless virtual

address space with the same base. Thereafter, this

range is divided into individual mappings that point

to memory and storage, respectively. The division

and the order are determined through the perfor-

mance hints. By default, the memory allocation

appears first, unless otherwise specified.

For these purposes, five basic Unix system and

I/O functions are required:

• mmap. This system call is used to reserve the

range of virtual addresses, as well as to map

memory, files, and block devices into the vir-

tual memory space of the MPI process. We use

MAP SHARED to enable page sharing among dif-

ferent processes, MAP NORESERVE to avoid the

use of swap space, and MAP FIXED to customize

7



MPI0.bin

MPI13.bin

MPI2.bin

MPI 

Rank

1

MPI_Win_allocate /

MPI_Win_allocate_shared

Shared Memory on Node

Storage (Local / Remote)

OS page

caching
MPI_Win_sync

MPI 

Rank

3

MPI 

Rank

0

MPI0.bin MPI2.bin MP13.bin

SWin0 offset = 0 SWin2 offset = 0 SWin1 offset = 0 SWin3 offset = xx

SWin0

SWin2 SWin3

SWin1

Page 

cache

Page 

cache

Page 

cache

Page 

cache

MPI 

Rank

2

Figure 4: MPI storage windows can be created by mapping files into the MPI process address space through the memory-

mapped I/O mechanism of the OS. The page cache optimizes the performance by maintaining part of the mapped space stored

in memory. With MPI Win sync, the memory and storage copies of the window are guaranteed to be synchronized.

the range of virtual addresses for the final map-

ping. In case of memory allocations, we set

MAP ANONYMOUS as well.

• ftruncate. When targeting files, this func-

tion is used to guarantee that the mapping has

enough associated storage space. Otherwise,

writing beyond the last mapped page would

result in a segmentation fault.

• msync. This system call flushes all the dirty

pages to storage from the page cache of the

OS. We enforce the synchronous mode of this

call, blocking the process until the data is guar-

anteed to be stored.

• munmap. This system call releases memory allo-

cations and removes the mapping of the file or

block device from the page table of the process.

• unlink. This I/O function allows us to delete

the mapped file from storage (e.g., during deal-

location).

On the other hand, we extend the functionalities

of several MPI routines to handle the allocation,

deallocation, and synchronization of MPI storage

windows. The interface of these routines remains

unaltered and follow the original specification of

the MPI standard. Thus, the programmer is only

required to provide the Info Object with the de-

scribed hints to enable MPI storage windows. The

main routines extended are:

• MPI Win allocate. This routine allocates an

MPI storage window, taking as argument the

MPI Info Object. The routine maps the physi-

cal file or block device into the virtual memory

space of the MPI process, following the mem-

ory mapped file I/O mechanism. It also as-

sociates the mapping within the MPI window

8



object as a cached attribute. The specified file

in the performance hints is created if it does

not exist, or resized if required. This routine

performs a collective operation.

• MPI Win allocate shared. Equivalent to the

previous routine, it defines an MPI shared win-

dow on storage. Hence, MPI processes have

efficient access to the mapped storage of other

processes within the same shared computing

node. By default, the mapped addresses are

consecutive, unless specified. This routine per-

forms a collective operation.

• MPI Win free. This routine releases the map-

ping from the page table of the MPI process.

If requested with the storage alloc unlink

hint, it also deletes the mapped file. This rou-

tine performs a collective operation.

• MPI Win sync. This routine synchronizes the

memory and storage copies of the MPI stor-

age window2. The window synchronization en-

forces the OS to write any dirty pages to stor-

age. This routine may return immediately if

the pages are already synchronized with stor-

age by the OS (i.e., a selective synchronization

is frequently performed).

• MPI Win attach / MPI Win detach. These two

routines allow us to support MPI dynamic win-

dows on storage. The routines can attach /

detach a storage mapping from a given MPI

2Even though MPI storage windows resembles the sepa-

rate memory model of MPI windows [5], in this case, local

and remote operations only affect the memory mapped re-

gion.

dynamic window. The mapping to storage can

be pre-established by providing the hints to

MPI Alloc mem.

Figure 4 summarizes the use of these routines

with four MPI storage windows. Three files are

opened and mapped into the virtual memory space

of the four MPI process. After the mapping is es-

tablished, the OS automatically moves data from

memory (page cache) to storage, and vice-versa. In

the example, two MPI storage windows share a file.

An offset x is provided as performance hint during

the allocation of the window. The MPI Win sync

ensures that the window copy on memory, within

the page cache of the OS, is synchronized with the

mapped files on storage.

2.1.1. Data Consistency with MPI Storage Win-

dows

By using memory-mapped I/O, MPI storage win-

dows implicitly integrate demand paging in memory

through the page cache of the OS. The page cache

temporary holds frequently accessed pages mapped

to storage. Hence, read operations trigger data ac-

cesses to storage only if the data is not available

inside the page cache. Write operations can enforce

a direct synchronization to storage, or aggregate the

operations to increase the performance. The vm.*

settings3 determine the interval and retention pe-

riod of the pages stored within the page cache. The

amount of active dirty pages in memory is specified

through the vm.dirty ratio setting. A lower ratio

will guarantee data consistency with storage at any

3https://www.kernel.org/doc/Documentation/sysctl/

vm.txt
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time. A higher ratio will absorb bursts of sequential

or consecutive writes over a certain memory region,

improving the performance. The OS will always

continue to flush all the dirty pages in the back-

ground. The frequency of these flushes can be con-

figured with the vm.dirty writeback centisecs

setting.

The flexibility of memory mapped I/O, however,

also introduces several challenges for data consis-

tency inside MPI storage windows. First and fore-

most, local or remote operations are only guaran-

teed to affect the memory copy of the window inside

the page cache. The semantics of the MPI one-sided

communication operations, such as MPI Win lock /

MPI Win unlock or MPI Win flush, will only ensure

the completion of the local or remote operations

inside the memory of the target process (i.e., the

storage status is undefined at that point). As a

consequence, when consistency of the data within

the storage layer has to be preserved, applications

are required to use MPI Win sync on the window to

enforce a synchronization of the modified content

inside the page cache of the OS. This operation

blocks the MPI process until the data is ensured

to be flushed from memory to the storage device.

