
24 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Combining PREM compilation and static scheduling for high-performance and predictable MPSoC
execution / Matejka J.; Forsberg B.; Sojka M.; Sucha P.; Benini L.; Marongiu A.; Hanzalek Z.. - In: PARALLEL
COMPUTING. - ISSN 0167-8191. - STAMPA. - 85:(2019), pp. 27-44. [10.1016/j.parco.2018.11.002]

Published Version:

Combining PREM compilation and static scheduling for high-performance and predictable MPSoC execution

Published:
DOI: http://doi.org/10.1016/j.parco.2018.11.002

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/724646 since: 2020-05-12

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.parco.2018.11.002
https://hdl.handle.net/11585/724646

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Joel Matějka, Björn Forsberg, Michal Sojka, Přemysl Šůcha, Luca Benini, Andrea
Marongiu, Zdeněk Hanzálek, Combining PREM compilation and static scheduling for
high-performance and predictable MPSoC execution, Parallel Computing, Volume
85, 2019, Pages 27-44, ISSN 0167-8191.

The final published version is available online at:
https://doi.org/10.1016/j.parco.2018.11.002

© 2018 This manuscript version is made available under the Creative Commons Attribution-

NonCommercial-NoDerivs (CC BY-NC-ND) 4.0 International License

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://cris.unibo.it/
https://doi.org/10.1016/j.parco.2018.11.002
http://creativecommons.org/licenses/by-nc-nd/4.0/

Combining PREM compilation and static scheduling for

high-performance and predictable MPSoC execution

Joel Mat ̌ejka

a , c , ∗, Björn Forsberg

b , Michal Sojka

c , P ̌remysl Šůcha

c , Luca Benini b ,
Andrea Marongiu

d , Zden ̌ek Hanzálek

c

a Czech Technical University in Prague, Faculty of Electrical Engineering, Technická 2, Prague, Czech Republic
b ETH Zürich, Institut für Integrierte Systeme, Gloriastrasse 35, Zürich, Switzerland
c Czech Technical University in Prague, Czech Institute of Informatics, Robotics and Cybernetics, Jugoslávských partyzán ̊u, Prague, 1580/3, Czech Republic
d University of Bologna, Viale Risorgimento 2, Bologna, Italy

MSC:

00-01

99-00

Keywords:

PREM

Predictability

LLVM

Static scheduling

Integer linear programming

a b s t r a c t

Many applications require both high performance and predictable timing. High-performance can be pro-

vided by COTS Multi-Core System on Chips (MPSoC), however, as cores in these systems share main mem-

ory, they are susceptible to interference from each other, which is a problem for timing predictability. We

achieve predictability on multi-cores by employing the predictable execution model (PREM), which splits

execution into a sequence of memory and compute phases, and schedules these such that only a single

core is executing a memory phase at a time.

We present a toolchain consisting of a compiler and a scheduling tool. Our compiler uses region and

loop based analysis and performs tiling to transform application code into PREM-compliant binaries. In

addition to enabling predictable execution, the compiler transformation optimizes accesses to the shared

main memory. The scheduling tool uses a state-of-the-art heuristic algorithm and is able to schedule

industrial-size instances. For smaller instances, we compare the results of the algorithm with optimal

solutions found by solving an integer linear programming model. Furthermore, we solve the problem of

scheduling execution on multiple cores while preventing interference of memory phases.

We evaluate our toolchain on Advanced Driver Assistance System (ADAS) application workloads run-

ning on an NVIDIA Tegra X1 embedded system-on-chip (SoC). The results show that our approach main-

tains similar average performance to the original (unmodified) program code and execution, while reduc-

ing variance of completion times by a factor of 9 with the identified optimal solutions and by a factor

of 5 with schedules generated by our heuristic scheduler.

1

A

c

c

p

o

a

m

h

d

f

∗ Corresponding author : Joel.Matejka@cvut.cz (J. Matějka).

p

d

c

p

p

c
NVIDIA TX1

. Introduction

Many real-time applications, such as autonomous cars and

dvanced Driver Assistance Systems (ADAS), require both high

omputational performance and predictable timing. Although

ommercial-off-the-shelf (COTS) multi-core CPUs offer sufficient

erformance, it is difficult to predict task execution times because

f cores competing for shared on-chip and off-chip resources such
s main memory. The pessimism in worst-case execution times

akes integration of complex systems with real-time requirements

ardly feasible. In order to achieve the desired predictability, a pre-

ictable task execution model (PREM [1]) that guarantees freedom

rom interference can be employed.
In PREM, application code is executed in sequences of non-

reemptive intervals of two types: predictable or compatible. Pre-

ictable intervals are composed of memory prefetch, compute and

a

t

o

l

i

a

a

memory

write-back

phases (in

that

order). The purpose

of

the

prefetch

phase

is

to

load

data needed

in

the

compute phase

to a
ore-local memory, such as L1 or L2 cache, to ensure that the com-

ute phase does not compete for memory with other cores. Com-

atible intervals are those where the separation of memory and

ompute phases is not easily possible, which includes parts of the

pplication as well as most system calls. The advantage of PREM is

wofold: 1) memory phases have exclusive access to shared mem-

ry, limiting inter-core interference; 2) non-preemptive execution

imits cache-related preemption delays [2] .
In this paper, we achieve predictable execution with two steps:

) creation of PREM-compliant code (i.e., a sequence of predictable

nd/or compatible intervals); ii) scheduling intervals so as to guar-

ntee mutually exclusive access to the main memory.

p

c

p

s

c

o

i

o

t

h

I

o

i

t

c

t

m

s

l

r

t

s

m

P

i

m

i

S

2

2

l

t

c

s

m

n

r

c
The creation of PREM-compliant code is a complex task, re-

quiring knowledge of many low-level details. Such a task is better

solved by optimizing compilers than by humans, particularly in the

context of CPU codes, for which a large body of legacy code is in-

volved. While previous research has discussed the desired features

of such a compiler, and state-of-the-art analysis techniques for its

practical design [1] , the existing implementations still require the

programmer to deal with low-level details.

In this work we present a compiler, based on the LLVM in-

frastructure [3] , for the transformation of legacy CPU codes into

PREM-compatible code. Specifically, this compiler performs several

passes: i) identification of suitable portions of the code for conver-

sion into predictable intervals; ii) splitting of the identified code

into multiple predictable intervals, based on the size of available

core-local memory; iii) generation of code for prefetch and write-

back phases; iv) analysis of data dependencies between the in-

tervals and their representation in the form of a directed acyclic

graph (DAG), which is one of the inputs to a scheduling tool.

Scheduling memory phases on different cores to avoid mutual

interference can be performed either on-line or off-line. On-line

approaches are popular, because they do not require much a priori

information, but their schedulability analysis (worst-case behavior

analysis) is more challenging. Off-line scheduling is widely used in

safety-critical systems. There, schedulability analysis is trivial, but

schedule synthesis is difficult when the information needed for the

synthesis is not known ahead of time. Fortunately, in many algo-

rithms used in ADAS applications (e.g., FFT or matrix multiplica-

tion), it is known up front which operations need to be performed

and which memory these operations access. For such algorithms,

off-line scheduling approaches can easily find optimal schedules

and provide high confidence in worst-case timing. One reason why

people often prefer on-line approaches is that off-line scheduling

leads to pessimistic results, because of pessimism in estimating

worst-case execution time (WCET). This is, however, not the case

with PREM, where the pessimism caused by unpredictable interfer-

ence is limited, and thus, off-line scheduling can be practical and

beneficial.

The main goal of this paper is to evaluate whether these ex-

pected benefits can be observed on real hardware with real-world

algorithms. To achieve this goal, and as an additional important

contribution of this paper, we present a fully integrated, complete

implementation of PREM for a state-of-the-art embedded multi-

core CPU. To the best of our knowledge, this is the first fully

functional PREM implementation targeting COTS systems of this

type.
Fig. 1. An example of PREMized ADAS scenario. Red rectangles are memory phases, whi

the references to colour in this figure legend, the reader is referred to the web version of
In our previous work [4] we have presented a prototype com-

iler – capable of transforming regular loops into PREM-compliant

ode – coupled to a scheduling tool based on an ILP model and ca-

able of optimally scheduling small task graphs. In this paper we

ignificantly extend our previous work along several axes. First, the

ompiler can now not only analyze loops but also any other type

f compute- and control flow-oriented parts of the program, both

n parallel and sequential parts. It also improves the performance

f the prefetching phases, thanks to the creation of optimized con-

rol flow that minimizes code footprint and improves cache be-

avior. Second, we overcome the poor scalability of the previous

LP scheduler with a new heuristic algorithm that extends state-

f-the-art techniques [5] to handle schedules for hundreds of tasks

n just a few seconds.

The schedule is computed from the information generated by

he compiler (DAG) and from data obtained by simple single-

ore profiling of the generated code. We show that – compared

o the ILP solver – the extended heuristic (i) solves nearly opti-

ally (5–10% worse than optimum) small instances, with much

horter solve times (over 45 ×) and (ii) enables solving much

arger instances (hundreds of intervals as opposed to dozens) with

easonable solve times and (iii) single-core profiling is sufficient

o execute the resulting application according to the generated

chedule.

The paper is structured as follows. We introduce our system

odel in Section 2 . In Section 3 , we describe our compiler and its

REM-related passes. We follow with a description of our schedul-

ng algorithms in Section 4 . Sections 5 and 6 describe imple-

entation and evaluation both of the compiler and the schedul-

ng on NVIDIA Tegra X1. Section 7 reviews related work and

ection 8 concludes the paper.

. System model

.1. Target application template

To demonstrate the approach presented in this paper, we se-

ected a few algorithms widely used in autonomous driving sys-

ems. Our compiler flow transforms them into PREM-compatible

ode from which we create several execution scenarios. One such

cenario is depicted in Fig. 1 . The first used algorithm is general

atrix multiplication (GEMM), which is an essential operation in

eural networks during forward propagation [6] . The second algo-

ithm is fast Fourier transform (FFT) and inverse FFT (iFFT), which

an be used in applications like visual object tracking, signal pro-
te computations and hatched green are compatible intervals. (For interpretation of

 this article.)

Fig. 2. NVIDIA TX1 block diagram.

c

o

t

p

F

T

v

m

t

2

(

c

c

c

i

r

a

w

w

t

d

c

v

i

p

s

3

p

T

t

w

t

t

h

c

F

i

f

a

p

i

p

t

p

t

t

L

i

e

s

e

f

t

t

s

t

t

a

o

t

u

3

P

b
essing and similar. The third algorithm in our scenario is a mem-

ry intensive computation, typically encountered in binary search

ree or graph traversing algorithms. Such algorithms are common-

lace in path planners, obstacle avoidance, and navigation.

