
Checkpoint/Restart Approaches for a Thread-Based MPI Runtime

Julien Adama, Maxime Kermarquerb, Jean-Baptiste Besnarda, Leonardo Bautista-Gomezc, Marc Péracheb, Patrick Carribaultb,
Julien Jaegerb, Allen D. Malonyd, Sameer Shended

aParaTools SAS, Bruyères-le-Châtel, France
bCEA, DAM, DIF, F-91297 Arpajon, France

cBarcelona Supercomputing Center, Barcelona, Spain
dParaTools Inc., Eugene, United States

Abstract

Fault-tolerance has always been an important topic when it comes to running massively parallel programs at scale. Statistically,
hardware and software failures are expected to occur more often on systems gathering millions of computing units. Moreover, the
larger jobs are, the more computing hours would be wasted by a crash. In this paper, we describe the work done in our MPI runtime
to enable both transparent and application-level checkpointing mechanisms. Unlike the MPI 4.0 User-Level Failure Mitigation
(ULFM) interface, our work targets solely Checkpoint/Restart and ignores other features such as resiliency. We show how existing
checkpointing methods can be practically applied to a thread-based MPI implementation given sufficient runtime collaboration. The
two main contributions are the preservation of high-speed network performance during transparent C/R and the over-subscription of
checkpoint data replication thanks to a dedicated user-level scheduler support. These techniques are measured on MPI benchmarks
such as IMB, Lulesh and Heatdis, and associated overhead and trade-offs are discussed.

Keywords: Checkpoint-Restart, Fault-Tolerance, DMTCP, Infiniband, Multilevel Checkpointing, MPI Oversubscribing

1. Introduction

The trend towards parallel high-performance computing sys-
tems with extreme numbers of cores, deep memory hierarchies,
and multidimensional topological networks is pushing applica-
tion developers towards programming models that must take
advantage of nodes executing a large number of threads, while
also maintaining efficient internode communication. The evo-
lution of hybrid programming models consequently results in
parallel applications that are effectively operating multiple run-
time systems simultaneously to carry out its computation. The
common MPI+OpenMP approach is an example. In such a con-
text, it is reasonable to allow programming models to collabo-
rate when performing some runtime actions.

Consider the objective of checkpoint/restart (C/R) as a fault-
tolerance mechanism aimed at saving the current state of a given
parallel program’s execution (i.e., checkpoint) and then restor-
ing the program’s status at that point (i.e., restart). There are
multiple methods to achieve this purpose:

• explicit requiring direct modifications in the code;

• transparent in the sense that they are able to checkpoint
indifferently from the code itself.

One of the major stakes for end users is to select the C/R
method fitting with application needs. This paper presents C/R
optimizations leveraging runtime support for both these cases.
Transparently checkpointing complex applications may lead to
challenges when involving for example high-speed networks.

The application-level approach defers the C/R support to devel-
opers, using their knowledge to checkpoint only relevant data,
whereas the runtime is, in most cases, more suited to deal with
low-level notions like C/R data replication. In these two exam-
ples, we show how the runtime may collaborate to enable more
efficient checkpointing.

In the rest of this paper we consider application-level and
transparent checkpointing methodologies. We describe their
respective implementation with the Fault Tolerance library[4]
(FTI) and distributed multithreaded check-pointing (DMTCP)[2],
contrasting their use and purpose. Section 2 starts by describ-
ing related work and Section 2.4 discusses various levels for
checkpoint-restart and tradeoffs. Then, Section 3 presents the
specificities of our MPI runtime executing MPI processes in
user-level threads. The rest of the paper eventually describes
and validates the integration of two fault-tolerance tools, FTI
and DMTCP, with a focus on runtime oriented optimizations.
More generally, we make the following contributions:

• We show how application-level checkpointing could rely
on dedicated progress threads, positively taking advan-
tage of oversubscribing;

• We demonstrate high-speed network checkpointing thanks
to collaboration from MPI runtime;

• We introduce a compact collective checkpointing call for
transparent C/R.

This work is an extended version of a paper originally fo-
cused on the sole integration of DMTCP in a thread-based MPI

Preprint submitted to Parallel Computing June 13, 2019

ar
X

iv
:1

90
6.

05
02

0v
1

 [
cs

.D
C

]
 1

2
Ju

n
20

19

runtime[1]. This new version features extended descriptions,
additional contrast with respect to application-level checkpoint-
ing and more generally C/R trade-offs. In addition, we describe
how we integrated FTI application-level checkpointing library
to take advantage of user-level threads.

2. Related Work

Fault tolerance in the context of HPC applications is a very
active field. The increasing complexities and constraints on par-
allel systems, combined with falling mean time between failure
(MTBF) on systems with millions of components, motivates the
development of technology to mitigate the consequence of fail-
ures during parallel execution. Such failures directly map to
lose simulation results, but also the financial cost of a highly
priced resource. Beyond fault tolerance, these technologies can
also benefit other purposes, such as steering of a parallel ap-
plication to improve solutions or remapping system resources
to address allocation constraints on a given machine. With re-
spect to MPI applications in general, we can identify three main
approaches for fault tolerance: (1) explicit and (2) transparent
approaches, followed by (3) failure mitigation. Although these
are not mutually exclusive, we describe each in turn.

2.1. Explicit Methods

The checkpoint/restart methodology is about both saving
and restoring the state of a program. When it comes to parallel
applications, this supposes that a program (e.g., a simulation) is
able to restore its state (data) and current time-step (control) to
take over the computation from where it was checkpointed. The
most basic way to achieve this behavior is to manually save data
associated with a given time-step and reload it again to restart
it, this being done by the program itself. In this manner, re-
sults from multiple intermediate time-steps can be saved and
reloaded. This is a portable method which has the advantage
of not requiring any external tool. The application describes
which data has to be saved and the resultant checkpoint file
contains exactly what is needed for restart while the program
interruption time remains low, keeping a small overhead for the
overall application execution time. One step further is to con-
sider checkpoint file storage in a redundant manner. An easy
way is to store files on a shared mount point. However, this ap-
proach exposes issues when scaling to thousands of nodes/pro-
cesses. SCR[28] and ACR[30] answer this by storing check-
point files over faster, local mount points and replicate them to
ensure redundancy. The Fault Tolerance library (FTI)[4] that
we describe in more detail in Section 6.1 is also aimed at solv-
ing these issues.

Unfortunately, the basic approach has further limitations.
First, it requires that the full dataset remain easily serializable,
and supposes that all the artifacts linked to a given computation
state are preserved and restorable. This can be a difficult task
when dealing with highly modular frameworks hosting several
data structures. Second, it supposes that each simulation im-
plements its own checkpoint format and dedicate development
efforts to provide a similar feature.

As far as application-level checkpointing implementation
mechanism is concerned, incremental checkpointing [29] was
proposed to reduce the amount of data to write in consecutive
checkpoints, but the benefits of this technique are not always
important. Thus, disk-less checkpointing [34] was proposed to
alleviate this issue. With the arrival of new storage devices,
multilevel checkpointing was proposed [4, 19], including a cer-
tain number of features, such as asynchronous transfers to the
parallel file system. Semi-blocking algorithms have been pro-
posed to save the checkpoint data without stopping the applica-
tion execution[31], however this work does not leverage thread-
ing mechanisms as the one presented in this paper to safely and
efficiently oversubscribe compute nodes and allow fault toler-
ance tasks to take place in an opportunistic fashion.

Oversubscribing, an approach we retained in this paper, has
been scarcely studied. A complete survey of oversubscribing
with the use of several parallel programming languages [23]
shows that oversubscribing MPICH-2 MPI processes induces
an overhead of 10% (equivalent to the one we observed with
OpenMPI), while oversubscribing threads may improve over-
lap and recovering waiting periods. It has also been studied how
bad placement of processes for checkpoint/restart may hurt per-
formance [38]. Another work describes how, even if possibly
harmful inside one application, oversubscribing can be used to
efficiently execute multiple applications sharing one node [37].
To circumvent this drawback when applying MPI oversubscrib-
ing in a unique application, some work focused on enabling
multiple MPI process in one OS process [26], verifying the pos-
itive impact of such implementation.

While it is possible to leverage external libraries that op-
timize certain support, application-level checkpointing still re-
quires representative data to be manually described using a ded-
icated API. As a consequence, they cannot be seen as transpar-
ent, as the target code still has to insert calls to the checkpoint-
ing API. For these reasons, methodologies which do not involve
such annotations, have also been explored.

2.2. Transparent Methods
Transparent checkpointing tries to save the state of a run-

ning program, without having any previous application knowl-
edge. Several tools have been developed for this purpose, lever-
aging multiple approaches. A general “external” method uti-
lizes a virtual machine (VM) running inside an emulator, which
can be frozen and then saved (both from memory and disk point
of view)[5, 18]. While effective, it requires the whole operating
system to be saved, and has severe performance overhead.