Even though our current implementation only sup-

ports a local synchronization of the window (i.e.,

intra-node), we consider that the semantics of this

operation should trigger a storage synchronization

on remote processes as well. Therefore, write op-

erations (e.g., MPI Put) accompanied with a sub-

sequent MPI Win sync will guarantee data consis-

tency on the storage layer of the remote process.

Read operations (e.g., MPI Get), on the other hand,

are not affected and will trigger data accesses to

storage through the page fault mechanism of the

OS.

The second challenge is to prevent remote data

accesses during a window synchronization to stor-

age. In this regard, the MPI standard already

contains the definition of an exclusive lock inside

the passive target synchronization [12]. By default,

locks are used to protect accesses to the target win-

dow, and to protect local load / store accesses to

a locked local window. Accesses that are protected

by an exclusive lock (i.e., MPI LOCK EXCLUSIVE) will

not be concurrent with other accesses to the same

window that are lock protected. Thus, guarantee-

ing that no interference exists during the synchro-

nization of the data.

We must note that, in the future, MPI imple-

mentations might opt to use a different approach

to implement MPI storage windows, such as MPI

I/O. This would allow to have full data consistency

control at MPI implementation-level. For instance,

data consistency might only be possible through

MPI Win sync, without involving the OS.

2.2. Using MPI Storage Windows

MPI applications that use the MPI one-sided

communication model can immediately use MPI

storage windows. Listing 1 shows a code exam-

ple that allocates an MPI storage window using

some of the described performance hints. The ex-

ample demonstrates how different MPI processes

can write information to an MPI storage window of

other processes with a simple put operation. This

operation can also be used for local MPI storage

windows. The code first creates an MPI Info Ob-

ject and sets the performance hints to enable stor-

10



Listing 1: Allocation of MPI storage windows and writing data to remote processes.

1 ...

2 // Define the MPI_Info object to enable storage allocations

3 MPI_Info_create (&info);

4 MPI_Info_set(info , "alloc_type", "storage");

5 MPI_Info_set(info , "storage_alloc_filename", "/path/tofile");

6 MPI_Info_set(info , "storage_alloc_offset", "0");

7 MPI_Info_set(info , "storage_alloc_unlink", "false");

8

9 // Allocate storage window with space for num_procs integers

10 MPI_Win_allocate(num_procs * sizeof(int), sizeof(int), info ,

11 MPI_COMM_WORLD , (void **)& baseptr , &win);

12

13 if (IS_EVEN_NUM(rank)) {

14 for(int drank = 1; drank < num_procs; drank += 2) {

15 // Put our own rank plus some number to the dest. process

16 int k = rank + timestamp;

17 MPI_Win_lock(MPI_LOCK_SHARED , drank , 0, win);

18 MPI_Put (&k, 1, MPI_INT , drank , offset , 1, MPI_INT , win);

19 MPI_Win_unlock(drank , win);

20 }

21 }

22 ...

Listing 2: Heterogeneous allocation that combines 50% memory and 50% storage.

1 ...

2 // Define the MPI_Info object to enable combined allocations

3 MPI_Info_create (&info);

4 MPI_Info_set(info , "alloc_type", "storage");

5 ...

6 MPI_Info_set(info , "storage_alloc_factor", "0.5");

7

8 // Allocate the window with half the space in memory

9 MPI_Win_allocate(num_procs * sizeof(int), sizeof(int), info ,

10 MPI_COMM_WORLD , (void **)& baseptr , &win);

11 ...

11



Listing 3: Allocation of MPI dynamic windows on storage.

1 ...

2 // Define the MPI_Info object to enable storage allocations

3 MPI_Info_create (&info);

4 MPI_Info_set(info , "alloc_type", "storage");

5 ...

6 // Allocate space for num_procs integers on storage

7 MPI_Alloc_mem(num_procs * sizeof(int), info , (void **)& baseptr );

8

9 // Create the dynamic window and attach the storage allocation

10 MPI_Win_create_dynamic(MPI_INFO_NULL , MPI_COMM_WORLD , &win);

11 MPI_Win_attach(win , baseptr , num_procs * sizeof(int ));

12 ...

age allocations. Then, it allocates the MPI storage

window and instruct each even-rank MPI process

to write to the correspondent MPI storage window

of odd-rank MPI processes. The MPI Win lock and

MPI Win unlock start and end the passive epoch to

the MPI window on the target rank.

The baseptr pointer returned by the window al-

location call can be used for local load / store op-

erations. In MPI shared windows on storage, pro-

cesses can load / store data from each other by

pointer dereferencing.

On the other hand, Listing 2 illustrates how to

create a window that combines memory and stor-

age. We can use the “factor” hint to specify the

data distribution inside the allocation. In the ex-

ample, half of the space is allocated in memory.

The MPI standard additionally defines MPI dy-

namic windows, that allow applications to dynam-

ically attach memory allocations after the window

is created. Listing 3 illustrates how MPI dynamic

windows on storage can be defined. The perfor-

mance hints are provided to MPI Alloc mem instead.

3. Experimental Results

In this section, we illustrate the performance of

MPI storage windows using two different testbeds.

The first testbed is a single computing node with lo-

cal storage (hard disk and SSD), which allows us to

demonstrate the implications of MPI storage win-

dows on upcoming clusters with local persistency

support. The second testbed is a supercomputer

at KTH Royal Institute of Technology, with stor-

age provided by a Lustre parallel file system. This

allows us to understand how MPI storage windows

can be integrated into current HPC clusters with

network-based storage support. The specifications

are described below:

• Blackdog is a workstation with an eight-core

Xeon E5-2609v2 processor running at 2.5GHz.

The workstation is equipped with a total of

72GB DRAM. The storage consists of two 4TB

HDD (WDC WD4000F9YZ / non-RAID) and

a 250GB SSD (Samsung 850 EVO). The OS

is Ubuntu Server 16.04 with Kernel 4.4.0-62-

12



generic. The applications are compiled with

gcc v5.4.0 and MPICH v3.2.