The scenario in Fig. 1 comprises two subsequent GEMMs, one

FT followed by inverse FFT and a sequence of binary tree searches.

he first GEMM is formed by matrix transposition and four inter-

als of actual multiplication. The second GEMM works on smaller

atrices – it has the transposition and only two multiplication in-

ervals.

.2. Target architecture

The target platform of this work is the NVIDIA Tegra TX1

 Fig. 2), a low-cost COTS system-on-chip (SoC) with four CPU

ores. Each core is equipped with a core-local (non-shared) L1

ache memory, and a shared L2 cache. For hardware with shared

ache memories, we assume that techniques such as cache color-

ng [7] are used to emulate cache partitioning. The TX1 employs

andom cache line replacement policy, which means that if there

re no invalid cache lines available, a previously loaded cache line

ill be evicted at random to make place for new data. Thus, soft-

are mechanisms must be used to invalidate specific cache lines

o ensure that loading of new cache lines does not randomly evict

ata that is still active (refer to Section 5.1 for more details). Each

ore is connected to a shared memory bus together with other de-

ices such as the GPU. Solutions to handle interference from GPUs

n heterogeneous SoCs such as the TX1 has been previously pro-

osed in the context of PREM [8] . The integration of our work with

imilar approaches is left for future work.
Fig. 3. Block diagram of the toolchain proposed in this paper. Gray rounde
. PREM compiler

To efficiently and predictably execute applications on the target

latform, the compiler must produce code compliant with PREM.

hat is, code which is split into compatible and predictable in-

ervals, with the latter ones composed of prefetch, compute and

rite-back phases. Our compiler, which can be seen as part of our

oolchain in Fig. 3 , does this automatically, without the need for

he programmer to specify additional pragmas/hints, beyond what

e/she would use for program parallelization. Then, the compiler

an generate a dependency graph of PREM intervals (similar to

ig. 1), which is used as an input for our scheduling tool described

n Section 4 .

We propose the design of a compiler based on the LLVM in-

rastructure that converts C/C ++ code into PREM compliant code

utomatically. Fig. 3 shows the block diagram of the PREM-related

asses in the proposed compiler. The compiler can be separated

nto three parts: Preprocessing, analysis , and transformation . The

reprocessing step performs standard transformations on the code

o ensure that the code is in a known state before the main

asses of the compiler execute. Known state in this context refers

o canonicalization of the control flow graph to match certain pat-

erns expected by the following passes. In addition to the built-in

LVM loop cannonicalization, the control flow graph is adjusted to

nclude intermediate blocks to fully expose Regions that are single-

ntry single-exit, a property that is further described in the next

ubsection. Following this, the analysis passes (e.g., loop analysis)

xtract the required data from the source code, such as memory

ootprint information, upon which regions for PREM transforma-

ion can be selected. The main data that needs to be collected

hrough analysis is the memory footprint which is used to select

uitable PREM regions based on the available local memory. Once

hese have been selected, the transformation passes (e.g., outline)

ransform the program to conform to the requirements of PREM. In

ddition to returning the transformed program, the compiler also

utputs the dependency graph of the PREM intervals, which dic-

ate in which order the program must execute. This information is

sed by the scheduling tool presented in subsequent sections.

.1. Preprocessing

As outlined in the previous section, the first step in the

REM compiler is to detect all memory objects that have to

e prefetched. Duplicate accesses to the same memory location
d boxes represent data, white rectangles are performed operations.

t

o

w

a

o

P

m

o

S

i

u

p

P

r

r

o

o

t

e

t

i

3

f

r

t

w

i

t

a

c

s

s

t

I

w

l

f

t

c

o

e

c

e

t

l

l

n

3

p

m

i

r

o
through different pointers may lead to pessimistic results from the

memory footprint analysis, as duplicate accesses are counted sev-

eral times. To limit this pessimism, alias analysis is employed as

part of the memory object detection, to identify duplicate accesses.

Since the hardware caches will automatically handle any accesses

to the same memory region, the program is guranteed to be cor-

rect even if duplicate memory accesses are not detected, but the

size of PREM regions may be overestimated, leading to a larger

amount of smaller intervals, that increase the scheduling complex-

ity. Furthermore, as part of the preprocessing, the code is normal-

ized into the known state. Lastly, the basic blocks 1 that contain

branches are split, such that the first block contains the compu-

tations, and the second block only contains the branch. As PREM

intervals are created by one or more basic blocks, the splitting of

branches into dedicated basic blocks enables the splitting of the

pre-branch computation and the branch itself into separate PREM

intervals. This later enables efficient creation of PREM intervals, by

traversing the control flow graph. In addition to this, and for the

same reason, basic blocks are split around call instructions, in a

way similar to what has been previously proposed by Soliman and

Pellizzoni [9] .

3.2. Analysis

The most important outcome of the analysis phase is to iden-

tify the portions of the code that are suitable for transformation

into PREM intervals. There are two main requirements to such code

portions: The first is that it should be possible to place prefetch

and write-back operations such that data is ensured to be locally

available at the point of use. We say that the prefetch point must

dominate all points of use of the data, and the write-back point

must post-dominate all points of use within the interval. The sec-

ond requirement is that the data used between the prefetch and

write-back points must fit into the local cache memory, as other-

wise self-eviction would cause cache misses and violate the pre-

dictability guarantees that PREM strives to provide.

3.2.1. Single-entry single-exit regions

The LLVM infrastructure provides the concept of regions , which

are defined as single-entry single-exit (SESE) portions of the code

where the entry node dominates all other nodes in the regions,

and the exit node post-dominates all other nodes in the region.

Thus, this implicitly provides the first requirement of the PREM

interval. A region node is defined as a single or a set of basic

blocks. Regions are constructed within every function in the pro-

gram, and function calls are used to link the regions of one func-

tion to another by creating a dedicated region for the call, as has

been shown in [9] . Within a function, regions are represented as

trees, where the root node is the region that covers the entire

function. To conform to the SESE requirement, this means that

every function may only return once, a limitation that is in line

with the requirements set by the MISRA C [10] specification. For

many programs the compiler is able to automatically restructure

the code to have only a single return point, using built-in opti-

mization passes. Within each region, every further SESE region is

represented as a region of its own, and added as a child to the re-

gion tree. By recursively identifying the SESE regions within every

region, the tree is built top-down to the smallest nodes. As each

child region contains a subset of the nodes of the parent region,

this leads to the following property:

Property 1. The memory footprint of a region R, is smaller or equal

to that of its parent region P.
1 Basic blocks are sequences of instructions that execute without alteration of

he control flow. A branching instruction is only allowed as a last instruction in the

block.

m

r

a

g
Intuitively, if every memory access within the parent region P

ccurs in a node that is also in R , the memory footprint of the two

ill be the same. However, if some of the memory accesses in P

re done in nodes that do not belong to R , the memory footprint

f R is smaller than that of P . This property becomes useful when

REM intervals are created in Section 3.2.3 . By mapping all uses of

emory objects to the region in which they are used, the mem-

ry footprint of each region can be calculated, as will be shown in

ection 3.2.2 .

Furthermore, the child regions are chosen as large as possible,

.e., the largest SESE regions within each region are used to pop-

late the next level of the tree. This leads to another important

roperty:

roperty 2. A region node R appears only once as a leaf node of the

egion tree, and every other direct or indirect parent of this leaf also

eferences this node.

As child regions are chosen as large as possible, they are non-

verlapping, and any node in the control flow will only appear in

ne branch of the tree. To link the non-overlapping regions of a

ree level together, the single successor of the single-entry single-

xit region is encoded in the tree. Thus, it is possible to reconstruct

he control flow graph from every layer of the tree. The first node

s encoded as the entry point of the region.

.2.2. Memory footprint analysis

The memory footprint analysis is carried out in a bottom-up

ashion on the region tree, starting from the leaf-nodes. For each

egion the individual memory objects accessed are identified, and

heir memory footprint calculated. While traversing the tree up-

ards, the contributions from every child region are merged, thus

ncreasing the memory footprint as the traversal goes towards the

ree root. The merge operation identifies any overlapping memory

ccesses between the child regions, to ensure that they are only

ounted once.

For sequential code the memory footprint can be calculated by

imply summing up the contributions of each individual load or

tore operation. However, if the current region is part of a loop, ex-

ra steps must be taken to identify loop-variant memory accesses.

n these cases, the memory object that is accessed depends on

hich iteration of the loop is executed. Consider for example a

oop used to iterate over elements of an array, in this case a dif-

erent array element is accessed during each loop iteration, and

he memory footprint depends on the number of iterations exe-

uted. Loop-variant accesses are characterized by their dependence

n the loop induction variable , i.e., the variable that changes during

ach iteration. To understand which memory objects that are ac-

essed, every value that the induction variable takes during the ex-

cution of the loop must be calculated. All modern compiler infras-

ructures provide support for induction variable-based analysis of

oop expressions, such as the polyhedral model or the scalar evo-

ution analysis [11] . We rely on the latter to implement our tech-

iques.

.2.3. PREM interval selection

Once the memory footprint of every region is calculated, it is

ossible to traverse the region tree to select PREM intervals whose

emory footprint is small enough to fit in the local memory. This

s a recursive and greedy process that tries to select the largest

egions possible. If a region is too large to fit into the local mem-

ry, the recursion continues to the children of the region. As the

emory footprint decreases as the recursion continues, for each

ecursion step the memory footprint of the nodes becomes smaller,

nd by selecting them as separate PREM intervals, a large pro-

ram can be efficiently divided into smaller chunks. Due to the

Fig. 4. The control flow of a branch (a) and a loop (b). Note that the SESE property of the loop, while not immediately clear, can be identified by imagining an empty node

preceeding and postceeding the loop condition. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

n

e

b

m

t

t

a

b

c

t

t

i

c

b

v

I

t

m

c

f

P

d

t

t

g

t

t

c

l

c

i

(

o

t

s

t

o

t

l

a

p

c

c

n

p

a

t

s

i

c

Algorithm 1: Pseudo-code for the PREM interval selection,

adding Region nodes from the Region tree to a PREM Inter-

val.

1: Input: currentRegion

2: if currentRegion. f oot pr int ≤ cur rentInter v al .a v ail abl eMem

then

3: cur rentInter v al.ad d Region (currentRegion)

4: cur rentInter v al .a v ail abl eMem − = currentRegion. f oot print

5: else if currentRegion.isBranch then

6: for all childRegion in currentRegion.childRegions do

7: cur rentInter v al = newP REMInter v al (f ul l CacheSize)

8: Recurse on childRegion

9: end for

10: else if currentRegion.isLoop then

11: cur rentInter v al = newP REMInter v al (f ul l CacheSize)

12: current Region ′ = t ile (current Region, f ul l CacheSize)

13: cur rentInter v al.ad d Region (currentRegion ′)
14: cur rentInter v al = newP REMInter v al (f ul l CacheSize)

15: else if curr entRegion.hasChildr en then

16: Recurse on current Region.ent ryPoint

17: else

18: cur rentInter v al = newP REMInter v al (f ul l CacheSize)

19: cur rentInter v al.ad d Region (currentRegion) or Fail

20: cur rentInter v al .a v ail abl eMem − = currentRegion. f oot print

21: end if

22: Recurse on currentRegion.successor

a

l

b

l

a

fl

o

p

f

b

i

w

a

r

t

3

l

n

t

t
on-overlapping property of the region tree, it is guaranteed that

ach part of the program belongs to a unique PREM interval.