Tools for checkpoint/restart that are more appropriate for
the HPC field include the Berkeley Lab Checkpoint Restart[20]
(BLCR) tool. BLCR relies on a kernel-level approach to both
suspend and checkpoint. This has the advantage of avoiding
a complete wrapping of every system call, and thus avoids the
associated overhead. Being part of the Linux kernel also give
the advantage to restart applications in the exact same UNIX
environment (same process ID, restoring UNIX pipes). How-
ever, the kernel approach first requires an administrator to load
the corresponding module. Without considering resources out-
side of the current OS, it is not possible to save/restore network

2

communication like sockets, and the application will have to
handle these limitations to provide a complete C/R support. As
multiple patched kernels are not able to communicate through
a whole cluster, BLCR, on its own, cannot be used in MPI con-
text. The parallel application has to integrate explicit BLCR
support to enable its distributed usage. In particular, an ap-
proach using BLCR similar to what we present in this paper
has been developed with the idea of closing network resources
before checkpointing [10]. However, it was limited to TCP pro-
tocol and considered emulation on high-speed networks.

Another approach consists in providing checkpointing in
user-space by wrapping any needed system calls, in order to
constantly track application states. Indeed, as tools cannot be
sure about the application behavior, all potential calls involving
resources outside the process are to be captured, such as net-
work or storage. The Distributed Multi-threaded CheckPoint-
ing (DMTCP)[2] tool can checkpoint applications at user-space
level, injecting a preloaded shared library upon application start
in order to wrap system calls. Such a tool has the advantage of
not requiring recent kernel features or administrative privileges
for installation or recompiling the application to enable, dis-
able or update the support. From this viewpoint, it becomes
easier to make multiple nodes collaborate, and checkpointing
distributed applications does not necessarily need MPI-aware
implementations. However, catching system calls and associ-
ated bookkeeping creates a measurable performance overhead.
Moreover, a log of on-the-wire messages has to be preserved in
order to replay them in case of a failure. Such a model intro-
duces a non-negligible cost for the application.

The last method allows transparent checkpointing without
wrapping system calls, as done by tools such as CRIU [15].
However, it relies on more recent kernels to be able to fully
extract information from the operating system. CRIU has the
advantage of supporting name-spaces and is, therefore, the so-
lution of choice when dealing with containers.

As far as MPI support is concerned, only DMTCP and BLCR
currently integrate a mechanism to enable a distributed check-
point involving multiple UNIX processes. For this reason, and
due to test environment constraints (i.e., kernel), the transpar-
ent solution we will develop in the rest of this paper relies on
DMTCP, but CRIU is recognized as a promising future alterna-
tive particularly as it does not create additional overhead due to
wrapping.

2.3. MPI Failure Mitigation
The failure mitigation approach is more focused on how to

identify and put up with a failure than actually on how to re-
cover from it. For example, if some nodes suffer from a hard-
ware failure during a MPI job, it would be faster for the appli-
cation to recover from remaining MPI processes than restart-
ing the whole program (reallocating resources)[16, 22]. If the
workload can be adjusted dynamically, such approaches are
bound to be more efficient than pure C/R. In this field, we can
cite the User-Level Failure Mitigation(ULFM)[8, 7], a solution
implemented on top of OpenMPI, providing new MPI seman-
tics that helps the application to recover process failures. This
model defines a state at the communicator level. If at least one

MPI process becomes unreachable – for any reason defined by
the implementation – the MPI call returns an error. In addition,
ULFM provides routines to revoke and shrink communicators
in order to recover from failures. This approach can be made
straightforward by attaching an ”error-handling” routine to the
MPI interface, somehow analogous to signal handlers on UNIX
systems, they allow a given program to react appropriately to
a failure. ULFM is therefore an MPI toolbox for resiliency in
MPI context, and should be seen as complementary approach
to C/R. One drawback of such interface is that it is still up to
the application to implement the part of the code dedicated to
failure mitigation[9, 36, 17].

2.4. Summarizing Checkpointing Approaches

From a general point of view, transparent methodologies
have the drawback of saving more than needed for a given ex-
ecution. Indeed, it is not compulsory to save internal runtime
states to restore a given simulation. Nonetheless, in some cases,
it may not be sufficient to solely rely on data restore. For exam-
ple, a given computation may use data types which are solely
created during program startup. As a consequence, a program
based on application-level checkpointing also has to go through
an initialization phase of some form, to restore pertinent re-
sources. There is then a clear tradeoff between these approaches.

As presented in Table 1, we compared various levels for
checkpoint restart and describe the tradeoff they incur. The lev-
els we considered, can be described as follows:

• Application-level: adding code or using dedicated li-
braries to implement checkpoint-restart inside the target
application, for example using FTI;

• User-level: implementing (transparent) checkpoint restart
through either state capturing or system call wrapping in
user-space, for example with DMTCP;

• OS-level: (transparent) checkpoint/restart thanks to Op-
erating System (OS) support possibly through a dedicated
kernel module, for example with BLCR;

• Hypervisor: using capabilities of the virtualization en-
vironment to suspend, save and restart (transparently) a
running virtual machine, for example with QEMU[5].

It can be seen that no solution is ideal, indeed being trans-
parent comes at the cost of more overhead due to system-call
wrapping and bookkeeping. Moreover, transparent method-
ologies are not able to extract the minimal dataset linked with
application state and control, and generally save the complete
memory image (either application or sometimes the full OS).
This leads to larger checkpoints offset by benefits in develop-
ment time as no modifications to the code are needed. The right
checkpointing method is then probably a mix of those presented
in this table and is yet to be defined. In this , we decide to
not focus on one specific method but instead proposing multi-
ple solutions on top of your MPI implementation, offering the
user the ability to choose the right one for his own scenario. In
the next section we are going to describe the thread-based MPI

3

Checkpoint Level Selectivity Size Administrative Rights Implementation. Cost Transparent Overhead

Application High Small No High No Variable
User-level Low Large No Small Mostly Medium
OS-level Lower Larger Yes (install) Null Yes Low

Hypervisor Lower Larger Run virtualized Null Yes High

Table 1: Comparison of the various checkpoint/restart levels

runtime in which we propose to integrate transparent and ap-
plication level checkpointing, providing an initial context to the
later developments.

3. MPC Overview

MPC [33] is a framework dedicated to the smooth integra-
tion of shared-memory parallel programming models in MPI
applications. To this end, MPC provides different implementa-
tions such as MPI, OpenMP, and Pthread, all unified on top of
the same user-level thread scheduler. By having its own MPI
implementation and its own thread scheduler, MPC is then able
to execute MPI processes in different configurations, as dis-
cussed below. One can consider that all MPI implementations
fit into one of two categories: process-based and thread-based.

Process-based implementations are based on MPI Processes
being regular UNIX processes, with separate address spaces.
Most MPI implementations fit in this category, such as MPICH
and OpenMPI. An indirect consequence of this state of things
is that applications may feature global variables duplicated for
each MPI process running as a UNIX process.

Thread-based implementations are using threads for run-
ning MPI processes. In this second configuration, multiple MPI
Processes run in a single UNIX process and share memory. A
hybridization is also possible by running multiple UNIX pro-
cesses, themselves gathering several MPI processes. In this
context, global variables are not fully isolated anymore, by con-
struction.

To address this second configuration, MPC relies on a pri-
vatizing compiler to transparently separate global variable by
creating multiple copies of it for each MPI process, thanks to
a hierarchical TLS storage approach[6]. It is then possible to
port C, C++ and Fortran applications with little effort to this
thread-based configuration. The advantage of running in such
configuration is that the scheduling of MPI processes does not
rely necessarily on the OS scheduler, but on a user-level thread
scheduler. In addition, intranode communication is simplified,
in that regular shared memory copies can be used, instead of
relying on SHMEM or CMA to achieve the same effect. MPC
encompasses these two “flavors” of MPI processes[32]. These
configurations are displayed in Figure 1. On the left, the usual
process-based MPI model completely separates components for
each MPI process. With the process-based flavor, each MPI
process has its own thread scheduler instance, its own alloca-
tor instance, working on independent address spaces. On the
right, thanks to the thread-based approach, more components
are shared between MPI processes. This induces a reduction
of the global memory footprint since some internal structures

(such as network buffers) are not duplicated. Besides, multiple
MPI processes on the same node rely on the same MPC sched-
uler, potentially bypassing the OS scheduler

4. Contribution

Here we explore more extensively two use cases of check-
point restart in the context of a thread-based MPI runtime. First,
we consider the integration of DMTCP in the MPC runtime to
provide transparent checkpoint-restart capabilities. Second, we
focus ourselves on the FTI library and how it was integrated
in MPC’s unified scheduler. For each of these examples we
will follow the same plan. We will introduce the approach in
general, contrasting it with other methodologies and explaining
how it is implemented. Then, we will detail how it was inte-
grated in our thread-based runtime. Eventually, we present for
each model a commented performance measurement, outlining
respective advantages and limitations.