• Tegner is a supercomputer with 46 compute

nodes that are equipped with Haswell E5-

2690v3 processor running at 2.6GHz. Each

node has two sockets with 12 cores and a to-

tal of 512GB DRAM. The storage employs a

Lustre parallel file system (client v2.5.2) with

165 OST servers. No local storage is provided

per node. The OS is CentOS v7.3.1611 with

Kernel 3.10.0-514.6.1.el7.x86 64. The applica-

tions are compiled with gcc v6.2.0 and Intel

MPI v5.1.3.

Using these two testbeds, we first verify that MPI

storage windows does not incur in additional over-

heads when performing remote memory operations

on the page cache compared to MPI memory win-

dows. We then estimate the throughput of large

memory operations using a custom microbench-

mark that enforces synchronization to storage. We

also present example applications that can take ad-

vantage of MPI storage windows, and compare the

performance with MPI I/O. Lastly, we provide in-

sights into novel techniques that could take advan-

tage of the approach, such as transparent check-

pointing. After this section, we continue and ex-

tend the discussion on the obtained results.

Note that all the figures reflect the standard de-

viation of the samples as error bars. We use the

PMPI-based implementation for our experiments in

both testbeds, mainly due to deployment reasons on

Tegner4. We increase the vm.dirty ratio setting

4We verify on Blackdog that no performance differences

of the OS to 80% on Blackdog to allow for a higher

amount of dirty pages in memory. In addition, we

set the default Lustre settings on Tegner, assigning

one OST server per MPI process and a stripping

size of 1MB. The swap partition is disabled in both

testbeds. Lastly, the evaluations on Tegner are con-

ducted on different days and timeframes, to account

for the interferences produced by other users on the

cluster.

3.1. Intel IMB-RMA Benchmarks

For our first evaluation, we verify whether MPI

storage windows can incur in performance over-

heads using MPI one-sided operations. This might

be the case where special memory and techniques

are required for data consistency on RDMA [13].

The goal is to ensure that no subtle performance

differences exist for small data transfers using the

page cache in comparison with MPI windows allo-

cated directly in memory (i.e., without storage syn-

chronization). For this purpose, we use the Intel

MPI Benchmarks (IMB), an open-source project5

that performs a set of performance measurements

that fully characterizes the efficiency of MPI imple-

mentations. In particular, we use the IMB-RMA

subset of benchmarks to measure the throughput

of the one-sided operations of the MPI-3 standard.

The IMB-RMA is divided into three sets: “Sin-

gle Transfer” (one process accesses the memory of

another process), “Multiple Transfer” (one process

accesses the memory of several other processes),

exist between the MPICH implementation of MPI storage

windows and the PMPI implementation.
5https://github.com/intel/mpi-benchmarks
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and “Parallel Transfer” (multiple processes trans-

fer data in parallel). We select a subset of these

benchmarks that better characterizes the perfor-

mance of our implementation. We introduce the

necessary performance hints to enable MPI storage

windows, maintaining the original code unaltered.

In our tests, we set the standard mode to allow a

single group of processes in parallel. We also config-

ure the benchmarks in non-aggregate mode to make

sure that only one RMA operation is performed on

each passive target epoch. The transfer sizes per

test vary in powers of two, from 256KB up to 4MB.

In addition, we disable the iteration policy, fixing in

1000 iterations per test, regardless of transfer size.

Using the “Single Transfer” set of the IMB-RMA

benchmarks, we determine that the use of memory-

mapped I/O on MPI storage windows only incurs

in a small performance overhead when performing

small unidirectional data transfers, and a negligi-

ble overhead on small bidirectional data transfers

and atomic RMA operations. Figure 5 shows the

throughput achieved using MPI memory windows

and MPI storage windows on Tegner. The tests

use 2 MPI processes split into 2 separate nodes

of the cluster. Each storage window is mapped

as an independent file per process in Lustre. Fig-

ures 5a and 5b indicate that subtle performance dif-

ferences on unidirectional put and get operations

occur based on the transfer size selected. For in-

stance, using 1MB data transfer for unidirectional

put operations, we observe an average through-

put of 6.87GB/s for MPI memory windows, and

6.95GB/s for MPI storage windows (i.e., approx-

imately 1% difference). Figures 5c and 5d illus-

trate similar results when performing bidirectional

put and get operations. For the bidirectional put

test, we observe a peak of 5.24GB/s on average for

MPI memory windows, and a peak of 5.20GB/s

for MPI storage windows (i.e., 0.06% difference).

For the bidirectional get test, the peak transfer

rate is 5.14GB/s for MPI memory windows and

5.20GB/s for MPI storage windows (i.e., 1% dif-

ference). Finally, atomic operations, such as Accu-

mulate (e), Get-Accumulate (f), Fech-and-Op (g)

and Compare-and-Swap (h), show no relevant per-

formance differences on each test. In both cases,

the average throughput is reduced (e.g., 3.09GB/s

for Get-Accumulate).

On the other hand, using the “Multiple Trans-

fer” and “Parallel Transfer” benchmarks of IMB-

RMA, we determine that increasing the process

count does not necessarily affect the performance

for small data transfers when using MPI storage

windows. Figure 6 shows the throughput / execu-

tion time achieved with MPI memory windows and

MPI storage windows on Tegner. The tests use 128

MPI processes split into 6 separate nodes of the

cluster. Each storage window is again mapped into

an independent file per process in Lustre. Figure 6a

indicates that MPI storage windows does not in-

cur in any penalty while performing put operations

over multiple processes, with a peak throughput of

5.89GB/s for MPI memory windows and 6.21GB/s

for MPI storage windows. In the case of get op-

erations, Figure 6b shows a peak throughput of

1.49GB/s for MPI memory windows, and a peak of

1.44GB/s for MPI storage windows. The execution

times of the Exchange-Put (c) and Exchange-Get

(c) benchmarks confirm equivalent execution times

on both implementations.
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Figure 5: IMB-RMA “Single Transfer” Benchmarks (Non-Aggregate) using MPI memory windows and MPI storage windows

running on Tegner.
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Figure 6: IMB-RMA “Multiple Transfer” (a,b) and “Parallel Transfer” (c,d) Benchmarks using MPI memory windows and

MPI storage windows on Tegner. Note that the results of (c,d) are provided in average execution time by the IMB-RMA

Benchmarks.