There are two types of regions that require special handling,

ranch regions , and loop regions , which we differentiate from com-

on regions. Branch regions are identified by their entry point con-

aining a node with two or more successors, but not belonging

o the condition test of a loop. The simplest example of this is

n if-statement. As the regions are SESE, a region starting with a

ranch node will by definition cover the entire branch until the

ontrol flow rejoins, as shown in Fig. 4 a. For this reason we call

he first node of a branch region the branch fork and the last node

he branch join . If the entire branch region fits into local memory,

t can be selected as a PREM interval as usual. However, if the re-

ursion continues into the block, separate PREM intervals need to

e created for each branch outcome, as the preceeding PREM inter-

al could otherwise end in either of the branch outcome regions.

n such a case, the longer of the two execution paths would dic-

ate the WCET of the interval, furthermore, a larger amount of data

ay need to be prefetched, but only partially used, once again in-

reasing the WCET of the PREM memory phase. For this reason, if a

ull branch region does not fit into the local memory, an individual

REM interval is created for each branch outcome.

Loop regions are identified by their entry point being the con-

ition test for a loop, thus containing two successors: one to en-

er/continue the execution of the loop, and one to exit the loop if

he end condition is fulfilled, as shown in Fig. 4 b. If a full loop re-

ion fits in the local memory it can be selected within a PREM in-

erval, however if it does not then two steps are necessary. First, as

he loop condition test is a branch, a new PREM interval must be

reated in the same manner as for branch regions , and second, the

oop must be split into multiple smaller chunks which fit in the lo-

al memory. The process of splitting is achieved through tiling [11] ,

n which the iteration space is divided into multiple smaller parts

see groups of “mul” intervals in Fig. 1). Thus, the iteration space

f the original loop is divided into multiple smaller parts. By using

he memory footprint information from scalar evolution, it is pos-

ible to compute how the memory footprint changes as the itera-

ion space is reduced. Once the tiling factor , i.e., how many of the

riginal loop iterations to execute during each tile, is computed,

he tiled loop can be selected as a PREM interval, as it now fits in

ocal memory.

Based on the three above cases, common regions, branch regions ,

nd loop regions , the recusive PREM interval selection algorithm is

resented in Algorithm 1 . The long if -statement tries to select the

urrent region node to a PREM interval, where lines 2–4 try to in-

lude the node in the current interval. If the current node does

ot fit into the current interval, different measures are taken de-

ending on the node type. Lines 5–9 handle the creation of sep-

rate PREM intervals for branch outcomes, lines 10–14 handle the

iling and reselection of loops, and lines 15–16 handle the recur-

ion through the tree for regular nodes. If the node does not fit

nto the current interval, and is a leaf node of the tree, lines 17–21
reate a new PREM Interval and tries to reselect the node when t
ll local memory is available. Once the full current region is se-

ected, or it has been selected through division into smaller parts

y the recursive step, the last line continues the PREM interval se-

ection to the successor node. Thanks to this, the PREM regions

re guaranteed to be selected as sequential nodes of the control

ow. At the end of the function, each node will be part of exactly

ne PREM interval, either directly, or through a direct or indirect

arent node. The splitting of basic blocks around branches, as per-

ormed during the preprocessing stage, maximizes the chance that

ranches can be selected as a single PREM interval, without hav-

ng mutually exclusive PREM intervals per branch outcome, which

ill later simplify the scheduling step. This effect comes from the

ccesses that are not dependent on the branch outcome are sepa-

ated from the accesses within the branch, and thus do not effect

he memory footprint of the branch region.

.3. Transformation

Once PREM intervals have been selected by the recursive se-

ection algorithm, the transformation takes place. First, all region

odes belonging to a PREM interval are outlined into a new func-

ion, and in connection to each call to an outlined function, calls

o two new functions are inserted. These functions will implement

he PREM Prefetch and Writeback phases for the outlined function.

4

f

w

(

f

I

p

b

m

s

l

p

o

m

c

c

m

t

b

c

t

s

4

i

P

a

d

t

p

W

a

n

s

r

s

f

i

w

t

m

b

n

p

w

t

t

s

e

s

r

t

c

s

n

s

t

i
Based on the accesses identified as part of the analysis phase,

the Prefetch and Writeback phases are created from scratch, by gen-

erating the minimal amount of code that is required to prefetch

or evict the data touched by each PREM interval. For the Prefetch

phase , this is done by creating a loop that executes the prfm

pldl2keep or prfm pstl2keep prefetch instructions, for loads and

stores respectively. For the Writeback phase, the prefetch instruc-

tions are replaced with dc civac instructions, which cleans and in-

validates an address from the cache. Data is moved to and from

the cache at the granularity of a cache line , which consists of a

fixed number of sequential bytes, typically between 32 and 128.

To optimize the execution of the Prefetch and Writeback phases , the

compiler is able to determine sequential access patterns, and in-

creases the stride of the loop to only touch each cache line once .

This means that the number of prefetch or flush instructions is re-

duced by a factor of cachelinesize
elementsize

, while still moving all the data to

the cache. As an example, a sequential access pattern of floats (4

bytes), on a system with 64 byte cache lines, reduces the amount

of prefetch/evict instructions by a factor of 16. The effects of this

on a real system is further detailed in Section 6 .

The compute function is kept as-is, but is now ensured to hit

in the cache on every access, assuming that the cache replacement

policy did not self-evict any of the prefetched addresses. We ex-

perimentally evaluate these effects as well, in Section 6 . Methods

to prevent cache conflict misses are left for future work.

Once all the transformations have been applied, a dependency

graph which specifies the correct program order of the PREM inter-

vals is produced, such that this property can be respected by the

scheduler.

3.3.1. Dependency graph generation

In addition to performing the transformations, at the end of the

Analysis phase a directed dependency graph is implicitly created

from the PREM intervals that have been selected. Due to the se-

lection process, each PREM interval, except for the program entry

and exit, has predecessor and successor intervals implicitly defined

through the control flow graph of the task. To schedule these PREM

intervals, the scheduler requires a directed ayclic graph (DAG),

however, the implicitly generated graph would contain cycles if

loops have been tiled into several PREM intervals. For this rea-

son, before the dependency graph is passed to the scheduler, these

loops are unrolled, at a tile basis, to remove the cycles. Note that,

even if the loops would not be fully unrolled within the code, for

code size reasons, the dependency graph is always fully unrolled.

This process is required for the scheduler to work correctly, and

is required even if the amount of unrolled intervals is very large.

However, compared to loop unrolling, the unrolling on a tile ba-

sis produces much fewer nodes in the graph, and does not include

instruction level information, but only interval identification infor-

mation. Through this process, the possibly cyclic graph has been

turned into a non-cyclic dependency graph, which is forwarded to

the scheduler.

4. Scheduling

After the code and dependency graph have been generated by

the compiler, we use the scheduling algorithm described in this

section to schedule parallel execution of the code on the multi-

core target platform. The goal is to minimize completion time

(C MAX) of the last executed interval, while simultaneously ensuring

no interference at memory bus. We first describe the PREM appli-

cation model (Section 4.1) and the scheduling model (Section 4.2).

Then, we briefly summarize the ILP model from our previous

work [4] (Section 4.3) and finally introduce the new heuristic

(Section 4.4). A comparison between optimal and heuristic solution

is presented in Section 6 .
.1. PREM application model

The application transformed into PREM compliant code has the

ollowing structure: It is a static set of PREM intervals { I 1 , I 2 , . . . }
ith dependency relations in the form of a directed acyclic graph

DAG). An example of an application execution scenario trans-

ormed into PREM compliant code is shown in Fig. 1 . Intervals

 9 and I 12 –I 16 are compatible intervals and the rest consists of

redictable intervals. Red rectangles represent prefetch and write-

ack phases , white rectangles are compute phases . For the sake of

odel simplicity, we consider compatible intervals requiring exclu-

ive memory access (equivalent to predictable interval with zero-

ength compute and writeback phase).

For each phase of our model, we need to know its WCET. Com-

ared to unrestricted execution models, determining the WCET

f PREM compliant code is pretty straightforward as the PREM

odel limits possible inter-core interference by ensuring (i) ex-

lusive access to the shared memory in prefetch, write-back and

ompatible phases and (ii) availability of all required data in local

emory in compute phases. As demonstrated in our experimen-

al evaluation, WCET times obtained by a simple measurement-

ased method (profiling) match real execution times with suffi-

ient accuracy. More complex and conservative WCET estimation

echniques, based on static methods [12] can be used, as the pre-

ented methodology is agnostic to how the bounds were retrieved.

.2. Scheduling model

To construct an application schedule, we execute our schedul-

ng algorithm on the scheduling model graph derived from the

REM application model described above. Here, we present only

n informal description of the scheduling model required for un-

erstanding the heuristic algorithm. For the formal description of

he model, we refer an interested reader to [4] .

We formulate the scheduling problem as a resource-constrained

roject scheduling problem (RCPSP) with multi-resource activities.

e use a trivial example in Fig. 5 to illustrate the conversion of

 set of PREM intervals into our scheduling model consisting of

 + 2 activities V = { 0 , 1 , 2 , . . . , n + 1 } . Activities 0 and n + 1 (not

hown in our trivial example) denote “dummy” activities which

epresent the project beginning and the project termination, re-

pectively. We also show how the final schedule is constructed

rom the RCPSP solution. The example consists of two predictable

ntervals (I 1 and I 2) composed of prefetch (P), compute (C) and

rite-back (W) phases, with known execution times p i . The in-

ervals need two resources to execute: CPU core with core-local

emory and shared memory controller (MC). CPU core is required

y all phases, MC only by prefetch and write-back phases.

Since PREM intervals are non-preemptive (another interval can-

ot be scheduled between start of prefetch and end of write-back

hase) and compute phases do not require any additional resource,

e omit the compute phase in our scheduling model, and create

wo activities representing prefetch and write-back phases and a

emporal constraint between start times of these activities repre-

enting the total length of the prefetch and compute phases. In our

xample, interval I 1 is converted into two activities 1 and 2 with

tart times s i (calculated by the scheduling algorithm) and tempo-

al constraint d 12 .

Combination of non-preemptive intervals and symmetric mul-

iprocessor system enables modeling of all CPU cores as one so-

alled take-give resource (TG) [5] . The take-give resource may be

een as a counting semaphore with the capacity Q equal to the

umber of available CPU cores. In contrast to scheduling with clas-

ical resources, TG resources do not require the total occupation

ime (i.e., time between take and give operations) to be known

n advance. The up-/down-pointing arrows in circles represent the

Fig. 5. Translation of two PREM intervals into scheduling model and backwards.