As far as transparent checkpointing is concerned, we present
a simple collective call enabling checkpointing at coherency
points with respect to communications. In addition, we de-
tail how we developed a signaling network enabling transparent
restart through DMTCP. Our performance results on Lulesh at
scale, show that transparent checkpointing is possible without
sacrificing network performance. However,there is a trade-off

with respect to checkpoints as our methodology supposes that
the high-speed network is closed during each checkpoint, re-
quiring a transitive overhead which can still be mitigated as we
further elaborate.

Dealing with application-level checkpointing, we consid-
ered the FTI checkpointing library and explored alternative ap-
proaches with respect to the mapping of helper processes. In-
deed, by default, FTI relies on MPMD to map a process in
charge of data-replication on each node. In our model, we
moved this process inside a thread running in an oversubscribed
fashion over an user-level scheduler. In particular, we show
slight improvements thanks to this collocation in threads, in-
stead of processes. But still, as MPC does not integrate schedul-
ing points inside I/Os the overall gain remains limited in terms
of I/O recovering.

Overall the rest of this paper is an assessment of how check-
pointing could be integrated inside a thread-based MPI. We
show not only that it is possible with some advantages. But
the most important conclusion is that doing so is not different
from what would be done with a ”regular” process-based MPI.
In fact, for the transparent C/R examples concerns were focused
on how to save and restore the network state aspect which is di-
rectly translatable to other MPIs.

4

(a) Process-based model (b) Thread-based model

Figure 1: MPI implementation flavors

5. Transparent Checkpoint-Restart with DMTCP

In this Section we focus ourselves on transparent check-
pointing inside the MPC thread-based MPI runtime. The goal
of such approach is to enable C/R with limited developments
(hence the transparent adjective). However, to achieve such
thing, a careful handling of application’s state is compulsory.
Indeed, while checkpointing a serial program is straightforward,
the distributed nature of an MPI application requires a restora-
tion of the network connectivity. The rest of this section aims at
describing how we made such restart possible in MPC MPI. To
do so, we first introduce DMTCP, then after recalling MPC’s
network structure (bootstraping, multi-rail) we cover the inte-
gration of DMTCP itself. To do so, we present a simple collec-
tive checkpointing interface that dodges the complex issue of
in-flight messages. Eventually, we conclude this section with a
performance study done with the Lulesh benchmark.

5.1. DMTCP Overview

We consider checkpointing through the user-level transpar-
ent approach using DMTCP [2] which is the distributed imple-
mentation of MTCP [35], a user-level checkpoint implementa-
tion compatible with POSIX threads. Its goal is to transparently
save and restore distributed applications. To do so, it relies on
a coordinator process (dmtcp coordinator), steering applica-
tions under C/R for the current user. It can be reached through
an IP address/port tuple. Users can then interact with the co-
ordinator through running applications or the CLI. Each appli-
cation to track is wrapped with the dmtcp launch command,
preloading the MTCP wrapping library, on each process to start.
By wrapping most of the libc, DMTCP is able to closely track
the relationship between execution streams. Moreover, a signal
handler is defined in each thread (by default SIGUSR2), to trig-
ger a checkpoint, stopping each thread (using tkill), saving
its own data, including local context (register) and stack.

At the network level, DMTCP is able to save alive sock-
ets and pipes (after converting them to socket pairs). For this
purpose, it goes through a comprehensive process including the

election of an owner of the respective file descriptors (when
shared between forks) and accounting for ”on wire” data inside
the socket in order to restore them in case of a restart. As a
consequence, DMTCP can reliably save TCP connections be-
tween distributed processes in a transparent manner. It is this
aspect we rely upon for MPC. Also, DMTCP is able to save
shared-memory segments, making it compatible with processes
running on the same node with SHM.

As far as the restart model is concerned, the first step is
to recreate the same topology, relaunching each checkpointed
process. DMTCP proposes a dedicated script only compatible
with Hydra and Slurm, ensuring the new configuration (from
the restarting environment) is compliant with the initial one,
before restarting the processes. The first step deals with restor-
ing network connections (and pipes) as they might be shared
between processes. Then, execution streams are restored and
eventually the program image is injected from the checkpoint
data and file descriptors are reopened and offsets restored. At
this point, execution streams wait in a semaphore and are able
to restart once all threads are ready. DMTCP reproduces the
same process and thread hierarchy (by tracking fork/clone) to
make the system topology consistent (parent/child relation).

It is this process, fully accounted for by DMTCP, that we
leverage in MPC to provide the checkpoint-restart feature with
the subtlety of hosting several MPI processes in a single UNIX
process. In this case and as we will further describe, a dedicated
synchronization mechanism is required.

5.2. Network Modularity in MPC
As our support for transparent checkpointing is based on

the ability to close a network rail and then restoring it, this sec-
tion is dedicated to describing how we managed to expose suf-
ficient modularity in our communication layer to enable such
support. MPC’s low-level architecture is based on communi-
cation rails which are associated with a given network driver.
MPC can combine at runtime multiple communication drivers,
which are used together to provide communication capabili-
ties at the MPI interface level. In this section, we present an

5

overview of “multi-rail” support in MPC. In particular, we dis-
cuss how MPC is able to bootstrap its network using control
messages (“signaling” messages) routed on a base topology.
With this mechanism in place, we outline how it contributes
to transparent checkpointing by preserving high-speed network
capabilities.

5.2.1. Multi-Rail
MPI is dedicated to enabling high-performance messaging

between distributed processes. To do so, it can rely on multi-
ple network technologies. For example, one system could use
Infiniband EDR between nodes and a shared-memory segment
(SHM) inside a given node at the same time. More generally,
an MPI runtime usually supports at least two network types: (1)
for optimized intra-node communications (latency lower than
the µsec), and (2) for internode communications, where remote-
direct memory access (RDMA) support could be used to opti-
mize MPI’s performance (in the µsec range). The switch be-
tween intranode and internode policies is then defined as the
position of the target MPI process relative to the source, that is,
whether they are located on the same node. Multi-rail is then
naturally present in any state-of-the-art MPI runtime. The fol-
lowing describes how MPC handles multi-rail, but the overall
principle is applicable to any MPI runtime, thread-based or not.

As shown in Figure 1, MPC is a thread-based MPI imple-
mentation which makes it possible to have multiple MPI “tasks”
within a MPI “process” that is bound and running in a UNIX
process. MPI tasks are equivalent to traditional MPI processes
in that they can communicate via MPI with each other. Thus,
message headers in MPC carry both MPI process id (internal to
MPC) and task id. The process id is used to determine which
UNIX process hosts a given MPI process. As a consequence,
there is no direct correlation between a communication end-
point and a given MPI process. Indeed, a given network is only
initialized once per UNIX process and therefore multiple MPI
processes will share the same network layer. Several situations
can result. For instance, messages could be exchanged inside a
given MPI “process” if both tasks are running in shared mem-
ory. Or the messages could be routed to the multi-rail network
layer if the tasks are remote from each other. In this case, the
multi-rail support must identify the most efficient rail to reach
a given remote UNIX process. Moreover, these means of ex-
change are not mutually exclusive and hybrid configurations
involve both messaging layers depending on peers.

In the rest of this paper, as far as transparent checkpoint-
ing is concerned, we will consider solely the communication
between UNIX processes, as it is the only part of MPC involv-
ing internode communications interacting with network cards.
This put us in the process-based case where MPI processes are
UNIX processes and allow us to reason in a more general con-
text applicable to any MPI implementation. However, it should
be noted that the methodology we develop in this paper has
been validated in all configurations of Figure 1.

Communications in MPC are based on endpoints belonging
to a communication rail (see Figure 2). Endpoints are sorted
by priority inside ordered lists corresponding to a given remote

Figure 2: Overview of the multi-rail infrastructure in MPC.

process. When MPC tries to communicate with a remote end-
point, it walks on the list for a given endpoint and tries to elect
a candidate. Election includes the concept of gate, setting con-
ditions (in terms of message type or size) related to the use of a
given rail. If no endpoint is found in the list, a second election
process is done walking rails in order of priority to create a new
endpoint. If one rail supports this on-demand feature, the con-
nection handler is called in order to create the low-level route.
Section 5.2.3 will detail how this on-demand connection pro-
cess is implemented in MPC. If this succeeds, MPC proceeds
to use the new endpoint. Otherwise, it crashes with a no route
to process error, meaning that no valid network path exists or
could be created to reach the targeted process.