3.2. mSTREAM Microbenchmark

In order to understand the performance consider-

ations of using MPI storage windows with storage

synchronization enforcement, we define a custom

microbenchmark inspired by STREAM [14], called

mSTREAM6. The purpose of this microbenchmark

is to measure the access throughput by performing

large memory operations over the window alloca-

tion. Thus, we aim to stress both the memory and

storage subsystems to represent the worst perfor-

mance scenario for memory-mapped IO (i.e., when

no computations are conducted). The results are

then compared with MPI memory windows.

6https://github.com/sergiorg-kth/mpi-storagewin/

tree/master/benchmark

For this purpose, we define four different kernels

that represent different type of memory accesses:

sequential memory accesses (SEQ), sequential mem-

ory accesses with padding (PAD), pseudo-random

memory accesses (RND), and mixed memory accesses

(MIX), that combines the previous two. Each kernel

performs accesses using large, configurable length

segments. The benchmark alternates read / write

operations. Data reuse is allowed in all the kernels

except for SEQ. Several iterations are executed per

kernel, and the number of memory operations per

iteration strictly depends on the window allocation

size. Hence, considering M the size of the allocation

and S the segment size, the number of operations

is determined by M ÷ S. The result is provided as

average bandwidth BW = (M × I) ÷ ∆t, where I
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Figure 7: mSTREAM microbenchmark performance using

MPI memory windows and MPI storage windows running

on Blackdog and Tegner.

is the number of iterations per kernel and ∆t is the

elapsed execution time.

We configure the mSTREAM microbenchmark

with a fixed window allocation size of 16GB and a

segment size of 16MB per memory operation. This

amounts to 1024 memory operations per iteration

(512 read / 512 write). The number of iterations

per kernel is set to 10 plus an initial “cold” iteration

that does not count for the results. The amount of

data transferred per test is 160GB (640GB in total).

We instruct MPI to extend the window allocation

to storage using the described performance hints.

A single MPI process is used for each test to avoid

potential interferences that could affect the results.

In addition, we enforce a window synchronization

SEQ PAD RND MIX
0

0.2
0.4
0.6
0.8

1

Kernel Type

E
x
ec
u
ti
o
n
T
im

e
%

Storage (SSD)

Storage (HDD)

(a) Avg. Flush Time on Blackdog

Read Write
0

2000

4000

6000

8000

Operation
T
h
ro
u
g
h
p
u
t
(M

B
/
s) Storage (Lustre)

(b) Avg. Throughput on Tegner

Figure 8: (a) Normalized flushing time with MPI storage

windows on Blackdog. (b) Read / Write performance using

the SEQ kernel with MPI storage windows on Tegner.

point to storage before finishing the last iteration

of each kernel.

The performance of MPI storage windows is

largely dominated by the need for flushing the data

changes to storage when no other computations are

conducted. Figure 7a illustrates the throughput

achieved by each kernel using MPI memory win-

dows and MPI storage windows on Blackdog. The

storage windows are mapped into the local stor-

age of Blackdog, labelled “SSD” for the solid-state

drive and “HDD” for the conventional hard disk.

The performance results indicate that the degrada-

tion of storage window allocations is approximately

56.4% on average when using the SSD. The max-

imum peak throughput observed is 2.72GB/s on
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the PAD kernel, in comparison with 5.61GB/s for

MPI memory windows. However, Figure 8a demon-

strates that 33.8% of the overall kernel execution

time is spent on transferring the unflushed changes

to storage. In the case of the conventional HDD,

the flush time exceeds 50% of the execution time in

some of the kernels. Nonetheless, despite the band-

width differences between the memory and storage

subsystems, the page cache of the OS is effectively

absorbing most of the I/O operations inside the

cache. This fact is deducted by observing the peak

theoretical bandwidth of the SSD used in our tests,

expected to max out at 0.51GB/s (i.e., far below

the rates measured).

On the other hand, mapping files to a Lustre

parallel file system can constrain the performance.

Figure 7b shows the results of the same experi-

ment running on Tegner. In this case, MPI stor-

age windows are mapped into a mounted Lustre

parallel file system. Thus, I/O operations require

network communication. We observe evident dif-

ferences between MPI memory windows and MPI

storage windows. The storage-based allocation de-

grades the throughput by over 90% compared to the

MPI window allocation in memory. In particular,

the throughput of MPI memory windows reaches

10.6GB/s on average, while the peak throughput

of MPI storage windows is approximately 1.0GB/s.

The reason for this result is due to the lack of

write cache on Lustre for memory-mapped I/O,

that produces “asymmetric” performance for read

and write operations on Tegner. We also confirm

this effect by measuring the throughput of read

and write with the SEQ kernel. We read from an

MPI storage window to a memory-based, and from

an MPI memory window to a storage-based, respec-

tively. The result from this experiment is illustrated

in Figure 8b.

3.3. Distributed Data Structures

Data analytics and machine learning applications

are emerging on HPC [7, 15]. These applications

pose a relatively large stress to the I/O subsystem,

due to the large amounts of small I/O transactions

that they produce. For our third performance eval-

uation, we use a Distributed Hash Table (DHT)

implementation by Gerstenberger et al. [8]7 that

mainly uses MPI one-sided operations. Hence, we

intent to mimic data analytics applications that

have random accesses to distributed data struc-

tures.

In this implementation, each MPI process han-

dles a part of the DHT, named Local Volume (LV).

The processes also maintain an overflow heap to

store elements in case of collisions. The LV and the

overflow heap are allocated as MPI windows on each

process, so that updates to the DHT are handled

using solely MPI one-sided operations. In this way,

each MPI process can put or get values, and also re-

solve conflicts asynchronously on any of the exposed

LVs through Compare-and-Swap (CAS) atomic op-

erations.

We introduce the necessary performance hints to

map the content of the LV and heap to storage as

MPI storage windows, using one file per process.