Fig. 6. Scheduling model DAG constructed for scenario 5.

t

w

d

p

r

t

p

o

c

m

r

b

p

o

p

F

w

c

fi

t

1

p

4

F

t

m

r

a

o

s

c

m

i

t

4

ake/give operation, which take/give one unit of the TG resource

ith total capacity of 2.

Our scheduling algorithm takes the activities as input and pro-

uces the schedule in which all resource requirements and tem-

oral constraints are met. As our target platform is a symmet-

ic multiprocessor system, it is not necessary to assign activities

o particular cores. It is sufficient to determine start times of all

refetch and write-back phases (or their order). Non-preemptivity

f intervals ensures that the intervals do not migrate to other

ores. Obtained start times are propagated back into the PREM

odel, and the run-time scheduler dispatches the intervals to a

andom free core at corresponding times. Notice that the write-

ack phase does not need to start immediately after the com-

ute phase. A delay may occur when the memory controller is

ccupied by an activity executed on another core (e.g., write-back

hase of I 1 waits for completion of the write-back phase of I 2 in

ig. 5).

We model compatible intervals similarly to predictable intervals

ith zero length of compute and write-back phases. Therefore, a

ompatible interval creates two activities where the length of the

rst and the value of the linking temporal constraint is equal to

he length of the interval and the second activity has zero length.
[
Fig. 6 shows a scheduling model for a large-scale scenario with

11 intervals (222 activities). The scenario is further detailed in ex-

erimental evaluation Section 6 .

.3. ILP formulation

The ILP formulation of the scheduling problem is shown in

ig. 7 . The inequalities (2) represent temporal constraints between

he activities, inequalities (3) and (4) express occupation of the

emory controller and inequalities (5)–(10) stand for the take-give

esource constraints. Occupation time of a take-give resource by

n activity is represented by variable ˜ p i . Each take-give resource

ccupation is indicated by binary variable a i, j and take-give re-

ource assignment by ˜ z i, j . Binary variables x i, j , ˜ x i, j and ˜ y i, j reduce

orresponding constraints. Finally, the objective function of the ILP

odel (1) minimizes the start time of the dummy activity n + 1 ,

.e., the last activity of the schedule. More detailed description of

he ILP formulation is given in [4] .

.4. Efficient heuristic

The ILP formulation of the scheduling problem, proposed in

4] , is capable of solving only small instances in a reasonable

Fig. 7. ILP formulation of the problem.

e

m

r

i

h

e

4

fi

t

f

t

b

I

n

E

c

t

t

f

i

o

t

t

f

s

t

4

b

C

l

L

m

r

t

c
time. To create efficient schedules for large-scale instances, we ex-

tended a state-of-the-art heuristic algorithm, originially proposed

by Hanzálek [5] . The core of the heuristic is a priority-based list

scheduling algorithm with unscheduling step, which can remove

already scheduled tasks conflicting with the task currently be-

ing scheduled. To achieve near-optimal solutions on large-scale in-

stances, this basic algorithm uses a few additional techniques that

improve the results. One such a technique is the time symmetry

mapping, which allows construction of schedules in both forward

and backward time orientation. Others are propagation of informa-

tion about conflicting tasks into subsequent iterations, and paral-

lelization of the algorithm that enables reduction of solving time.

Our main contribution in this work is the extension of the algo-

rithm to support multi-capacity take-give resources, as described

in Section 4.2 .

4.4.1. Algorithm overview

The proposed heuristic is illustrated in Algorithm 2 . After ini-

tialization (lines 1–6), a bounded amount of while loop iterations

(from line 7 on) is performed. The goal of the loop is to iteratively

tighten the bounds maintained by the algorithm. In each iteration

a decision problem “does a solution with these bounds exist?” is

solved and new instances for next iterations are created. The best

solution found during the iterations is the output of the heuristic.

The algorithm consists of the following building blocks:

4.4.1.1. Initialization. During the initialization phase (lines 1–6), the

algorithm precalculates maximal distances d i, j between all activi-

ties in a graph and sets initial lower bound LB = d 0 ,n +1 and up-

per bound UB =

∑

i ∈V p i . First item is enqueued into the solution

queue.

4.4.1.2. Solution queue. Input to each iteration is a tuple (I C , C, pri-

ority), where I C is the current instance, C is the requested maximal

schedule length and priority is a vector of priorities of length n + 2 .

These tuples are stored in a queue denoted as schedulingParameters .

Although the algorithm could be formulated in a more compact

and elegant way using a recursion, we use the queue because it
nables easy parallelization of the algorithm. The queue-based for-

ulation also allows the possibility that multiple tuples in queue

esult in the same solution after several iterations. To avoid solv-

ng of redundant instances, the algorithm computes and stores a

ash of the priority vector in a hash table, and skips future queue

ntries with the same hash.

.4.1.3. Find schedule. The core of the algorithm is the function

ndSchedule called at line 14 and shown in Algorithm 3 . It tries

o solve the decision problem mentioned in the overview by trans-

orming the vector priority into a schedule S that has its comple-

ion time (C max (S)) smaller than C .

The function iterates until a feasible schedule is found or the

udget , which depends on the number of activities, is depleted.

n each iteration, an activity with the highest priority which is

ot scheduled yet is chosen and the earliest possible start time

S i and the latest possible start time LS i of the activity i is cal-

ulated. Then the findTimeSlot function tries to fit the activity into

he current schedule at an earliest possible time slot with respect

o already scheduled activities and dependencies. If a free slot is

ound, the start time s i of the activity is set so that the activ-

ty fits into the schedule, and the activity is added into the set

f scheduled tasks (no conflicting activity exists). Otherwise, the

ask is forced into schedule with start time s i and all conflicting

activities (tasks that potentially block the insertion of the current

ask into the schedule) are unscheduled. When the finding of the

ree time slot is unsuccessful for the first time, the start time is

et to ES i , otherwise s i = s
pre v
i

+ 1 where s
pre v
i

is the previous start

ime.

.4.1.4. Schedule evaluation. If the feasible schedule is found, new

ounds based on C max (S) and new priorities are calculated. The

new is decreased to UB − 1 and when the schedule is the best so-

ution so far, it is stored in S best , the UB is updated to C max and

B is decreased to min (LB , � 0.8 · UB �) which gives the algorithm

ore time to find a better solution. In the second case, the algo-

ithm increases C new to min (� 1.1 · UB � , � 1.1 · C �) in order to allow

he escaping from the current local optimum. The algorithm also

ounts unsuccessful iterations and when the failureCounter exceeds

Algorithm 2 Iterative resource scheduling algorithm.

a

t

f

i

b

p

t

f

e

t

p

t

c

i

fl

a

o

i

t

b

 given threshold, the LB is increased to LB + (UB − LB) / 4 in order

o fulfill the stopping condition after limited amount of unsuccess-

ul iterations.

The priority vector is changed in every algorithm iteration and

t progressively converges to the priorities, which allow to find a

etter solution in latter iterations. If the schedule S is feasible, the

riorities are updated according to the start times of activities in

he schedule – the latter start time, the lower priority.

It does not matter whether the findSchedule function finds a

easible schedule or not. In both cases two new tuples are gen-

rated and inserted into the queue. The first tuple contains always
he time symmetric instance and appropriately reversed vector of

riorities. In the second tuple is an instance with preserved orien-

ation and modified priorities with respect to the most frequently

onflicting activity during the previous schedule construction. Dur-

ng the schedule creation, the findSchedule function registers con-

icts between activities, which are subsequently evaluated. For the

ctivity couple with the maximum number of conflicts, the pri-

rities are swapped and higher priority is propagated backward

nto priorities of previous activities so that while previous activi-

ies have lower priority, the priorities are increased by a difference

etween the swapped priorities.

Algorithm 3: Priority-rule based function with an un-

scheduling step.

findSchedule(I, C, pr ior ity)
s i = −∞ ∀ i ∈ V;

scheduled = ∅ ;
budget = budget Rat io · n ;

while budget > 0 and | scheduled | < n + 2 do

i = arg max ∀ i ∈V: i / ∈ scheduled (pr ior ity i) ;

ES i = max ∀ j ∈V: j ∈ sched uled

(
s j + d ji

)
;

LS i = C − p i ;

{ slotF ound, s i } = findTimeSlot(i, ES i , LS i) ;
if ! slotF ound then

s i = s
pre v
i

+ 1 ;

end

unscheduled = unscheduleConflictingActivities (i, s i);
scheduled = scheduled \ unscheduled;

scheduleActivity(i, s i) ;
scheduled = scheduled ∪ { i } ;
budget = budget − 1 ;

end

return (s i) i ∈V ;

p

i

g

s

p

c

i

t

d

s

d

t

s

c

t

b

d

i

n

a

b

t

d

o

t

t

w

a

c

p

p

s

w

t

e

p

m

c

s

s

t

o

t

c

s

p

t

f

e

a

h

t

s

p

i

a

6

p

p
4.4.1.5. Time symmetry mapping. Time symmetry mapping trans-

forms input instance so that activities are scheduled in reverse

time orientation (from activity n + 1 to 0). The process of conver-

sion is explained more in detail in [5] .

An example of a feasible schedule found by our heuristic algo-

rithm is depicted in Fig. 12 . The schedule corresponds to scenario

8 ×1 (scenario in Fig. 1 duplicated 8 times in sequence), which is

more detailed in Section 6.4 .

5. Implementation

We use the LLVM compiler infrastructure [3] for source code

analysis and PREM compliant code generation. The passes are de-

signed such that they offer modularity and are as independent as

possible, and information is passed between the passes using ad-

hoc metadata. The presented technique poses the following two

restrictions to the supported C/C++ codes: The code cannot con-

tain any form of recursion, and all loops have to be bounded by

a constant or statically computable value to enable scalar evolu-

tion analysis. It has to be stressed that these restrictions are in line

with the requirements of typical coding standards adopted in the

automotive domain, such as the MISRA guidelines [10] . In light of

this, these restrictions do not impose any severe limitations to real

applications in the target domain.

5.1. Limitations in the current setup

In addition to the previously listed limitations on the supported

codes due to the technique itself, the current implementation has

some further limitations.

Currently, the compiler does not detect and prefetch stack vari-

ables (e.g., spilled registers and function arguments), which implies

that accesses to stack data may still cause cache misses during the

compute phase. The size of the stack is not known until the end

of the compilation, and instrumenting them from within the com-

piler would require special instrumentation in the compiler back-

end. It may instead be better to prefetch the stack at runtime, us-

ing known techniques previously presented as part of LightPREM

[13] . However, these accesses only make up a small portion of the

total memory accesses of the program, and their impact on the
redictability is thus low, as we show in the empirical evaluation

n the next section.