As presented in Figure 3, MPC’s multi-rail support relies on
an XML configuration file that we now describe bottom to top.
First, we define a Command Line Interface (CLI) option named
multirail tcp and attach two rail definitions to it: tcp large and
tcp mpi. As a consequence, when launching the parallel execu-
tion with mpirun, the -net=multirail tcp option will create
the two aforementioned rails. If we now look closer at the rail
definitions, each of them is named and is attached to a prior-
ity. Observe how the tcp large has a higher priority than the
tcp mpi one, it is because we want each message to first try it.
Indeed, the ”large” rail has a gate function defined and requires
a message to be larger than 32Kb to be able to transit through
it. If this test fails, the message then checks the tcp mpi rail
which matches any message (as it has no gate function). One
last part involved at the beginning of the configuration file is
the network-level parameters in the config markup. In this case,
they are shared between the two rails and we simply use the
default TCP configuration – the end user is free to create con-
figurations for his own rails.

One point that we overlooked in the previous configuration
is rail topology. It plays an important role in the checkpoint-
restart mechanism because it defines the initial connection state
of rails (defined as static routes). Such initial routes are used
to convey control messages, allowing on-demand connection
mechanisms to establish additional networking configuration.

6

1< c o n f i g>
2<name> t c p c o n f i g m p i< / name>
3< d r i v e r>< t c p />< / d r i v e r>
4< / c o n f i g>
5
6< r a i l>
7<name> t c p m p i< / name>
8< p r i o r i t y>1< / p r i o r i t y>
9< t o p o l o g y> r i n g< / t o p o l o g y>
10< c o n f i g> t c p c o n f i g m p i< / c o n f i g>
11< / r a i l>
12
13< r a i l>
14<name> t c p l a r g e< / name>
15< p r i o r i t y>10< / p r i o r i t y>
16< t o p o l o g y>none< / t o p o l o g y>
17< c o n f i g> t c p c o n f i g m p i< / c o n f i g>
18<g a t e s>
19<g a t e>
20<m i n s i z e>
21<v a l u e>32KB< / v a l u e>
22< / m i n s i z e>
23< / g a t e>
24< / g a t e s>
25< / r a i l>
26
27< c l i o p t i o n>
28<name>m u l t i r a i l t c p< / name>
29< r a i l s>
30< r a i l> t c p l a r g e< / r a i l>
31< r a i l> t c p m p i< / r a i l>
32< / r a i l s>
33< / c l i o p t i o n>

Figure 3: Example of XML configuration file for MPC’s multi-rail engine.

We refer to this as the signaling network for MPC.

5.2.2. Signaling Network
MPC’s network layer can also be used to provide a signal-

ing network whose role it is to allow remote processes to be
reachable in a one-sided fashion. This could also be described
as remote procedure calls (RPCs) or as active messages (AM)
in MPI semantics. Indeed, some MPI functionalities already
depend on this being possible, for example, when establishing
on-demand connection, emulating one-sided when no RDMA
capable network is available, and even within the rendezvous
protocol, where target notification is required.

One of the main proprieties of the signaling network is its
capability to route messages according to a simple 1D distance
metric, defined as the absolute value between the source and
target ranks. The reason for retaining such a simple metric is
because we wanted it to be portable on any topology, indiffer-
ently from its complexity. To do so, we imposed the simple con-
straint of embedding at minimum a ring in the topology. This
ring is what we call “static routes” in MPC’s bootstrap and its
main role is to ensure that, for given a source process, there will
always be a path to minimize the 1D distance to its destination.
It is this property that incited us to rely on a minimal ring, since
dealing otherwise with sparse and/or arbitrary topologies, there
may be cases where the 1D distance metric is not sufficient to
escape from a local minimum.

(a) 2D-Mesh

(b) 3D-Mesh

(c) 2D-Torus

Figure 4: Routing comparisons on various topologies with 1D in red, and 3D
distances in blue.

7

Despite managing to limit the theoretical network diameter
with denser topologies, the 1D distance metric we retained to
ensure routing robustness for arbitrary topologies fails inidenti-
fying the shortest path in higher dimensions. Nonetheless, the
availability of shortcuts still allows 1D routing to take advan-
tage of the higher dimensions – see for example the difference
of behavior between 1D and nD distances in Figure 4.

5.2.3. Network Bootstrap
As presented in previous Sections, MPC implements a multi-

rail engine and a signaling network. However, in order to be
able to create endpoints, there are some cases when a process
would like to query information from another one without know-
ing it explicitly. The case which is of particular interest in this
paper is the on-demand connection when, for example, two pro-
cesses are exchanging and building their Queue-Pair informa-
tion. This can be illustrated with a TCP analogy, where the IP
address and remote port have to be exchanged prior to estab-
lishing a connection. When MPI starts, processes are usually
disconnected and connected on demand. To do so, MPI run-
times rely on the process management interface (PMI) provided
by the launcher. PMI provides a Key-Value Storage (KVS)
which is relied upon to bootstrap connections, prior to MPI
processes creation. MPC naturally relies on the PMI, but it
also implements its own bootstrap system in order to limit the
amount of information to be exchanged with the PMI. Indeed,
if there are thousands or even millions of processes it can be
costly to exchange the whole information relative to all the
ranks in an all-to-all manner, particularly prior to having any
high-performance communication substrate. To circumvent this,
MPC defines the notion of rail topology. In all cases, there
must be a rail accepting all messages with a ring topology (see
tcp mpi in Figure 3). This rail is initialized using solely the PMI
KVS, exchanging, in this case, rank:host:port tuples.

Later on-demand connections, however, will not rely on the
PMI, but on control messages which can be routed through the
network until their destination. Such messages use a distance
metric and take advantage of any route and any rail. Conse-
quently, even if only a TCP ring is present during startup, it is
highly probable that “shortcuts” will appear as MPI processes
start communicating. This property is at the core of MPC’s abil-
ity to checkpoint-restart. Indeed, existing checkpointing tools
are not able to save the network state for high-speed networks
unless by wrapping all existing API calls. This leads to im-
portant overheads, for example, in the case of Infiniband. In-
stead, such tools are limited to solely restoring TCP sockets
between processes. As we will further discuss, this capability
in MPC allows restored MPI programs to operate immediately
after the restart, instead of relying on a complete network re-
initialization through a PMI key exchange.

The main points to remember are MPC’s multi-rail engine
and its ability to manage endpoints of multiple types to enable
communication. These endpoints are stored in an ordered list
and go through an election mechanism. MPC relies on the PMI
only to bootstrap an initial ring which is relied upon to con-
vey later on-demand connection requests. Thanks to its mod-
ular definition, MPC is capable of closing a given rail remov-

ing all references to the associated network. It is this mecha-
nism, combined with signaling, that enables MPC’s transparent
checkpointing capabilities without wrapping network calls.

5.3. DMTCP Support
We leverage the DMTCP checkpointing tool to transpar-

ently save the state of an MPI program. In particular, we show
how the MPI runtime can work with a transparent checkpoint-
ing tool to enable support for high-speed networks. When us-
ing specialized networking hardware, such as Infiniband (IB),
care must be taken with respect to initialization and handling
of dedicated objects like queue pairs. Moreover, even if part of
this context is saved in a transparent checkpoint, restarting must
avoid errors that could occur by launching the program without
setting up a connection to the Host-Channel Adapter (HCA)
within the process first. If we omit the question of high-speed
networking, checkpointing with DMTCP is transparent and re-
lies on submitting requests to a daemon in charge of the process
without synchronization from the application or the runtime.
However, to deal with high-speed networks in a more efficient
manner, a contribution from the runtime is necessary to avoid
large overheads. We propose to leverage a dedicated modular
network management infrastructure developed in the MPI run-
time to both reset and initialize networks on the fly to enable
such checkpoints. As far as transparent checkpointing is con-
cerned this paper makes the following contributions:

• The definition of a collective checkpoint interface en-
abling transparent checkpointing in MPI runtimes (Sec-
tion 5.3.4);

• The concept of an in-band signaling network with the as-
sociated routing, and the use of multi-rail logic to enable
partial checkpointing (Section 5.2);

• General MPI implementation of transparent checkpoint-
ing including high-speed networks.

This work has been implemented in the MPC thread-based
MPI runtime, although it is applicable to any MPI implementa-
tion, as we will describe. What makes MPC particularly chal-
lenging is that we needed to manage transparently the check-
pointing of multiple runtime stacking configurations that MPC
supports. Indeed, because MPC is built on user-level thread-
ing system, not only does our approach track process-based
MPI, but it can accommodate any type of thread-based MPI,
including user-level threads in MPC. Thus, this demonstration
in MPC gives us confidence that the methodology will translate
well to future evolutions of MPI, including those supporting
the concepts of endpoints [14] and sessions [21], which involve
intra-process parallelism.