A mini-application is defined to insert random 64-

bit integer numbers into the DHT. Each value is

7https://spcl.inf.ethz.ch/Research/Parallel_

Programming/foMPI
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Figure 9: Distributed Hash Table performance using MPI

memory windows and MPI storage windows on Blackdog

and Tegner. Note the differences in process count between

each testbed.

inserted by calculating the LV owner through a hash

function that is designed to guarantee that all the

LVs are equally filled. The number of inserts per

test depends on the overall size of the DHT, which

is determined by num procs × (local volume +

heap factor × local volume). The overflow heap

factor is set to 4, so that four extra elements will

be allocated in the heap per element inside the LV.

The use of atomic operations inside the DHT

implementation effectively hides some of the con-

straints expected due to the memory and storage

bandwidth differences. Figure 9a presents the aver-

age execution time on Blackdog using MPI memory

windows and MPI storage windows. We use 8 MPI

processes and each process inserts 80% of the LV

capacity. This means that, in total, 80% of the

DHT will be filled. The tests vary the DHT size

from 11.92GB (20 million elements per LV) up to

35.76GB (60 million elements per LV). The results

show that the overhead of using MPI storage win-

dows with conventional hard disks is approximately

32% on average compared to using MPI memory

windows. Using the SSD, the performance improves

by decreasing the overhead to approximately 20%

on average. Even though the mini-application is

designed to perform mostly write operations, the

page cache is effectively hiding the bandwidth dif-

ferences by aggregating most of these write oper-

ations. We estimate that better storage technolo-

gies (e.g., NVRAM) should approximate the per-

formance to that of the memory-based implemen-

tation.

By increasing the process count and the number

of active nodes, the overhead of the network com-

munication and atomic CAS operations required to

maintain the DHT increases due to LV insert con-

flicts. Hence, hiding the performance limitations.

Figure 9b shows the average execution time on Teg-

ner using MPI memory windows and MPI storage

windows mapped into a Lustre parallel file system.

These tests use 96 processes on 4 compute nodes.

Each process inserts 80% of the LV capacity to the

table. The LV size varies from 7.15GB (1 million

elements per LV) to 35.76GB (5 million elements

per LV). Note that the number of elements per LV

differs from the previous test, as the process count

has considerably increased. In this case, we observe

that using MPI storage windows barely affects the

performance with only a 2% degradation on aver-
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age when compared to MPI memory windows. The

execution times are clearly dominated by the use

of atomic operations to resolve the LV / heap con-

flicts8.

3.4. Out-of-Core Computation

A large number of HPC applications have to

deal with very large datasets that exceed the main

memory capacity. In such cases, out-of-core tech-

niques [16, 17] define efficient mechanisms to trans-

fer data from / to storage. For instance, a com-

mon approach is to divide the main algorithm in

blocks [18]. This is particularly useful in certain

applications that involve dense matrix computa-

tions. However, the programmer is responsible for

the distribution and the associated data transfer-

ring, which introduces source code complexity.

MPI storage windows provide a seamless exten-

sion to the main memory by mapping part of the

storage into the memory space. This enables ap-

plications to transparently use more memory than

physically available, without the burden of han-

dling any data management. In addition, appli-

cations can opt to use combined window alloca-

tions through the “factor” performance hint. This

hint provides a mechanism that allows applications

to define a combination of traditional MPI mem-

ory windows and MPI storage windows, while still

maintaining consecutive memory addresses. Hence,

applications can ensure that only the part of the

memory that exceeds the main memory limit is

mapped to storage, avoiding the OS to interfere

8Atomic operations on Tegner reduce the sustained band-

width in half (Figure 5f).

with the rest of the allocation9.

In this regard, we evaluate the performance of

MPI storage windows and combined window alloca-

tions using the DHT implementation that was pre-

sented in the previous subsection. We aim to under-

stand the implications of out-of-core on real-world

HPC applications. The LV and the overflow heap

are allocated as MPI storage windows on each pro-

cess. All the updates to the DHT are handled using

solely MPI one-sided operations. In addition, we

instruct the mini-application to increase the over-

all capacity of the DHT up to almost twice times

the main memory capacity. This should give us an

idea of what would be the overhead of exceeding

the physical memory limit.

With a small performance overhead, we observe

that using MPI storage on applications that exceed

the main memory capacity is feasible. Figure 10

shows the average execution time on Blackdog us-

ing MPI memory windows, MPI storage windows,

and combined window allocations. We use 8 MPI

processes and each process inserts 80% of the LV

capacity to the table, as in our previous tests. We

vary the DHT size from 23.84GB (40 million el-

ements per LV) up to 119.21GB (200 million ele-

ments per LV). With MPI memory windows, we

observe that the mini-application cannot continue

executing in the last two cases. This is due to the

physical memory limit of Blackdog, which amounts

to 72GB of DRAM. Nonetheless, by using MPI stor-

9The statement is only valid if no swap mechanism exists,

as in our testbeds. Hence, allowing us to avoid interferences

on the allocated memory region. Future implementations

could also move large portions of memory from / to storage

to increase the performance.
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Figure 10: Distributed Hash Table performance of MPI memory windows, MPI storage windows and combined window allo-

cations on Blackdog (8 MPI Processes). The dashed bars indicate the projected value using MPI memory windows after the

main memory is exceeded.

age windows, the execution can proceed without

any changes in the source code. The performance

penalty with conventional hard disks before exceed-

ing the main memory limit is approximately 32%

compared to MPI memory windows. The overhead

of using SSD is approximately 20% on average. Af-

ter exceeding the main memory limit, however, the

performance penalty considerably increases. Using

the local hard disk, the overhead is over twice as

much as the projected value using MPI memory

windows. With the SSD, the overhead increases to

approximately 89%. This is mainly due to the fact

that our tests enforce mostly write operations with

no data reuse. Thus, the performance depends on

the storage bandwidth.

On the other hand, we observe that combined

window allocations can provide the performance

benefits of using MPI memory windows with the

versatility of MPI storage windows for out-of-core

execution. Figure 10 illustrates the performance of

using combined window allocations with a fixed fac-

tor of 0.5. This means that 50% of the allocation is

located in memory, while the other 50% is located

on storage. The SSD is used for the storage map-

ping in our tests. Before exceeding the main mem-

ory limit, we observe an average overhead of only

8% when compared to MPI memory windows. Af-

ter exceeding the memory capacity, the overhead is

increased to 13% in comparison with the projected

value of MPI memory windows. In the largest test

case, where 59.6GB of the allocation is based on

storage, the overhead increases to only 36% on av-

erage. The main motivation behind this excellent

result is due to the fact that not every consecu-

tive byte of the allocation is mapped to storage.