Even when data is prefetched, the target platform does not

uarantee that the data will still be available in the cache at the

tart of the compute phase, due to the random cache replacement

olicy employed. In caches with random replacement policy, the

ache controller randomly selects a candidate cache line and evicts

t to make space for new data when necessary. This strategy breaks

he PREM model because we can not deterministically select which

ata will stay in the cache. However, in experiments below, we

how that also random cache replacement policy can be partially

eterministic. When the new data is transferred into the L2 cache,

he controller fills invalidated cache lines first. It is therefore pos-

ible to minimize the risk of evicting active data by ensuring that

ache lines that are no longer needed are explicitly evicted from

he cache. Therefore we flush and invalidate the entire cache at the

eginning of the schedule, and subsequently, we flush and invali-

ate every cache line used during the execution of PREM intervals

n the respective write-back and compatible phases. Because of the

eed to flush every cache line used during computation, data that

re shared between cores are duplicated to ensure that a write-

ack phase on one core does not affect any other cores.

The L2 cache to which the prefetches are done is shared be-

ween all cores, which means that, even though the data itself is

uplicated, data accesses of the different cores may still evict each

thers data if they map to the same index in the cache. Solutions

o this problem have been proposed in the literature, e.g., through

he use of cache coloring [7] , which ensures that only a single core

ill access each portion of the shared cache. Currently, such mech-

nisms have not been implemented on the target platform, and the

ompiler treats the L2 as a private memory. In order to minimize

ossible evictions due to accesses from multiple cores, our com-

iler only allocates part of the actual L2 cache capacity. We ob-

erve a significant increase of cache misses during compute phases

hen the allocated capacity is larger than three-quarters of the ac-

ual capacity. Therefore we selected only half of the actual capacity.

A resulting effect of the need for data eviction at the end of

ach phase, is that data sharing between two intervals running in

arallel becomes problematic. The reason for this is that one task

ay evict data that is still used within another task on another

ore. For this reason, the current setup requires the adding of a

ynthetic dependency between two tasks that share data, to en-

ure that they will not be scheduled at the same time. In doing

his, it is guaranteed that one task will not evict the data of an-

ther. To support data sharing between parallel tasks on systems

hat require explicit data evictions, the eviction of data structures

ould be made conditional on a control bitmask, generated by the

chedule. This bitmask would encode which task is responsible for

refetching shared data, and which task is responsible for evicting

his. Once the scheduler has produced the final schedule, this in-

ormation could be injected into the system. This would require an

xtension to the scheduler, and is out of scope for this work.

It has to be underlined that the mentioned limitations can be

ddressed through known techniques, and do not constitute an in-

erent limitation of the presented methodology. With the excep-

ion of the stack data limitation, the presented limitations are also

pecific to the random replacement cache policy, and may not be

resent in all COTS hardware. Moreover, the compiler works at the

ntermediate representation level and hence is portable to other

rchitectures such as the Intel ×86.

. Experimental evaluation

The evaluation section begins with an evaluation of the com-

iler optimizations, and an exploration of the predictability and

erformance characteristics of the PREM kernels. Following this,

i

p

e

i

r

n

c

e

o

(

t

f

r

fl

t

u

a

I

m

o

6

s

k

n

2

B

u

c

e

t

k

f

(

o

6

i

f

h

f

t

a

c

a

l

p

s

t

e

o

t

S

s

s

f

m

e

p

t

n

c

c

t

c

k

m

d

d

t

e

w

P

b

t

i

l

t

c

t

t

a

f

p

a

a

c

t

f

a

p

o

6

p

c

d

g

t

o

t

a

t

(

i

t

p

f

n

r

n

c

L

t

t

c

b

a

n

a

b
n order to validate the correctness of all blocks of the pro-

osed toolchain and to evaluate its performance, we created sev-

ral batches of experiments based on the composition of five ADAS

nspired kernels. Such batches are instantiated with different pa-

ameters to create a number of use-case scenarios. For given sce-

arios, we generated PREM compliant code by using the proposed

ompiler, profiled the resulting code to get execution times of gen-

rated PREM intervals, generated a schedule by using the ILP solver

r the heuristic, and run experiments on NVIDIA Jetson TX1 board

based on ARM Cortex A57 processor). We use Linux 3.16 to run

he experiments, and to establish the predictable behavior required

or the PREM model, we implemented system calls for tempo-

ary disabling / enabling of interrupts on the selected core and for

ushing and invalidating the entire cache. We measured execution

imes and the numbers of cache misses in particular intervals by

sing the performance monitor unit (event L2D_CACHE_REFILL
nd PMCCNTR register) in user space. The ILP model solved in IBM

LOG CPLEX Optimization Studio or the heuristic algorithm imple-

ented in C# gives start times which define sequencing of mem-

ry intervals in our test bed.

.1. Kernels

For the evaluation, five kernels are used, from which different

cenarios based on real use cases are constructed. The first three

ernels were already described in Section 2 (GEMM, FFT, and bi-

ary tree search). In addition to this 2D convolution (2DConv) and

D Jacobi stencil computation (2DJacobi) were adopted from Poly-

ench/ACC benchmark suite [14] . The 2D convolution is widely

sed in signal processing and machine learning, and the 2D Ja-

obi stencil can be used for instance to solve a system of linear

quations. 2D Jacobi consists of two kernels, and it is important

o note that the second kernel (2DJacobi-2) is strictly a data copy

ernel, i.e., it has no computation. Overall, these kernels have dif-

erent memory access patterns, compute-to-communication ratios

CCR), which allows us to draw further conclusions on the effects

f PREM.

.2. Compiler optimizations

The creation of prefetch phases has been proposed previously

n [15,16] , to separate the memory operations from computations

or different reasons. In these previous works, the prefetch phases

ave been created through the reuse of the original control flow

rom the computatation part, a process that can be thought of as

rimming the original code for a specialized purpose. This trimming

pproach has several drawbacks, as the control flow may be overly

omplex for just performing prefetching, and if the compiler is un-

ble to identify the complexity and optimize it out, it may lead to

ong execution times for the prefetch operations. Furthermore, re-

eating accesses over multiple iterations of a loop may lead to the

ame data being prefetched multiple times, in for example stencil-

ype kernels, in which each loop iterations accesses its neighbor

lements. In addition to this, this approach turns every load in the

riginal code into a prefetch operation, disregarding the optimiza-

ion of just performing one prefetch per cache line, as presented in

ection 3.3 .

To illustrate the effects of this, we executed the previously pre-

ented 2DConv kernel, which has stencil-type accesses, and mea-

ured the execution time of the prefetch phases under three dif-

erent regimes: trimming , our approach without cache line opti-

izations, and our approach with cache line optimizations. The

xecution was performed on the NVIDIA TX1, and the results are

resented in Fig. 8 . As can be seen, for this kernel, the transforma-

ion presented in this approach is 6 × faster than trimming when

ot considering that multiple elements may be part of the same
ache line . On top of this, the cache line optimization further in-

reases the performance of the Prefetch phase 11 ×. We will explain

his effect in further detail, beginning with the 6 × improvement

ompared to trimming. The kernel considered is a 3 ×3 convolution

ernel, meaning that during the execution of the kernel, each ele-

ent will be accessed 9 times (disregarding elements on the bor-

er). Once as the center element, and eight times for the neighbor

irection (north-west, north, north-east, east, ...). Therefore, reusing

he original control flow to prefetch this data means that each el-

ment is fetched 8 times more than needed. With our approach,

e identify the exact memory access pattern, and can produce a

refetch phase that only visits each element once. Thus, the upper

ound on the improvement from this transformation is 8 ×, due to

he removal of duplicate accesses, and the measured improvement

s 6 ×.

To understand the 11 × improvement when optimizing for cache

ine reuse, we start by realizing that the data types accessed in

he kernel are floats of 4 bytes, and that the NVIDIA TX1 has a

ache line size of 64 bytes. This means that each cache line con-

ains 16 floats stored sequentially in memory. Since data is moved

o the cache at a cache line granularity, prefetching any element of

 cache line will automatically load the remaining elements. Thus,

or sequential accesses our approach increases the stride of the

refetch loop to only touch one element per cache line, leading to

n upper bound for this optimization of 16 ×, of which we measure

n improvement of 11 ×. Note that the size of the elemements ac-

essed, and the size of a cache line of the system directly influences

he expected gains of this optimization, although these values are

airly typical. Combining these two optimizations, our approach is

ble to deliver almost 70 × the performance of the trimming ap-

roach used in previous works, for kernels that have a high degree

f duplicate accesses.

.3. Kernel characterization

As the current COTS processors are optimized for average-case

erformance, it is difficult to obtain realistic estimation of worst-

ase execution time by sequential execution of a scenario. To un-

erline the importance of scheduling of memory accesses and to

et closer to realistic WCETs of our scenarios, we evaluated sensi-

ivity of our kernels to a memory interference generated by mem-

ry intensive tasks on other cores. The knowledge of sensitivity of

he kernels also shows theoretical profitability of the conversion of

 scenario into a PREM compatible form.

To provide insights on the effects of PREM on the execution

imes, we consider two cases: The average case execution time

ACET) and, more importantly, the WCET. While the ACET is not

mportant for real-time scheduling, nor provides a realistic expec-

ation on achievable performance under real-time guarantees, it

rovides an insight on the performance effects of the PREM trans-

ormations done within the compiler.

Fig. 9 shows the execution times of the PREM transformed code,

ormalized to the code without PREM transformations, which we

efer to as Legacy code. The first thing to notice is that, when

ot considering the Writeback phase required due to the random

ache replacement policy, PREM performance is always better than

egacy. This happens, because the tiling transformation done by

he compiler improves the data locality of the transformed code, in

he same manner as for the well known blocked matrix multipli-

ation [17] . Furthermore, the prefetch phase improves the memory

andwidth utilization.

When including the Writeback phase, PREM shows different

mount of overhead for the kernels. Since all transformed ker-

els load the same amount of data (half of the LLC capacity), the

mount of compute operations that can be performed on that data

efore a refill is needed dictates how much of the execution time

Fig. 8. The execution time of the prefetch phase under three different Prefetch phase regimes.

Fig. 9. Normalized execution times of kernels.

m

a

p

c

P

c

A

i

i

s

b

a

i

c

c

i

f

w

i

t

o

r

f

o

[

slowdowns on CPUs.
is spent on data management (writeback). Because of the random

cache replacement policy, the cost of the writeback phase is quite

expensive, as each cache line must be individually flushed, which

is a high-latency operation. For Legacy code, these operations are

not necessary, meaning that all time spent on cache flushes im-

plies overhead for PREM. In kernels with a high CCR (such as

GEMM mul), the larger compute phase dominates this cost, lead-

ing to a relatively small overhead. As can be seen in the figure,

the Writeback phase is only a small fraction of the overall execu-

tion time. However, in kernels with a low CCR (such as 2DJacobi-2),

the Writeback phase makes up around two thirds of the execution

time. In other words, the kernel is almost 3 × slower due to cache

management. Thus, for best PREM performance, the kernels should

have a high CCR, enabling improved performance through guaran-

teed data locality.