Given the MPC infrastructure, the following presents a gen-
eral methodology enabling transparent checkpoint/restart for pro-
grams using high-speed networks. More precisely, we detail
how the MPC runtime is able to dynamically open and close
communication rails through a two-level checkpoint infrastruc-
ture. Such an approach provides MPI runtime with the ability
to be checkpointed, and transitively applications to benefit from

8

this feature. Moreover, we show that this approach incurs a re-
duced performance overhead.

5.3.1. Thread-Based MPI Checkpoint
DMTCP and its coordinator are designed so that a single

request for the checkpoint is automatically broadcast to all the
processes. However, in MPC we have to handle the fact that
there are multiple MPI processes in a given UNIX process –
checkpointing taking place at this latter level.

As depicted in Figure 5, MPC solves this by proceeding to
a first intra-node barrier between MPI processes located in the
same process. Once a master task has been elected, a second
barrier occurs between processes such as only a single rank in-
vokes the internal checkpointing routines of DMTCP.

5.3.2. Limitations in DMTCP
During our developments around this integration of DMTCP

in MPC, we discovered limitations in the tool. The developers
have been very active to address some of them and some others
are still pending. We will now provide a quick outline for each
of them.

Pinning Preservation. When we began our developments, pin-
ning was preserved at the checkpoint, but not at the restart. The
consequence was that threads were not bound to a particular
core. This may remain unnoticed in the case of a process-based
MPI. However, as MPC launches a single process per node, this
led to performance loss. This has been reported and fixed in the
Git repository, in the branch tracking version 2.5.

Memory Locality. When a process is restarted with DMTCP,
pages are generally not located on the correct numa-node. This
leads to a loss of locality for the restarted process. To date, this
has not been addressed in DMTCP. A possible workaround to
this would be to rely on external tools such as autonuma[12].

GS Register Handling. In its current version, DMTCP does not
save the GS register. This is generally harmless as this reg-
ister is mostly unused on x86 64. However, MPC uses this
register to infer its own level of TLS (Thread-Local Storage)
indirection[6], similar to how FS register is used in common
Pthread implementations for the same reason. As a consequence,
an unmodified version of DMTCP is not able to correctly check-
point a privatized program (i.e., multiple MPI processes inside
a single UNIX process). This has been discussed with the de-
velopers1 and we proposed a fix.

Runtime defining pthread create. As MPC provides its own
user-level thread scheduler, it provides its own pthread imple-
mentation. When being wrapped by DMTCP, we encounter an
issue as it is preloaded and implements dlsym, yielding the fol-
lowing call stack:

1https://github.com/dmtcp/dmtcp/issues/607

1#0 p t h r e a d c r e a t e (from l i b d m t c p . so) / /<−−−−−−
2#1 dlsym () (from b a t c h q u e u e . so)
3#2 dlsym () (from your mpc framework . so)
4#3 p t h r e a d c r e a t e () (from mpc framework . so)
5#4 p t h r e a d c r e a t e () (from dmtcp . so) / /<−−−−−−
6#5 p t h r e a d c r e a t e () (from a . o u t)

This leads to a stack overflow by creating a loop. This code
seems to be present solely for IntelMPI resolving PMI Init

with dlsym(RTLD NEXT, "PMI Init"). The call is currently
not compiled conditionally. We reported it to the developers2,
but our current workaround is simply to comment it out. This
is done in the version of DMTCP which is bundled in MPC.

5.3.3. High-Speed Network Support
One of the most difficult parts of the checkpoint is the high-

speed network. Indeed, as it relies on dedicated hardware, it
represents the possibility of shared state located outside pro-
cesses’ memory. As a consequence, saving process state is
not sufficient to restore connections over HPC networks such
as Infiniband or Portals. For example, memory pinning regis-
ter segments in the device (to allow address translation and to
retrieve authentication tokens) is not checkpointable. In order
to circumvent this issue, DMTCP provided a plugin completely
wrapping the libverbs (low-level Infiniband programming in-
terface) in order to track and preserve a shadow state of all the
operations taking place on the card[11]. This approach enabled
transparent checkpointing of Infiniband networks, but not with-
out some drawbacks.

As presented in Figure 6, wrapping Infiniband has a direct
impact on common MPI implementations. Indeed, as libverbs
calls are by definition on the critical path of any IB commu-
nication, this extra wrapping leads to a performance overhead.
We observed up to 140% overhead for small messages, where
the extra latency is most visible. The main drawback of the ap-
proach is that it imposes this performance loss outside of check-
pointing sections, leading to a permanent slowdown. It is this
problem that encouraged us to look for other alternatives miti-
gating the cost.

MPC’s network has been built as a modular set of driver in-
stances (called rails) stacked on top of each other (Section 5.2).
Moreover, on-demand connections are managed with in-band
messages, which can be routed through a dedicated signaling
network (Section 5.2.3). Then, without any action, routes exist-
ing prior to the checkpoint will be included in the checkpoint,
as present in internal data structures. However, some of these
routes will be invalid at restart, because part of information they
relied on are now undefined. While TCP network is fully han-
dled by DMTCP with a minimum cost, this is not the case for
Infiniband. It is not possible to purge the multi-rail undefined
endpoints efficiently after each restart because we cannot en-
sure the state of the network layer when it has been stopped at
checkpoint time, potentially leading us to deadlocks.

Thus, we consider removing these routes before checkpoint-
ing the application. Rails not checkpointable had to be fully

2https://github.com/dmtcp/dmtcp/issues/604

9

https://github.com/dmtcp/dmtcp/issues/607
https://github.com/dmtcp/dmtcp/issues/604

Figure 5: Two-level synchronization scheme enabling checkpointing in MPC.

Figure 6: Overhead for Infiniband wrapping in DMTCP.

closed each time a checkpoint is performed. This means that
MPC frees all the resources linked to a given driver and pro-
ceeds to remove the routes from the multi-rail lists (see Figure
2). Some drivers are exempted from this closing as they are
compatible with DMTCP (e.g., TCP and SHM). In this case,
static routes from the original topology are preserved. For these
last two drivers, DMTCP will be able to restore a state match-
ing one of existing routes known to the process. Dealing with
drivers requiring to be closed, there will be no route associated
with these rails in the restarted process image, a new rail will
be allocated from scratch.

5.3.4. Checkpointing Interface
From an end user’s point of view, this paper defines a new

MPI collective function call, whose role is to realize a trans-
parent checkpoint. Furthermore, we define a set of constants

linked to the state of the parallel program:

1i n t MPIX_Checkpoint (MPIX_CR_state_t∗ state) ;

Figure 7: Proposed transparent checkpoint interface.

CR Constant Definition

MPIX CR STATE ERROR An error has occurred
MPIX CR STATE CHECKPOINT The program has checkpointed
MPIX CR STATE RESTART The program has restarted
MPIX CR STATE IGNORE Command ignored (not supported)

Table 2: MPIX Checkpoint constants definitions.

As presented in Figure 7, the MPIX Checkpoint call is a
collective with respect to MPI COMM WORLD. It will return to a
state defined in Table 2. Entering this function means the ap-
plication is requiring the MPI implementation to create a new
checkpoint, there should be no unmatched MPI messages to
prevent message losses. One point to note is that this call can
return in different scenarios. First, a program returning from a
regular checkpoint proceeds to call MPIX Checkpoint. In this
scenario, the function call will return each time CHECKPOINT

when the step completes. When the application program restarts,
the work-flow will immediately come from MPIX Checkpoint

and the return value will be RESTART, allowing the application
to be notified of the current state (post-checkpoint or restart). If
it is not possible to checkpoint (e.g., due to lack of support), a
runtime can return IGNORE to inform the application that noth-
ing was saved.

The collective nature of the call also ensures that it is cor-
rectly invoked in the case of a hybrid program. For instance, if
this function is called in an OpenMP parallel region, it will re-
quire the application to implement a critical region so as not to

10

violate the collective nature of the call. By clearly stating how
the checkpoint function is to be called globally, it abstracts the
integration of such a call, while simplifying the implementation
requirements.