The part of the allocation that resides on storage

is mainly the heap designated for conflicts. Hence,

the application predominantly pays only the cost of

insert conflicts during our tests. The rest of the op-

erations hit mainly in the LV of each process, which

is mostly located (pinned) in memory.

3.5. Parallel I/O

In this subsection, we briefly evaluate the perfor-

mance of MPI storage windows in comparison with

individual and collective I/O operations of MPI

I/O.
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Figure 11: HACC I/O performance using MPI I/O and MPI

storage windows running on Blackdog and Tegner.

3.5.1. Checkpoint-Restart on HACC I/O Kernel

The MPI standard offers support for high-

performance parallel I/O through the MPI I/O

specification [12]. Optimizations such as data siev-

ing or two-phase I/O [19, 20], included in most of

the popular MPI implementations, provide collec-

tive access to the underlying file system. Moreover,

MPI I/O allows for non-contiguous access to stor-

age [21], effectively increasing the overall through-

put of HPC applications compared to other alter-

natives (e.g., POSIX I/O).

MPI storage windows can also be used as a very

simple API to perform individual I/O operations.

Without setting aside the advantages of MPI I/O,

the approach provides a unified programming in-

terface that streamlines the accesses to the storage

layer on already existing one-sided applications. In

this way, programmers can use put and get op-

erations as an alternative to the write and read

operations of MPI I/O. In addition, load / store

operations over the local pointer of the window are

possible. Thus, MPI storage windows simplifies

I/O handling while providing advantages, such as

caching.

We use the checkpoint-restart mechanism of

HACC (Hardware / Hybrid Accelerated Cosmology

Code) [22] to evaluate the I/O capabilities of MPI

storage windows. HACC is a physics particle-based

code to simulate the evolution of the Universe after

the Big Bang that operates on the trajectories of

trillions of particles. For our tests, we evaluate the

performance using the HACC I/O kernel, a mini-

application of the CORAL benchmark codes10 that

mimics the checkpoint-restart functionality of the

original code. We extend the kernel to use MPI

storage windows during this process and compare

it with the performance of the existing MPI I/O

implementation. This latter implementation uses

individual file I/O (i.e., not collective operations).

The particle data is stored inside a global shared

file. For fair comparison, we also ensure a syn-

chronization point during checkpoint to avoid any

buffering / caching.

We determine that, with slight performance dif-

ferences, MPI storage windows can be used as an

alternative to MPI I/O when using local storage

and individual I/O operations. Figure 11a shows

the average execution time using MPI I/O and MPI

storage windows on Blackdog, both targeting a lo-

10https://asc.llnl.gov/CORAL-benchmarks
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cal hard disk. We use 100 million particles in all

the evaluations while doubling the number of pro-

cesses (i.e., strong scaling). From the results, we

observe that the performance of the two approaches

is similar on Blackdog. MPI I/O performs slightly

better on average, being between a 2-4% faster in

most cases. We assume that the MPI storage win-

dows version introduces a slight overhead due to

the inherent page faults, that trigger the accesses

to storage. The code does not seem to scale on

either version.

On the other hand, increasing the process count

can be beneficial for MPI storage windows in some

situations. Figure 11b shows the same strong scal-

ing evaluation on Tegner, using remote storage

through Lustre. In this case, MPI storage windows

provide about a 32% improvement on average when

compared to the MPI I/O implementation. We

observe this improvement mostly after the process

count increases from 16 to 32 processes, which also

raises the number of nodes in use from one to two

active nodes. This result indicates that, in some

cases, MPI storage windows might provide better

scalability compared to using individual operations

of MPI I/O. Nonetheless, we assume that collective

I/O operations would be more beneficial in this case

to access the shared file. These operations aggre-

gate multiple I/O requests through dedicated I/O

processes. Hence, contention can be reduced on

parallel file systems (e.g., Lustre).

3.5.2. Transparent Checkpointing

Over the past few years, resilience has become

one of the major concerns in HPC [23]. With

the arrival of the first wave of pre-Exascale ma-

chines, the chances for unexpected failures dur-

ing the execution of parallel applications will con-

siderably increase [24]. Hence, several solutions

have been proposed to mitigate failures at user-

level [25, 26, 27, 28]. The importance of these solu-

tions might even affect the design decisions of the

upcoming revisions of the MPI standard. As a con-

sequence, we observe the need for efficient resilience

support on current and upcoming HPC clusters.

In this regard, MPI storage windows can be used

to provide user-level fault-tolerance support. By

transparently integrating storage into the memory

management of HPC applications, the approach of-

fers a very simple yet efficient method to define

novel mechanisms that protect against failures. For

instance, data transferring from / to storage is

overlapped with computations. This means that

only certain synchronization points with the stor-

age layer (i.e., using MPI Win sync) are required to

maintain data consistency.

For this purpose, we present a checkpoint mech-

anism inside MapReduce-1S11 (MapReduce “One-

Sided”). This project is an on-going effort that pro-

poses the integration of a decentralized strategy for

MapReduce frameworks using MPI one-sided com-

munication to overlap the execution of the Map and

Reduce phases of the algorithm. The aim is to de-

crease the workload imbalance across the processes

on input datasets with irregular distribution of the

data. The implementation uses a complex multi-

window configuration and non-blocking I/O to re-

duce the overhead while reading the input datasets.