With the presented ACET for the kernels, it is clear that the

performance degradation due to memory interference needs to be

higher for kernels whose performance degrades under PREM, for

PREM to provide an improved WCET. For this reason, we next mea-

sure the WCET for Legacy and PREM.

To quantify the WCET of the kernels under memory interfer-

ence, we exposed our kernels to interfering tasks with two types

of memory access patterns. The first is random memory access

pattern, the second is sequential memory read. We compare ex-

ecution times of PREM intervals with WCETs of equivalent legacy

codes. In practice, we run compute phases of PREM intervals with-

out prefetch and write-back phases and with interfering tasks on

other cores. In PREM, there is no space for interfering tasks. During
emory phases, the core has exclusive access to the main memory,

nd execution time of a compute phase is not affected by com-

eting for main memory, because all required data are already in

ore-local memory.

We compare the ratio between WCET of legacy intervals and

REM intervals in Fig. 10 , with memory intensive tasks on other

ores. We consider only the worst behaving interference pattern.

ll values are normalized to the Legacy execution time without

nterference (same as Fig. 9). There are three main observations

n this experiment. First, the overheads caused by writebacks are

ignificant, and even under memory interference not all kernels

enefit from conversion into predictable intervals. This is once

gain particularly clear for the 2DJacobi-2 kernel. Second, interfer-

ng tasks can cause significant slowdown (up to 2.6 × for mmul). In

ases where the slowdown due to interference is significant, even

ases where the writeback phase causes performance degradation

n PREM, the WCET is improved. Third, while the Legacy code is af-

ected by memory interference, the PREM code remains the same,

hich is due to the isolation property of PREM memory schedul-

ng. Sequential memory accesses were more interfering for all in-

ervals except the memory intensive interval, where random mem-

ry accesses caused significantly bigger slowdown. Overall, these

esults are in line with previous results observed in [18] .

In this paper, we use only the CPU cluster of the TX1 platform

or our experiments. In the future work we consider an extension

f the PREM to both CPU and GPU clusters, and as was shown in

16] , slowdowns on the GPU side can be even much worse than

Fig. 10. Kernel execution times under interference.

Table 1

Composition of evaluated scenarios.

Scenario Scn. 1 Scn. 2 Scn. 3 Scn. 4 Scn. 5 Scn. 8 ×1

GEMM count 2 2 1 2 10 16

GEMM parallelism 4, 2 4, 2 7 4, 2 see Fig. 11 4, 2, …

FFT count 2 2 2 4 4 16

FFT parallelism 1 1 1 2 2 1

Search count 5 5 5 3 40 40

Search parallelism 1 2 1 1 7 1

6

c

t

n

h

t

p

t

p

a

g

a

i

s

t

a

i

c

p

w

i

(

I

a

a

l

a

i

s

e

c

l

B

p

t

i

d

p

a

1

s

fi

t

a

s

n

e

a

r

a

F

a

p

l

a

l

a

t

s

t

e

n
.4. Use-case scenarios

We evaluate the effectiveness of our toolchain on several appli-

ation execution scenarios, composed of different combinations of

he previously presented kernels. Four small scenarios (each sce-

ario having only sixteen intervals), and two large scenarios (each

aving up to five hundred intervals) are used. We differentiate be-

ween small and large by the feasibility to solve the scheduling

roblem with the ILP approach.

The test scenarios are constructed and compiled to generate

he following control flows: For each GEMM, one chain of trans-

ositions and subsequent multiplications that can run in parallel

re generated. For the 2D convolution, several parallel intervals are

enerated and similarly for 2D Jacobi, where two subsequent par-

llel intervals (2DJacobi-1 and 2DJacobi-2) are generated. For these

ntervals, the quantity of generated intervals depends of the data

ize. The FFT and tree traversing are fixed-size and stand-alone in-

ervals in our scenarios. All instances are solved by the heuristic

lgorithm, but only small instances are solved by the ILP solver, as

t is not able to solve large instances in reasonable time.

Table 1 describes compositions of small scenarios. Each appli-

ation of a scenario is described by two numbers – count and

arallelism. We explain the meaning of these numbers on Scn. 1 ,

hich is the scenario from Fig. 1 where three applications are run

n parallel. The first application consists of two subsequent GEMMs

 C = αA × B + βC), hence we have GEMM count of 2. The intervals

 1 and I 6 are transpositions of the matrix B and I 2,3,4,5 and I 7,8 are

ctual multiplications that can run in parallel, hence GEMM par-

llelism is 4 and 2 respectively. The second application is FFT fol-

owed by inverse FFT (FFT count 2, parallelism 1), and the third

pplication is binary search tree algorithm divided into multiple

ntervals (Search count 5, parallelism 1). The four selected small

cenarios are:
1. the scenario in Fig. 1 , explained above,

2. the second scenario is composed of exactly the same appli-

cations, the only difference is a division of binary searches

into two parallel chains of intervals (I 12 , I 13 , I 14 and I 15 , I 16),

3. the third scenario has only one multiplication divided into

seven parallel intervals and

4. the fourth scenario has the same two GEMMs as in Scn.

1, two independent FFTs followed by inverse FFTs and only

three graph traversal intervals.

The number of parallel multiplications was automatically gen-

rated by the compiler which converted all scenarios into PREM-

ompliant code. The amount of data processed by FFT was se-

ected such that the data completely fits into core-local memory.

inary tree search intervals cannot be efficiently converted into

redictable intervals, therefore we marked them for transforma-

ion into compatible intervals. The compiler also generated scenar-

os with uncontrolled access to main memory by taking the same

ependency graphs and intervals without prefetch and write-back

hases. As before, we call these codes Legacy .

Two large scenarios (Scn. 5 and Scn. 8 ×1) are used to evalu-

te the heuristic. Scenario 8 ×1 is created by duplicating Scenario

 eight times in sequence. This makes the scenario too large to

olve with the ILP solver, but since we can use the ILP solver to

nd an exact solution for each part, we know the optimal comple-

ion time of the sequential composition into a large scenario. This

llows us to evaluate the heuristic scheduler performance on large

cenarios against a known optimal solution. The second large sce-

ario (Scn. 5) is inspired by real-world applications, that might be

xecuted together in practice. In detail, we take inspiration from

 KCF tracker [19] (tracker), convolutional neural networks (neu-

al), control tasks (control), and image processing pipelines (im-

ge). An overview of the components of this scenario is shown in

ig. 11 . The parallelism of the kernels is expressed as a number

fter the name (e.g. GEMM 4 contains one transposition and four

arallel multiplications kernels). On top of the figure are two paral-

el chains inspired by the tracker . These chains start and end with

 memory intensive task, e.g. opening an image file. Each paral-

el chain consists of a convolution, a memory intensive interval,

n FFT, a matrix multiplication, a iFFT and another memory in-

ensive interval. Below the tracker chains is an interval chain in-

pired by the neural application, which is executed in parallel with

he tracker . This chain consists of matrix multiplications used in

valuation of a neural network. The next chain, below the neural

etwork, represents the control application, and consists of Jacobi

Fig. 11. Scenario 5 consisting of 111 intervals. Numbers represent the parallelism of the kernel.

Fig. 12. Gantt diagram of the 8 ×1 scenario schedule. Intervals in the schedule are represented by white rectangles with labels I i (e.g. I 11 or I 9 in top left corner). Below the

intervals are rectangles representing phases of the intervals. Predictable intervals have three phases – two red for memory and a white compute phase, compatible intervals

have only one phase – hatched green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

s

t

u

u

s

(

s

I

t

l

s

F

s

F

s

p

t

L

f

a

t

a

r

t

t

w

t
kernels for solving a system of linear equations. At the bottom of

the figure are 4 chains of memory intensive tasks, such as graph

traversing or binary tree searches, which represent the image ap-

plication. Overall, this task combines the components of a possible

ADAS-style system, where image represents the acquisition of im-

age data, tracker and neural represent the processing of this data,

and lastly control represents the actuation on the system.

Execution times of particular PREM phases were obtained by

taking the worst-case execution time from 100 executions on a sin-

gle core. Then we solved the ILP model (for small scenarios) and

executed the heuristic with the obtained execution times.

We evaluate our PREM compliant scenarios executed according

to the solved schedules on 10 0 0 0 0 runs and compare that with

an implementation with uncontrolled access to the main mem-

ory. Both implementations are based on a thread pool in order to

minimize overheads for creating new threads. Jobs to be executed

by the threads are picked from a queue. In PREM execution, the

pool has a thread for each CPU core and the queue is ordered ac-

cording to the schedule. When a PREM phase finishes earlier than

expected, the subsequent phase is executed immediately once all

dependencies are satisfied. In Legacy executions, the queue is dy-

namically filled based on the DAG and the jobs are executed by

idle threads. The total number of threads equals to the maximum

parallelism achievable in the application. All threads are scheduled

by the Linux SCHED_FIFO scheduler and have the same priority.

6.5. Experimental results

In Table 2 the measured worst-case execution times (WCET)

and mean execution times are shown for each of the four small

scenarios, both for PREM and Legacy executions. Furthermore, the
chedule completion times C MAX calculated by the ILP solver and

he heuristic are shown for the PREM schedules (Legacy sched-

les are based on best-effort and have no pre-determined sched-

les). Lastly, the time required to find the optimal and the heuristic

chedule for each of the scenarios is provided.

The ILP solver was able to find a solution for up to 34 activities

16 PREM intervals) in a reasonable time (last line in Table 2 shows

olution times on Intel Core i7-3770). In three of the four cases, the

LP solver was able to find a solution in less than two minutes. In

he last case, the exploration took longer, due to the significantly

arger solution space caused by additional parallelism in the task

et. The solution of Scenario 1 in the form of Gantt diagram is in

ig. 12 .

The measured execution times of all 10 0 0 0 0 runs of our

mall scenarios are presented in logarithmic scale histograms in

igs. 13 a–13 d. The PREM schedules completion times C MAX are

hown as a dashed vertical lines.

There are three main findings in the results of the ex-

eriments. First, in every scenario, the variance of comple-

ion times under PREM is small (max 6.1%) in comparison to

egacy executions (up to 52.4%). We calculate the variance P

or PREM as P = 100 × (W C ET PREM

/BC ET PREM

− 1) where W C ET PREM

nd BCET PREM

are the measured worst and best case execution

imes of the PREM compliant execution and analogously L = 100 ×
(W C ET Legacy /BC ET Legacy − 1) for the Legacy execution. Higher vari-

nces of Legacy executions are caused by non-optimal schedules

esulting from dynamic scheduling algorithm as well as by compe-

ition for the shared memory. For example, we can see in Fig. 13 d

hat the histogram of the Legacy executions has three major peaks

hich correspond to three different schedules and selection of par-

icular schedule depends on actual execution times of preceding

Table 2

Scheduled completion time and measured execution times for the scenarios, as well as the time required to

find schedules.