5.4. Evaluating our DMTCP Integration
It is important to observe that a direct consequence our trans-

parent checkpointing approach is that it closes dynamic routes
at each checkpoint. Indeed, in order to create a valid process
image, we alter the state of the application even if it does not
go through a restart. This is currently a limitation of our model
as later communications will immediately recreate routes previ-
ously closed for the sole purpose of a checkpoint. Initially, we
envisioned to simply remove uncheckpointable endpoints from
the multi-rail list (see Figure 2) without freeing any memory.
This, however, led to various issues, first obviously a memory
leak with the added complexity that it was not possible to free
this dangling memory at the restart. Second, leaving an open
device, for example, the IB HCA, means that there is an open
file descriptor upon checkpoint that DMTCP will try to drain,
eventually leading to a deadlock. Consequently, dynamic route
closing and its associated performance impact appeared to be a
good tradeoff in the case of Infiniband networks. Other network
types, in particular, connection-less networks such as Portals 4
or Omnipath, may circumvent this limitation. We are currently
studying this possibility.

Figure 8: IMB Allreduce performance overhead between DMTCP Infiniband
support and MPC’s support.

Figure 8 compares the performance of our high-speed net-
work checkpointing methodology to the Infiniband wrapping
one. A direct execution shows no measurable overhead on com-
munications when starting from a checkpoint on the IMB bench-
marks and the restarted program has similar performance to the
initial process image. The reason is because the only penalty
taken by the restarted program is route creation which is a punc-
tual process mitigated by the repetitive communication pattern
in communications. The checkpoint by itself, however, has a
performance cost as it closes connections, nonetheless, we be-
lieve that this is an acceptable point as the user is free to set its

frequency. In summary, our method creates a transient overhead
to prevent a permanent one.

The duration of a given checkpoint is highly dependent on
both the scale of the MPI job and the amount of memory it uses.
Moreover, the wall-time overhead it incurs is correlated with
the number of checkpoints performed during a given execution.
Consequently, as for checkpointing, we are willing to leave the
application untouched, the only parameter available to limit the
overhead is checkpoint frequency. If we consider a computation
lasting Ts seconds and a checkpointing time of Tc every τ sec-
ond, we have the following total duration D of the checkpointed
program: D = Ts +

Ts
τ

Tc. Denoting f = 1
τ

as the checkpointing
frequency, we immediately have D = Ts(1 + f Tc). Now rea-
soning in terms of overhead, we have Ovh = D

Ts
= 1 + f Tc, this

shows that the overhead is necessarily positive and easily com-
putable from both checkpoint frequencies and duration. More
importantly, it can easily be budgeted. For example, consid-
ering a one-minute checkpoint time and a maximum overhead
of 1% we have f = 1%

Tc
and therefore a checkpointing period

τ = 6000 seconds or 1 hour and 40 minutes. This small for-
mula shows that it is relatively easy to amortize the checkpoint-
ing time through the frequency parameter in a reasonable time.
When measuring the Intel Messaging Benchmark (IMB), we
encountered checkpoints around three seconds for 32 MPI pro-
cesses – Tc = 60 is then already a pessimistic value.

5.4.1. DMTCP Performance Evaluation on Lulesh
In order to assess the performance of our checkpointing

methodology, we ran it at scale on the Lulesh[27] benchmark.
In particular, we focused ourselves on two aspects. First, the
checkpoint time that can be directly connected to a global over-
head given a checkpointing frequency – as outlined earlier. Sec-
ond, we want to measure the cost associated with closing con-
nections in terms of execution time outside of checkpoints. Mea-
surements were carried over on a small test system at CEA fea-
turing Sandy-Bridge processors and 16 cores per node using a
problem size of 30. Interconnect consists in mlx4 Infiniband
Host-Channel Adapters. In order to characterize the cost of our
methodology, we proceeded to measure a single checkpoint in
the middle of the parallel execution at various scales. Lulesh
was launched with a single process per node in MPI+OpenMP
configuration. Runs were done with a fixed size of 30 (-s flag),
given Lulesh’s design this size is given as the size per process
and therefore our measurements are all done in a weak scaling
fashion – problem size is 303 per MPI process.

In Figure 9(a), we see the breakdown of the walltimes in
terms of reference time, checkpoint and other overheads. The
checkpoint overhead is the time spent generating the data in the
collective call, other overhead accounts for other differences
with respect to reference time, including on-demand connec-
tions. In Figure 9(b), we present the same results as a percent-
age, to highlight the relative cost of each time. What can be
seen that that the checkpointing time by itself remains relatively
steady as the number of cores increases. However, we observe
a rise in indirect costs from 0.3 % up to 18 % when considering
large scale. This can be explained by the high number of on-
demand connections, as the number of nodes gets larger. This

11

(a) Walltime breakdown in seconds

(b) Walltime breakdown in percentage

Figure 9: Checkpoint and reference times for Lulesh (size 30) in function of
the number of cores.

overhead, mitigating the I/O saturation effect linked with an in-
creasing number of MPI processed saving their state in parallel
is also correlated to the transitive cost of disconnecting and then
reconnecting MPI processes. This cost is then clearly not negli-
gible. However, and as we are now going to discuss, the nature
of the checkpoint and in particular its punctual nature can be
used to slightly reduce performance impact.

5.4.2. Checkpointing Lulesh with Constant Overhead
In order to expose these results in a more practical manner,

we used the formula presented in the previous section to com-
pute the checkpointing period such as the overhead is 1% in the
light of previous measurements. To do so, we added direct and
indirect overheads, considered as the total checkpoint cost. This
yielded the values presented in Figure 10. One can see that de-
spite potentially expensive, the checkpoint cost on the walltime
can be mitigated for long-running programs. In our case, for

Figure 10: Checkpoint period for 1% overhead computed from results pre-
sented in Figure 9.

Lulesh, we see checkpointing periods ranging from five min-
utes at one process to one hour and twenty minutes at larger
sizes. The overall checkpoint cost rapidly increases requiring
checkpoints to be further spaced to mitigate their apparent cost.
This can find its explanation in several factors that we described
as other overheads in Figure 9. Indeed, the number of connec-
tions to be restored is dependent from communication topology
which is polynomial in the case of Lulesh’s 3D mesh. In addi-
tion, the saturation effect on I/O caches and more generally the
file-system is not to be neglected as the number of processes
increases. These two factors are possible explanations to the
important overhead as the number of cores increases. However,
we think that our methodology is still usable at scale as check-
pointing periods of a few hours are not unrealistic. Eventually,
it is important to note that the cost is directly linked not only to
scale but also the data-set size manipulated by the application –
transparent approached dumping full process images. Dealing
with this later constraint, application-level checkpointing has a
lot of advantages as it can benefit from application developer’s
input at the impediment of the associated programming cost.

5.4.3. Generalizing to other MPI Implementations
Results presented in this paper were obtained with the MPC

runtime which provides support for checkpointing. In particu-
lar, we presented a dedicated collective call MPIX Checkpoint

and relied on high-speed network disconnection prior to check-
pointing. In addition, MPC include the signaling network which
can be restored by DMTCP (being in TCP) and latter used to re-
lay on demand connection demands to reconnect routes. This
second aspect is not compulsory to enable checkpointing and
therefore allows our methodology to be adaptable to other run-
times. Compulsory requirements are (1) the ability to close
high-speed connections and to restore them later on and (2) the
capacity of restarting either from the PMI or using a support
network (one may consider launcher processes). This method-
ology can then be adapted to other runtimes and is not depen-

12

dent on MPC, it simply requires state management capacities
in MPI for connections and startup – DMTCP handling most of
the checkpoint.

6. Application-level Checkpointing

In this second part we focus ourselves on how checkpoint-
ing could be achieved at application-level. In previous Section
we have seen how it was possible to save the distributed state
of an MPI application without requiring substantial modifica-
tions, just a single line of code at time-step level. However,
and as we also commented this method despite practical is far
from optimal as it supposes the saving of more than actually
needed by the application. This leads to inefficient checkpoints
in terms of memory and overhead linked to the associated I/Os.
This second approach requiring application developer input is
then more efficient in terms of storage space, although it re-
quires the program state to be fully serializable. This supposes
that the state of each library can be correctly intercepted which
is sometimes not practical, considering for example third-party
software. In this Section, following what we have already done
for DMTCP, we will first introduce the FTI library which aims
at exposing convenient mechanism for application-level check-
pointing. Then, we present our integration inside MPC. We
show some performance results in a heat-dissipation bench-
mark which was easily ported to FTI. We also ported Lulesh
on top of FTI to enable further comparisons with the transpar-
ent method. This comparison, however, has to be mitigated as
measurements were made on a different machine due to organi-
zational constraints.

6.1. FTI Overview

FTI is a multilevel checkpointing library with a wide set of
features. The purpose of this library is to provide an interface
to address the various storage levels in high-performance com-
puting environments for checkpointing purposes.