We introduce support for MPI storage windows

11https://github.com/sergiorg-kth/mpi-mapreduce-1s
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Figure 12: (a,c) Strong / Weak scaling performance with the PUMA-Wikipedia datasets using MR-2S and MR-1S on Tegner,

with and without checkpoint support. (b,d) Checkpoint overhead for the strong / weak scaling evaluations using MR-2S and

MR-1S on Tegner.

and extend MapReduce-1S to perform a window

synchronization point after each Map task, as well

as after the Reduce phase is completed. In addition,

we evaluate the checkpoint performance in compar-

ison with a reference implementation by Hoefler

et al. [29], that employs state-of-the-art collective

communication and I/O. We extend this implemen-

tation to perform each checkpoint using MPI collec-

tive I/O over a shared file. Our goal is to evaluate

how MPI storage windows could reduce the latency

of checkpointing compared to a traditional solution

with MPI I/O. The evaluations are conducted us-

ing Word-Count on a large dataset from the Purdue

MapReduce Benchmarks Suite (PUMA) [30]. In

particular, we use the Dataset3 from the PUMA-

Wikipedia datasets12. We pre-process the files off-

line to generate unified, large input datasets that

guarantee equivalent workload per process. Note

that the labels MR-2S (MapReduce “Two-Sided”)

and MR-1S are used to refer to each implementa-

tion.

Being able to combine computations with stor-

age operations is clearly one of the main advan-

tages of MPI storage windows. Figure 12a illus-

trates the performance of MR-2S and MR-1S by

varying the number of MPI processes on Tegner

12https://engineering.purdue.edu/~puma/datasets.

htm
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for a fixed-size input dataset (strong scaling), with

checkpoint support. For reference purposes, the la-

bel “[NoFT]” (i.e., No Fault-Tolerance) illustrates

the baseline implementation performance without

checkpoint support. The process count varies from

64 (3 nodes) up to 512 (22 nodes). We use an input

dataset from PUMA-Wikipedia with 32GB of data,

and a task size of 64MB per process. Thus, the

number of checkpoints varies from 8 (64 processes)

down to 1 (512 processes). Despite that the overall

performance of MR-2S without checkpoint support

is 9.6% faster than MR-1S on average, we determine

from this figure that adding checkpoint support af-

fects the scalability on higher process counts. For

instance, using 512 processes, MR-1S with check-

point support is up to 17.6% faster in comparison

with MR-2S. In this particular case, the checkpoint

overhead is 21.2% using MPI storage windows on

MR-1S, and 58.6% using collective MPI I/O oper-

ations on MR-2S. This observation is depicted on

Figure 12b.

By increasing the size of the input datasets and,

consequently, the workload per process, we confirm

that MPI storage windows provide advantages for

fault-tolerance. Figure 12c shows the performance

of MR-2S and MR-1S by varying the number of

MPI processes on Tegner and maintaining the work-

load per process (weak scaling), with and without

checkpoint support. The process count varies from

64 (3 nodes) up to 512 (22 nodes). We use refer-

ence input datasets from PUMA-Wikipedia, with

a fixed 1GB workload per process (i.e., input sizes

from 64GB to 512GB). The number of checkpoints

is also fixed to 16 per test. From this figure, we de-

termine that MR-2S is 6.0% faster than MR-1S on

average when no checkpoints are conducted. How-

ever, as the process count increases, we confirm that

the performance of MR-1S with checkpoint sup-

port is 59.3% faster in the last case of 512 pro-

cesses, in comparison with MR-2S. Figure 12d re-

flects the checkpoint overhead per implementation.

Using MPI storage windows on MR-1S only incurs

in a 3.8% penalty on average.

4. Discussion

The performance results given in the previous

section have illustrated some of the benefits of using

MPI storage windows. Here we extend the discus-

sion concerning these results.

Limitations of memory-mapped IO

Introducing storage operations as part of the

memory space of an application allows us to com-

bine computations and storage operations, hiding

part of the bandwidth and access latency differences

between memory and storage. However, we note

that the use of memory-mapped I/O for MPI stor-

age windows might constraint the performance on

large-process counts [31]. This is due to the inher-

ent context-switches required when multiple pro-

cesses are simultaneously conducting I/O and must

wait for the I/O requests to succeed. In addition,

we also observe that applications can inevitably be

bounded by the storage bandwidth when perform-

ing only large, irregular write operations over the

mapped storage space. Even if the page cache of the

OS could theoretically absorb part of these modi-

fications, the changes must be synchronized with

storage at some point and might produce stall pe-

riods on the process. We expect that future imple-
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mentations based on MPI I/O can avoid some of

these limitations by transferring large portions of

memory from / to storage.

Combining memory and storage allocations

Combined window allocations divide a range of

consecutive virtual addresses into memory and stor-

age. Two separate mappings are then established

with a fixed subset of the reserved virtual addresses.

One of the main benefits of this type of alloca-

tions is that they reduce the overhead of letting

the OS manage the full allocation. Thus, the mem-

ory part is inherently “pinned”. Figure 13 demon-

strates that the approach can also benefit clusters

that use Lustre, such as Tegner. The example uses

a fixed factor of 0.5 to simulate that half of the

allocation cannot fit into memory. Despite the ob-

served differences in read / write performance, the

figure illustrates that the throughput increases up

to 1.68GB/s on average, almost twice as much com-

pared to the original results.

Going beyond the main memory limit

In some situations, finding a good balance be-

tween computations and read / write operations

is not possible. A good example is going beyond

the physical memory limit while performing write

operations (see Figure 10). After exceeding the

main memory limit, the throughput strictly de-

pends on the transfer rate of the storage device

used. Nonetheless, this trade-off compensates the

fact that traditional MPI memory windows can-

not exceed the vm.overcommit ratio. This limit

determines the maximum amount of memory that

a certain application is allowed to allocate (in our
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Figure 13: (a) mSTREAM microbenchmark performance us-

ing MPI storage windows and combined window allocations

on Tegner. (b) Read and write performance evaluation us-

ing the SEQ kernel with MPI storage windows and combined

window allocations on Tegner.

tests, 90% of the main memory). Without increas-

ing the physical memory capacity or using tech-

niques such as out-of-core, the execution of any

HPC application will fail after reaching this limit.

Hence, using MPI storage windows can be beneficial

by transparently hiding the complexity of managing

these situations.