Scenario Small Large

Scn. 1 Scn. 2 Scn. 3 Scn. 4 Scn. 5 Scn. 8 ×1

Number of intervals 16 16 16 16 111 128

ILP PREM C MAX (ms) 7.92 7.92 8.42 8.10 – –

WCET (ms) 7.79 7.79 8.40 8.09 – –

Mean (ms) 7.63 7.63 8.32 7.87 – –

Heuristic PREM C MAX (ms) 8.07 8.40 9.08 8.43 79.20 73.40

WCET (ms) 8.03 8.15 8.56 8.32 79.10 73.24

Mean (ms) 7.77 8.00 8.36 8.07 78.19 70.27

Legacy WCET (ms) 9.75 11.27 11.09 10.79 96.30 88.27

Mean (ms) 7.77 9.11 8.92 8.93 72.31 60.46

ILP solving time (s) 41 73 7 908 60 – –

Heuristic solving time (s) 0.9 1.6 0.8 0.6 53 46

Fig. 13. Histograms comparing completion times of small scenarios with and without PREM applied.

i

l

i

t

l

s

e

f

i

c

t

a

b

t

e

(

l

h

s

u

a

t

v

a

s

d

o
ntervals. If an interval is delayed, then a different schedule is se-

ected at runtime. We can clearly see the positive impact of PREM

n combination with static scheduling on the variance of comple-

ion times. The variance could be even smaller if we strictly fol-

owed start times of the generated schedule.

Second, the measured WCET of the PREM schedule is always

maller than calculated schedule completion time. Since we allow

xecution of intervals as soon as they are ready (we do not wait

or the corresponding start time when all dependencies are sat-

sfied and requested resources are available), the whole scenario

an finish earlier. The fact that all executions finish before the es-

imated WCET shows that our WCET estimations of particular tasks

cquired by single core profiling are sufficient and are not affected

y the execution of multiple intervals on a multi-core system at

he same time.
Third and most important, the measured WCET of PREM ex-

cutions is always smaller than the WCET of Legacy executions

at least by 25.1%, and up to 44.7% for exact solutions, and at

east by 21.4%, and up to 38.3% for solutions produced by the

euristic). We calculate the WCET difference as W CET L P = 100 ×
(W CET Legacy /W CET PREM

− 1) . The WCET of Legacy executions is

trongly affected by dynamic scheduling algorithm which does not

nderstand the structure of the scenario. For example scenarios 1

nd 2 are composed of the same intervals, the only difference is

hat Scenario 2 enables execution of two memory intensive inter-

als at the same time. Concurrent execution of the intervals (I 12

nd I 15) prolongs both of them up to three times as can also be

een in Table 3 , and therefore subsequent tasks are significantly

elayed. As can be seen in Fig. 13 b, the delay influences the WCET

f the Legacy execution which is 11.27 ms instead of 9.75 ms as

Table 3

Sample of measured execution times and cache misses for scenarios 1 and 2.

PREM Legacy Scn. 1 Legacy Scn. 2

Time (us) Cache misses Time Cache Time Cache

P C W P C W (us) miss. (us) miss.

I 1 28 31 162 3 454 22 0 106 3 510 82 3 519

I 2 35 3 106 145 4 063 12 0 3 188 4 914 3 180 4 982

I 3 34 3 108 145 4 063 13 0 3 188 4 970 3 187 5 055

I 4 33 3 188 146 4 071 15 0 3 651 5 014 3 211 5 380

I 5 20 847 78 2 380 19 4 866 2 504 1 127 2 547

I 6 16 23 93 1 901 9 0 91 1 930 43 1 971

I 7 32 3 198 166 4 079 9 0 3 595 4 088 3 245 4 585

I 8 28 2 548 138 3 459 15 0 2 652 3 930 2 603 3 540

I 9 55 – – 255 – – 45 250 46 263

I 10 35 1 667 277 4 096 22 0 2 324 5 790 2 500 5 811

I 11 34 1 670 275 4 081 21 0 2 308 6 281 2 361 6 428

I 12 877 – – 3 850 – – 862 4 942 2 355 4 529

I 13 860 – – 3 800 – – 788 4 456 1 555 4 058

I 14 862 – – 3 805 – – 794 4 432 784 4 145

I 15 867 – – 3 802 – – 756 4 009 2 343 4 434

I 16 858 – – 3 800 – – 754 3 911 1 527 4 324

Fig. 14. Histograms comparing completion times of large-scale scenarios with and without PREM applied.

l

f

s

u

p

c

c

t

(

t

s

c

m

p

u

c

m

o

c

d

m

a

s

p

c

W
well as the mean time which is 9.11 ms instead of 7.77 ms while

the optimal static schedule for PREM model is the same in both

scenarios.

We can also observe that on our small instances, the heuristic

performs well, and produces schedules only about 5 to 10% slower

than the optimal solutions, while, according to Table 2 , computa-

tion of the schedule with the heuristic is 45–80 0 0 × faster than

the ILP approach. Also, the average execution times as well as the

worst-case execution times are always better than in Legacy exe-

cutions.

For larger scenarios 5 and 8 ×1, where the optimal solver was

not applicable, the heuristic is the only option to produce the

schedule. The benefit of PREM on large scenarios depends on many

factors. The sensitivity to memory interference plays an impor-

tant role, which was already discussed in Section 6.3 , as does the

structure of the scenario and the efficiency of the heuristic. We

show the execution time histograms of the large scale scenarios

in Fig. 14 . It can not be easily determined how far is the gener-

ated solution from the optimal solution. For this reason, we use

Scenario 8 ×1, with the histogram depicted in Fig. 14 b, consist-

ing of eight times sequentially duplicated Scenario 1, for which

we already know the optimal solution. Therefore, for this partic-

ular scenario, we can compare generated schedule with the opti-

mal one. Optimal C MAX for the scenario equals 8 ×7 . 9 = 63 . 2 while

the heuristic-generated schedule has C MAX = 73 . 4 . This represents

15.5% increase.

The histogram of execution times of Scenario 5 is shown in

Fig. 14 a. While the average execution time of PREM (see Tab. 2) is

higher than that of Legacy , the measured WCET of Legacy is much
arger than in the PREM execution (W CET L P = 21 . 75 %). The reason

or the higher average execution time is that this scenario includes

everal kernels that were already shown have smaller performance

nder PREM (see Section 6.3), however, even in light of this, PREM

rovides tighter WCET bounds in this scenario. This is a good out-

ome, as the WCET is the limiting factor in how many tasks that

an be successfully scheduled in a system. Also, we can see that

he execution time variance is much lower in the PREM execution

1.5% vs 65.1%). From this we see that PREM successfully reduces

he execution time jitter, greatly improving the predictability of the

ystem.

Table 3 shows the measured execution times and number of

ache misses in Scenarios 1 and 2. Each predictable interval has

easurements shown for each of the PREM phases (Prefetch, Com-

ute and Write-back). For compatible intervals, the measured val-

es are in the prefetch column only, as compatible intervals only

onsist of a single memory phase.

From the table two important results can be seen for the

emory isolation property of PREM. First, the compute phases

f the PREM-compliant executions have a negligible amount of

ache misses, even though the compiler does not prefetch stack

ata, and the cache employs a random replacement policy. This

eans that even under these conditions, the proposed toolchain is

ble to produce both a system schedule and transform the code

uch that the memory isolation property of PREM is upheld in

ractice.

Second, it can be seen that the memory phases of the PREM-

ompliant executions show an average of 15% fewer cache misses.

e believe this is due to the explicit eviction of data that is no

l

n

7

e

fi

B

o

i

s

s

p

e

e

a

P

p

t

a

a

f

s

m

e

m

p

m

m

v

l

i

t

t

e

p

a

b

P

r

p

m

e

e

p

t

t

a

f

p

e

o

l

p

d

p

w

T

T

t

s

8

t

t

c

l

e

i

fi

j

c

o

o

i

l

s

s

t

w

c

s

f

f

t

o

c

t

l

c

a

A

E

u

R

onger used, such that the loading of new data is less likely to evict

ewly loaded data due to the random replacement policy.

. Related work

The predictable execution model was originally proposed and

valuated on a single core processor by Pellizzoni et al. [1] . The

rst attempt to extend PREM to multi-core systems was made by

ak et al. [20] . Although in these papers a conceptual definition

f a compiler for automatic generation of PREM-compliant code

s provided, no real implementation is discussed. Concerning task

cheduling, the authors simulated behavior of traditional dynamic

chedulers, such as rate monotonic or earliest deadline first, ap-

lied to synthetically generated PREM scenarios. Subsequently Yao

t al. [21,22] proposed memory-centric scheduling technique that

mploys time division multiple access to shared memory and en-

bles preemption of PREM predictable intervals. Alhammad and

ellizzoni [23] proposed static scheduling heuristic for PREM com-

liant fork-join tasks. All the above papers assume caches with de-

erministic replacement policies as local memories, and evaluations

re based on simulations or on execution on x86 platforms. Over-

ll, our paper is the first to describe fully-integrated PREM-support

or state-of-the-art multi-core embedded CPUs, with a realistic

etup running on real hardware and considering real-life bench-

arks. Several other papers such as Alhammad et al. [24] or Burgio

t al. [25] utilize scratch-pad memories (SPM). Unfortunately, many

ulti-core embedded platforms (such as NVIDIA TX1 used in our

aper) have only cache memories with non-deterministic replace-

ent policies and do not have explicitly managed memories.

Manual conversion of an application into PREM compliant for-

at is time-consuming. Therefore the original PREM paper [1] con-

erts manually marked functions automatically at the compiler

evel. A compiler independent solution based on memory profil-

ng tools and backward refactoring of manually selected parts of

he code was proposed Mancuso et al. [13] . However, no fully au-

omated tool for transformation of code into PREM compliant code

xists so far. Our compiler, although still not fully mature, is ca-

able of handling legacy codes written in compliance to standard

utomotive coding best practices. A related problem was addressed

y Koukos et al. [15] who employ an execution model similar to

REM to minimize power consumption. The main idea is sepa-

ation of memory phase and lowering CPU frequency during the

refetch phase. While this work shared the underlying concept of

emory/compute separation, the application is completely differ-

nt, as are the practical challenges.