High-performance computing is an always evolving field in
which new hardware devices are continuously being developed
and integrated; not only for computing but also for storage. As
a consequence there exists a discrepancy between types of stor-
age in terms of performance, availability and reliability. For in-
stance, mechanical hard-disk drives usually offer higher capac-
ity but lower performance than solid state drives. Such trade-
offs are at the core of the concept of multilevel checkpointing,
with the goal of finding the sweet spot in the reliability versus
performance trade-offs. To further illustrate this, FTI offers the
following four checkpointing levels:

Level 1. Checkpoint in local storage.
Level 2. Local checkpoint and copy on a partner node.
Level 3. Local checkpoint with erasure coding.
Level 4. Checkpoint in the PFS.

Level 1 checkpoint is the least reliable level but also the
fastest, while Level 4 is the most reliable but also the slowest
of all levels. Given that most failures in supercomputers do not

affect all nodes simultaneously, there exist possibilities to com-
bine specificity from each level to yield improved performance,
this is the goal of the FTI interface that we describe in the next
Section.

Writing checkpoints in local storage is sufficient to put up
with soft errors but cannot withstand node failures, data stored
in the local storage being inaccessible until the node is repaired.
Therefore, local checkpointing has to be combined with some
sort of data redundancy in order to tolerate one or multiple node
crashes. FTI implements several approaches for this purpose,
such as data replication on a partner code, data redundancy
through Reed-Solomon encoding or data persistence into the
parallel file system. Application-level checkpointing thanks to
its improved data selectivity is an efficient method in terms of
minimizing data to be saved. In addition, addressing differ-
ent types of storage (e.g. node local) further enhance perfor-
mance. Nonetheless, checkpointing remains an expensive op-
eration. Therefore, it can be optimized by dividing it into two
stages: (1) write the checkpoint in local storage and (2) apply
data redundancy in the background while the application con-
tinues its execution.

Data redundancy techniques systematically require some sort
of processing, either by transferring data through the network
or by performing extra computations. This additional work can
be done locally, impeding extra overhead to the application or
using dedicated hardware (like a RAID array). It is that capac-
ity we want to provide more efficiently thanks to the runtime
support.

Figure 11: FTI synchronous vs asynchronous transfer

As far as this post processing is concerned, FTI offers the
option to “steal” one process per node from the application in
order to perform these tasks. In this case, the dedicated pro-
cesses are isolated from the application processes by splitting
the global communicator and providing a new one to the appli-
cation. The FTI helper processes then run in their own commu-
nicator to perform their resiliency-related tasks.

Using this technique, application processes can pursue their
execution as soon as the local checkpoint has been made. Data
replication is offloaded to these helper processes in parallel to

13

the regular execution as shown in Figure 11. This has been
proven to be quite efficient, because it virtually transforms all
checkpoints into local checkpoints. Unfortunately, this sup-
poses the use of dedicated resources for this purpose. Moreover,
most large scale supercomputers do not allow applications to
run more processes than there are on a given node due to batch-
manager constraints. For this reason we explored the possibility
of relying on oversubscription in MPC’s user-level scheduler to
perform such tasks in the background without dedicating spe-
cific resources.

6.2. MPC’s Unified user-level thread scheduler

Before explaining how we integrated FTI in MPC, this Sec-
tion recalls some aspects of MPC’s scheduler. First, it handles
user-level threads, bypassing the OS scheduler, often ill-suited
for HPC parallel applications. An MxN user-level scheduler as
in MPC bypasses the OS scheduler, one OS thread is created
per computing unit on a node, and pinned to a given comput-
ing unit. On top of this thread, the user-level scheduler handles
the selection of user threads to be executed on this OS thread.
This way, scheduling decisions, previously delegated to the OS
scheduler, are now handled by the user-level threads in-place,
as there are as many OS threads than cores. Scheduling policies
are then completely handled by the user-level thread scheduler.

By collocating multiple programming models in its user-
level scheduler, MPC is able to coordinate the execution of
threads from various origins. With its global view of the whole
node, all available computing units and threads to be executed,
the scheduler can then make the best decision possible accord-
ing to the scheduling policies. This feature could be illustrated
with oversubscribing. Indeed, since everything is a thread the
scheduler knows when a thread is idle and may replace it with
another active one. In the case of oversubscription, it means
that as soon as a thread is idle, an extra thread can be sched-
uled to use these idle resources. This thread may originate from
any of the active models. This helps maximizing the usage of
available resources, and reduces performance loss, due to wait-
ing and idle threads. It is this last propriety that motivated the
integration of FTI inside MPC, exploring the possiblity of col-
locating the helper process in an oversubscribed thread instead
of a POSIX process.

6.3. Supporting FTI in MPC

Now that we presented our integration of DMTCP inside
MPC, this Section focuses on the integration of application-
level checkpointing in the context of the FTI library. As ex-
plained in previous sections, MPC provides its own implemen-
tation of the MPI standard. Since FTI is relying on MPI to
implement its checkpoint/restart method, we simply used MPC
as the MPI implementation for FTI. The rest of this section,
we first detail the port of FTI atop MPC and then describes how
checkpoint data post-processing took advantage of MPC’s user-
level scheduler and oversubscription.

6.3.1. Port of FTI atop MPC
This step was simple to achieve. As MPC is an MPI imple-

mentation, the only necessary action was to compile FTI with
MPC compiler wrappers (mpc cc) relying on “automatic priva-
tization”.

After checking that FTI and MPC were correctly collabo-
rating both in process-based and thread-based configurations,
we sought to benefit from MPC’s specificities. In particular, we
moved the dedicated MPI process inside a user-level thread to
benefit of oversubscription.

In Section 6.1, we explained how having a dedicated MPI
process for post-checkpoints per node improves performance.
However, this is mainly true when the MPI process runs on its
own resources. If no core is available, this additional MPI pro-
cess will be oversubscribed. It means that this additional MPI
process shares resources with the original application. As two
processes, or even threads, cannot run at the same time on the
same core, their respective code will be executed, turn by turn,
after context switches.

In order to mitigate oversubscription overhead, we targeted
MPC’s thread-based MPI capabilities. The interest is twofold
with (1) lighter context switches and (2) the ability to use MPI
waiting time (in the application) to progress checkpointing. We
saw in Section 6.2 that the MPC scheduler uses its own user-
level threads. Hence, in a full thread-based mode, each MPI
process on a node is a user-level thread managed by a unified
scheduler. Switching from one MPI process to another is “just”
a user-level thread context switch, which is lighter than between
two UNIX processes. This then makes the approach involving
an oversubscribed MPI process more attractive than in a regular
process-based MPI setup.

6.4. Evaluating the FTI Integration

Now that we presented the results with user-level transpar-
ent checkpointing, this Section now studies the impact of our
MPC integration on FTI for application-level checkpointing. In
particular, we compare performance between additional MPI
processes and our oversubscribed model, taking advantage of
user-level threads.

In a first approach, we ported Lulesh on FTI. To do so,
the first step was to change all MPI COMM WORLD references
to FTI COMM WORLD. If such replacement can be tedious on
large production code, the LULESH code infrastructure sim-
plified this change as all MPI calls are located in only two
files. The next phase to port an application to FTI relies on
the data election to be saved for checkpoint. Here again, the
code structure was conveniently outlining important data in a
single C++ class. However, one highlighted issue by porting
LULESH to FTI was this C++ class. Indeed, FTI can handle
C structures natively with FTI InitType(). However, this check-
pointed dataset includes a tree-like structure relying on point-
ers. As such pointer cannot be saved due to memory remap
upon restart, we had to serialize the structure. As a conse-
quence, this C++ class object is serialized into a buffer, han-
dled to FTI. Thus, before checkpointing, this serialization had
to be performed. Symmetrically, this buffer is de-serialized into

14

Figure 12: Performances without and with FTI checkpointing methods, no
oversubscribe

the C++ object upon recovery. The BOOST library was used
handle the serialization. The port of LULESH to FTI, and the
serialization process were validated by arbitrarily killing the job
at different times before recovering the job and resuming execu-
tion. All program outputs remained valid whatever the number
of MPI processes (up to 1728).

As presented in Figure 12 which does not rely on oversub-
scription, using a dedicated checkpointing process is advantag-
ing when compared to the inline approach which does not pro-
vide any overlap. This shows that there is an interest in integrat-
ing such support though an user-level scheduler. Since Lulesh
works with numbers of MPI processes which are power of 3,
it was not possible to produce a sufficient number of configu-
ration where all cores are loaded with computation, and thus
to realize oversubscribing when using a dedicated FTI process
for the checkpoints. We tested our oversubscribed application-
level checkpoint restart approach on a heat distribution bench-
mark (heatdis). Heatdis is a 2-dimensional stencil code that dis-
tributes a 2D grid among MPI processes. Processes only com-
municate with neighbor processes for exchanging ghost cells.
As this benchmark does not impose restriction on the num-
ber of MPI processes (unlike Lulesh), we were able to validate
multiple configurations. Performance measurements were real-
ized on the MareNostrum 3 supercomputer at the Barcelona Su-
percomputing Center (BSC). MareNostrum 3 is a 1.1 petaflop
peak performance supercomputer with Intel SandyBridge pro-
cessors. The machine features 3056 nodes connected through
an Infiniband FDR network. As presented in Figure 13, we ran
this benchmark in different configurations:

• without FTI to provide a base time;

• with FTI and inline post-processing;

• with FTI and a dedicated oversubscribed MPI process
(running as thread).