Buffering on Lustre for better performance

We observed that MPI storage windows did not

perform well in some experiments that use the Lus-

tre parallel file system mounted on Tegner. We

demonstrated that this effect was due to the asym-

metric read / write performance featured on the
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cluster. The reason for the asymmetry is related to

how the Lustre client of each node handles inter-

nally the memory-mapped I/O. For instance, reg-

ular I/O may benefit from increasing the amount

of dirty client cache through the max dirty mb set-

ting of Lustre. Unfortunately, memory-mapped file

I/O or regular I/O that uses the O DIRECT flag, are

configured to cache data up to a full RPC. At this

point, all the written data is effectively transferred

to the correspondent OST server. We expect to de-

sign and implement a custom implementation that

resembles the memory-mapped I/O mechanism at

user-level. This will offer full-control of the map-

ping from the MPI implementation.

Transparent checkpoint support

MPI storage windows can provide advantages

for novel fault-tolerance mechanisms. By just re-

lying on synchronization points that include an

MPI Win sync call over the window object, we illus-

trated how checkpoint support can be implemented

to ensure data consistency with the storage layer.

In this regard, we note that decoupled checkpoint-

ing can be possible by using exclusive locks over the

local MPI storage window. Listing 4 highlights how

easily one could ensure data consistency while pre-

venting remote processes to access the local infor-

mation that is exposed through the window. This

avoids the use of a global MPI Barrier. Lastly, we

observe that version control after each checkpoint

can be easily maintained at application-level. We

can understand the status of the flushed data by

including a header alongside individual or grouped

values [32]. Alternatively, a simple approach is to

use two MPI storage windows and swap them on

each checkpoint. Hence, we guarantee that the OS

will only flush the modified data on the active win-

dow.

Listing 4: Synchronization point that guarantees data con-

sistency with storage.

1 ...

2 void checkpoint ()

3 {

4 // Lock window to prevent changes

5 MPI_Win_lock(MPI_LOCK_EXCLUSIVE ,

6 myrank , 0, win_keyval );

7 MPI_Win_sync(win_keyval );

8 MPI_Win_unlock(myrank , win_keyval );

9 }

10 ...

Performance considerations with MPI I/O

In certain use-cases, such as during checkpoint in

MapReduce-1S, we observed that MPI storage win-

dows can provide advantages over MPI I/O. For in-

stance, the selective synchronization mechanism of

memory-mapped IO decreases the checkpoint over-

head by avoiding to flush all the data from mem-

ory to storage. Hence, a call to MPI Win sync only

ensures that the recently updated data inside the

window is correctly stored in the correspondent

mapped file. By using MPI I/O, however, each

checkpoint requires to flush the current status of

each process into the global shared file. Thus, un-

less applications integrate their own mechanism to

keep track of the modified data, the performance

is compromised in comparison. This is the main

reason why the use of collective I/O did not pro-

vide any additional advantages, despite this type of

operations generally providing higher performance

in several orders of magnitude [5]. Nonetheless, we

also note that a combination of non-blocking MPI
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I/O operations and local buffering might provide

similar benefits, even when page caching is sup-

ported.

5. Related Work

MPI windows have been included in MPI since

MPI-2 through the one-sided communication model

with the main purpose of utilizing RDMA for lower

communication overhead compared to explicit mes-

sage passing [5]. MPI-3 further extends the RMA

interface and [8] provides a high-performance im-

plementation. The previous work [33] has proposed

using MPI windows to support checkpointing on

emerging non-volatile memories. In contrast, our

work extends the concept of MPI window to a broad

spectrum of storage devices. MPI storage windows

allow for interaction with different tiers of the stor-

age hierarchy, providing a portable I/O mechanism.

Our approach also enables seamless data transfer-

ring from memory to storage by utilizing the highly-

optimized OS support for paging.

Large-scale scientific applications often suffer

from I/O operations as their performance bottle-

neck. In addition, as data-intensive applications

are emerging on supercomputers, out-of-core ap-

plications, whose datasets exceed the capacity of

main memory, heavily rely on efficient I/O oper-

ations for high-performance. Several studies have

shown that the I/O performance is far from the

peak I/O performance in the majority of the appli-

cations [34, 35]. MPI collective I/O addresses the

challenge of the high-latency I/O operations with

a generalized two-phase strategy for collective read

and write accesses to shared files [19]. Still, pro-

grammers need to use explicit I/O operations for

interaction with the file system.

The previous work [36] has pointed out that ex-

plicit I/O operations can have several disadvantages

and proposes an approach from the compiler level.

In fact, [37] describes a new HPC-focused data stor-

age abstraction that converges memory and storage.

In this work, we provide a solution that extends the

concept of one-sided communication model by en-

abling MPI windows with parallel I/O functional-

ity. Hence, programmers maintain a familiar, uni-

fied programming interface.

6. Conclusion And Future Work

Computing nodes of next-generation supercom-

puters will include different memory and storage

technologies. In this work, we proposed a novel

use of MPI windows to hide the heterogeneity of

the memory and storage subsystems by providing

a single common programming interface for data

movement across these layers. Our implementa-

tion, named MPI storage windows, is based on the

memory-mapped file I/O mechanism of the OS. The

approach transparently and efficiently integrates

storage support into new and existing applications,

without requiring any changes into the MPI stan-

dard. Moreover, it allows the definition of combined

window allocations, that merge memory and stor-

age under a unified virtual address space.

We evaluated MPI storage windows using two mi-

crobenchmarks and three different applications. We

demonstrated that, while the approach features a

performance degradation when compared to MPI

memory windows, it can be effectively used for
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transparent checkpointing or exceeding the main

memory capacity of the compute node. In most

cases, the high-efficiency of MPI storage windows

mostly relies on the fact that the page cache of the

OS and the buffering of the parallel file system act

as automatic caches for read and write operations

on storage: in the same way that programmers do

not necessarily handle explicit data movement in

the processor caches, here programmers do not need

to handle virtual memory management or buffering

of the file system.

As future work, we plan to investigate the cre-

ation of a user-level memory-mapped I/O mecha-

nism to provide full-control of storage allocations

from the MPI implementation perspective. In ad-

dition, we plan to study the use of the xpmem [38]13

Linux kernel module to map a remote storage win-

dow in the local virtual memory of an MPI process.

Lastly, we plan to investigate the potential benefits

of using Direct Access (DAX)14, an extension to the

Linux kernel to map directly storage devices into

virtual memory addresses.
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