PREM is not the only mechanism able of achieving predictable

xecution on COTs components based systems. MemGuard pro-

osed by Yun et al. [26] is a memory bandwidth reservation sys-

em that provides guaranteed bandwidth for temporal core isola-

ion. Another way to achieve predictability can be DRAM bank-

ware allocation proposed by Yun [27] . However, on some plat-

orms (such as NVIDIA TX1), controlling DRAM bank allocation is

roblematic due to address randomization aimed at improving av-

rage performance. These approaches can be considered as orthog-

nal to what we describe here. The integration of PREM compi-

ation and bandwidth reservation on top of static schedules can

rovide additional benefits.

The use of integer linear programming has long tradition in the

evelopment of parallel automotive real-time systems. For exam-

le, Becker et al. [28] propose a contention-free execution frame-

ork evaluated on an AUTOSAR-based engine management unit.

hey use both ILP and heuristic algorithms to find static schedules.

heir approach to application scheduling is similar to ours, with

he main difference being that we have actually evaluated the re-

ults by executing the application on real hardware.
. Conclusion

In this paper, we proposed a toolchain for automated code

ransformation of parallel applications into PREM-compliant struc-

ure and their execution on multi-core homogeneous system ac-

ording to the static schedule obtained by either solving an integer

inear programming model or an efficient heuristic. Experimental

valuation shows that for the selected ADAS-like scenarios, PREM

n combination with static scheduling brings the following bene-

ts: i) Significant (at least 5 times) reduction of completion time

itter, ii) WCET of the PREM schedule is always smaller than the

alculated schedule completion time and iii) the measured WCET

f PREM executions is smaller than the WCET of legacy executions

n most scenarios. The adopted heuristic performs well on small

nstances (5–10% above the optimum), and it is capable of solving

arge-scale problems in reasonable time of few seconds.

Our ultimate goal is to improve predictability of execution on

ystems with integrated parallel accelerators such as GPU-based

ystems-on-a-chip (SoC) or Xeon Phi. PREM has been demonstrated

o improve predictability of execution on multi-core CPUs (this

ork) or integrated GPUs [16] . Our current and future work fo-

uses on putting all these pieces together, and enable off-line

cheduling-based whole-system control of predictable execution

or this type of SoCs, which are more and more used as a target

or time-critical applications (e.g., ADAS, avionics). In addition to

his, we are also conducting an exploration of the PREM execution

n an Intel machine with Cache Allocation Technology, where we

an explicitly partition the last level cache and assign cache par-

itions to individual cores. This enables finer control of the core-

ocal memory and provides better isolation properties between the

ores, and as such it presents an attractive target for time-critical

pplications.

cknowledgement

This work was supported by the HERCULES Project, funded by

uropean Unions Horizon 2020 research and innovation program

nder grant agreement No. 688860 .

eferences

[1] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, R. Kegley, A

predictable execution model for cots-based embedded systems, in: 2011 17th
IEEE Real-Time and Embedded Technology and Applications Symposium, 2011,

pp. 269–279, doi: 10.1109/RTAS.2011.33 .
[2] A. Bastoni , B.B. Brandenburg , J.H. Anderson , Cache-related preemption and mi-

gration delays: empirical approximation and impact on schedulability, in: Proc.

6 th International Workshop on Operating Systems Platforms for Embedded Re-
al-Time Applications (OSPERT 2010), 2010 . Brussels, Belgium

[3] C. Lattner, V. Adve, Llvm: a compilation framework for lifelong program anal-
ysis transformation, in: International Symposium on Code Generation and Op-

timization, 2004. CGO 2004., 2004, pp. 75–86, doi: 10.1109/CGO.2004.1281665 .
[4] J. Mat ̌ejka, B. Forsberg, M. Sojka, Z. Hanzálek, L. Benini, A. Marongiu, Com-

bining prem compilation and ilp scheduling for high-performance and pre-

dictable mpsoc execution, in: Proceedings of the 9th International Workshop
on Programming Models and Applications for Multicores and Manycores, in:

PMAM’18, ACM, New York, NY, USA, 2018, pp. 11–20, doi: 10.1145/3178442.
31784 4 4 .

[5] Z. Hanzálek, P. Šůcha, Time symmetry of resource constrained project schedul-
ing with general temporal constraints and take-give resources, Ann. Oper. Res.

248 (1) (2017) 209–237, doi: 10.1007/s10479- 016- 2184- 6 .

[6] Z. Hanzálek, A parallel algorithm for gradient training of feedforward
neural networks, Parallel Comput. 24 (5–6) (1998) 823–839, doi: 10.1016/

S0167-8191(98)0 0 035-0 .
[7] J. Liedtke, H. Hartig, M. Hohmuth, Os-controlled cache predictability for real-

time systems, in: Proceedings Third IEEE Real-Time Technology and Applica-
tions Symposium, 1997, pp. 213–224, doi: 10.1109/RTTAS.1997.601360 .

[8] B. Forsberg , A. Marongiu , L. Benini , Gpuguard: towards supporting a pre-
dictable execution model for heterogeneous soc, DATE’17, 2017 .

[9] M.R. Soliman, R. Pellizzoni, WCET-driven dynamic data scratchpad manage-

ment with compiler-directed prefetching, in: M. Bertogna (Ed.), 29th Euromi-
cro Conference on Real-Time Systems (ECRTS 2017), Leibniz International Pro-

ceedings in Informatics (LIPIcs), 76, Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, Dagstuhl, Germany, 2017, pp. 24:1–24:23, doi: 10.4230/LIPIcs.ECRTS.

2017.24 .

[

[

[

[

[

[10] M.I.S.R. Association , M.I.S.R.A. Staff, MISRA C:2012: Guidelines for the Use of
the C Language in Critical Systems, Motor Industry Research Association, 2013 .

[11] T. Grosser, A. Groesslinger, C. Lengauer, Polly – performing polyhedral opti-
mizations on a low-level intermediate representation, Parallel Process. Lett. 22

(04) (2012), doi: 10.1142/S0129626412500107 .
[12] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-

ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, P. Stenström, The worst-case execution-time prob-

lem—overview of methods and survey of tools, ACM Trans. Embed.

Comput. Syst. 7 (3) (2008) 36:1–36:53, doi: 10.1145/1347375.1347389 .
[13] R. Mancuso, R. Dudko, M. Caccamo, Light-prem: automated software refactor-

ing for predictable execution on cots embedded systems, in: 2014 IEEE 20th
International Conference on Embedded and Real-Time Computing Systems and

Applications, 2014, pp. 1–10, doi: 10.1109/RTCSA.2014.6910515 .
[14] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, J. Cavazos, Auto-tuning a

high-level language targeted to gpu codes, in: 2012 Innovative Parallel Com-

puting (InPar), 2012, pp. 1–10, doi: 10.1109/InPar.2012.6339595 .
[15] K. Koukos, P. Ekemark, G. Zacharopoulos, V. Spiliopoulos, S. Kaxiras, A. Jim-

borean, Multiversioned decoupled access-execute: the key to energy-efficient
compilation of general-purpose programs, in: Proceedings of the 25th Interna-

tional Conference on Compiler Construction, in: CC 2016, ACM, New York, NY,
USA, 2016, pp. 121–131, doi: 10.1145/2892208.2892209 .

[16] B. Forsberg, L. Benini, A. Marongiu, Heprem: enabling predictable gpu execu-

tion on heterogeneous soc, in: 2018 Design, Automation Test in Europe Confer-
ence Exhibition (DATE), 2018, pp. 539–544, doi: 10.23919/DATE.2018.8342066 .

[17] M.D. Lam, E.E. Rothberg, M.E. Wolf, The cache performance and optimizations
of blocked algorithms, in: Proceedings of the Fourth International Conference

on Architectural Support for Programming Languages and Operating Systems,
in: ASPLOS IV, ACM, New York, NY, USA, 1991, pp. 63–74, doi: 10.1145/106972.

106981 .

[18] R. Cavicchioli, N. Capodieci, M. Bertogna, Memory interference characterization
between cpu cores and integrated gpus in mixed-criticality platforms, in: 2017

22nd IEEE International Conference on Emerging Technologies and Factory Au-
tomation (ETFA), 2017, pp. 1–10, doi: 10.1109/ETFA.2017.8247615 .
[19] J.F. Henriques , R. Caseiro , P. Martins , J. Batista , High-speed tracking with ker-
nelized correlation filters, CoRR abs/1404.7584 (2014) .

20] S. Bak, G. Yao, R. Pellizzoni, M. Caccamo, Memory-aware scheduling of multi-
core task sets for real-time systems, in: 2012 IEEE International Conference on

Embedded and Real-Time Computing Systems and Applications, 2012, pp. 300–
309, doi: 10.1109/RTCSA.2012.48 .

[21] G. Yao, R. Pellizzoni, S. Bak, E. Betti, M. Caccamo, Memory-centric scheduling
for multicore hard real-time systems, Real-Time Syst. 48 (6) (2012) 681–715,

doi: 10.1007/s11241-012-9158-9 .

22] G. Yao, R. Pellizzoni, S. Bak, H. Yun, M. Caccamo, Global real-time memory-
centric scheduling for multicore systems, IEEE Trans. Comput. 65 (9) (2016)

2739–2751, doi: 10.1109/TC.2015.2500572 .
[23] A. Alhammad, R. Pellizzoni, Time-predictable execution of multithreaded ap-

plications on multicore systems, in: 2014 Design, Automation Test in Europe
Conference Exhibition (DATE), 2014, pp. 1–6, doi: 10.7873/DATE.2014.042 .

[24] A. Alhammad, S. Wasly, R. Pellizzoni, Memory efficient global scheduling of

real-time tasks, in: 21st IEEE Real-Time and Embedded Technology and Appli-
cations Symposium, 2015, pp. 285–296, doi: 10.1109/RTAS.2015.7108452 .

25] P. Burgio, A. Marongiu, P. Valente, M. Bertogna, A memory-centric approach
to enable timing-predictability within embedded many-core accelerators, in:

2015 CSI Symposium on Real-Time and Embedded Systems and Technologies
(RTEST), 2015, pp. 1–8, doi: 10.1109/RTEST.2015.7369851 .

26] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, L. Sha, Memguard: memory band-

width reservation system for efficient performance isolation in multi-core plat-
forms, in: 2013 IEEE 19th Real-Time and Embedded Technology and Applica-

tions Symposium (RTAS), 2013, pp. 55–64, doi: 10.1109/RTAS.2013.6531079 .
[27] H. Yun, R. Mancuso, Z.P. Wu, R. Pellizzoni, PALLOC: DRAM bank-aware memory

allocator for performance isolation on multicore platforms, in: 2014 IEEE 19th
Real-Time and Embedded Technology and Applications Symposium (RTAS),

2014, pp. 155–166, doi: 10.1109/RTAS.2014.6925999 .

28] M. Becker, D. Dasari, B. Nicolic, B. Akesson, V. Nélis, T. Nolte, Contention-free
execution of automotive applications on a clustered many-core platform, in:

2016 28th Euromicro Conference on Real-Time Systems (ECRTS), 2016, pp. 14–
24, doi: 10.1109/ECRTS.2016.14 .