It can be seen that when relying on a thread to perform post-
checkpointing operations the overhead is slightly lower than if
it was done inline, directly impacting the code. This shows

Figure 13: Oversubscribing with an MPC MPI thread

that such a model can lead to some benefits when being used
in threads. However, gains are still relatively limited. We think
that the non-preemptive nature of the scheduler and the fact that
our integration of file I/Os in MPC is not fully taking advantage
of the scheduler, preventing MPC from inserting yielding points
inside I/O operations (when being blocked in a write, for ex-
ample). Indeed, integrating a model inside user-level threads
requires generally a complete wrapping of every call to avoid
cases potentially blocking the OS thread carrying the execu-
tion. For this reason, mutexes, semaphores, Pthread operations,
and so on, are captured by MPC to be managed accordingly
in the unified scheduler. We think that converting I/Os to non-
blocking operations and accounting for it in the scheduler as
yield points should bring improved performance compared to
what is presented in Figure 13.

Figure 14: Comparing oversubscribe with MPC and OpenMPI

However, for users willing to fully use all cores by over-
subscribing the FTI processing instead of inlining it, perfor-
mance gains can be obtained with user-level threads. Indeed,
as depicted in Figure 13, the same benchmark has been run
with MPC (user-level threads) and OpenMPI (UNIX processes)

15

in order to compare oversubscription costs. Since the previ-
ous node configuration was not available during these tests, the
comparison has been realized on a Sandy Bridge partition, with
16 cores per node.The Heatdis benchmark has been initially
run on both MPC and OpenMPI, with disabled checkpointing,
yielding to similar results. However, as far as oversubscrip-
tion is concerned, it can be seen that user-level threads yield
lower overhead than processes – OpenMPI showing an addi-
tional overhead between 10% and 15%, depending on the num-
ber of nodes. One of the main reasons for this is that MPI is
designed to efficiently poll the resources of its core to progress
communications with minimum latency whereas in MPC, this
additional process directly benefits from the existing shared-
memory communication layer. This allows the helper MPI pro-
cesses to yield to a computation process in a fairer manner, lim-
iting the overhead.

To summarize, the use of FTI inside user-level threads shown
that oversubscription was more efficient than with OS processes.
Reasons for this are the unified communication layer mitigating
potentially aggressive polling, leading to improved fairness be-
tween threads and more efficient context switches. However,
we observed reduced gains when it comes to I/O integration in
the scheduler as we did not integrate yield points inside POSIX
I/Os in MPC’s non-preemptive scheduler, mitigating the poten-
tial overlap of an I/O intensive thread such as the one exposed
by FTI. We are considering to address this issue as future work.

7. Conclusion

The paper presents our implementation of transparent check-
pointing in the MPC MPI runtime. Based on our knowledge, it
is the first illustration of transparent checkpoint restart – ag-
nostic from the application – with network support in a thread-
based MPI. Checkpointing has already been illustrated in run-
times involving user-level threads in the past, like Charm++[24]
and its combination with AMPI[39]. Our approach is more gen-
eral as it does not rely on serialization assumptions in terms
of application’s programming model, aspect directly inherited
from DMTCP’s versatility. However, as we put no constraints
on the application, some scenarios possible with Charm++ are
out of reach, they include in-memory checkpointing[40] and
restarting the program on a different number of processes[25].
In our case, we solely presented a synchronous checkpointing
interface which is only a subset of what is possible in terms of
fault tolerance. Indeed, new interfaces such as ULFM in MPI
should allow applications to react to failures at runtime – limit-
ing the need for restarts from scratch, as provided by DMTCP.
Moreover, our approach does not support partial checkpoint
restart, it is nonetheless a point that we would like to explore
in the future.

In addition, we focused ourselves on application-level check-
pointing with the help of the FTI library which targets multi-
level checkpointing by providing application developers with a
dedicated checkpointing API. The approach has the advantage
of benefiting from developers’ knowledge to limit the check-
point size when compared to transparent approaches. How-
ever, it has the drawback of requiring modifications in the tar-

get application. Consequently, despite yielding the same check-
point/restart result, the application-level model has different im-
plications and can then be seen as complementary to transparent
methods. Our integration in the MPC runtime relied on user-
level threads to perform post-checkpointing processing (data
replication) and demonstrated that in terms of oversubscription,
where MPI processes running in threads were more efficient
than those using regular UNIX processes. Although, MPC’s
scheduler is lacking when it comes to handling blocking I/Os
in a non-preemptive manner, we would like to address in the
future.

In this paper we presented two approaches for checkpoint-
restart in the context of a thread-based MPI called MPC. In
particular, we considered two different kinds of approaches at
application- and user-level and discussed how they collaborated
with our runtime either at communication level or with a unified
scheduler. This showed that runtimes can provide mechanisms
to improve checkpointing efficiency and that such mechanisms
were applicable in a relatively straightforward manner to the
specificity of a thread-based MPI runtime.

8. Future Work

We see several tracks of enhancements following this work.
As far as the FTI model is concerned, thread migration would
allow oversubscribed MPI processes to take advantage of idle
time more efficiently as they are currently stuck in the schedul-
ing list of a single OS-level thread. In addition, the integration
of I/Os in the scheduler using non-blocking file descriptors and
a wrapping of the POSIX I/O interface should improve perfor-
mance when it comes to oversubscribed I/O intensive payloads.

Regarding transparent C/R, current implementation in MPC
has been designed to provide an initial support saving our users
from the development of their own solution. However, check-
pointing and more generally fault tolerance, for example through
ULFM, allows a much wider range of scenarios. Indeed, our
runtime has to fully restart in order to recover from a single
node failure. The overhead currently impacts both checkpoint
and restart phases. Closing the network could be considered
a waste of time if no failure occurs between two checkpoints.
Another idea would be to save the full network structure – up-
dating DMTCP accordingly to disregard such network – and
paying the price of cleaning it only at restart.

We would like to explore partial checkpointing with spare
nodes leveraging our signaling network. Another aspect that
seems promising is the exploration of connection-less networks
and how they might be checkpointed more efficiently than by
actively disconnecting-reconnecting peers. In particular, we are
considering the Bull Exascale Interconnect (BXI)[13] Portals 4
network[3] to develop such support.

Acknowledgements

This research has been partially sponsored by the European
Unions Horizon 2020 Programme under the LEGaTO Project
(www.legato-project.eu), grant agreement 780681 and the
Mont-Blanc2020 project, grant agreement n. 779877.

16

www.legato-project.eu

Appendix A. Usage Example

In this Appendix, we give a quick overview of how to launch
MPC with transparent checkpoint-restart support. First, you
need to install the last release of MPC with --enable-mpc-ft

option. This should install DMTCP and enable its support in
the code. When you proceed to launch the code with mpcrun

you may pass the --checkpoint option in order to enable
DMTCP’s preloading and provide either checkpointing capabil-
ities through the coordinator or via the MPIX Checkpoint call.
Eventually, to restart a checkpointed program you may simply
use the mpcrun command with the --restart option, taking
as an optional argument the path to the restart script generated
during the checkpoint (current directory by default). Eventu-
ally, we recommend relying on the Slurm launcher as it is the
most widely supported by DMTCP.

References

[1] Adam, J., Besnard, J.B., Malony, A.D., Shende, S., Pérache, M.,
Carribault, P., Jaeger, J., 2018. Transparent high-speed network
checkpoint/restart in mpi, in: Proceedings of the 25th European MPI
Users’ Group Meeting, ACM, New York, NY, USA. pp. 12:1–12:11.
URL: http://doi.acm.org/10.1145/3236367.3236383, doi:10.
1145/3236367.3236383.

[2] Ansel, J., Arya, K., Cooperman, G., 2009. Dmtcp: Transparent check-
pointing for cluster computations and the desktop, in: Parallel & Dis-
tributed Processing, 2009. IPDPS 2009. IEEE International Symposium
on, IEEE. pp. 1–12.

[3] Barrett, B.W., Brightwell, R., Hemmert, S., Pedretti, K., Wheeler, K.,
Underwood, K., Riesen, R., Maccabe, A.B., Hudson, T., 2018. The por-
tals 4.2 network programming interface. Sandia National Laboratories,
November 2012, Technical Report SAND2018-12790 .

[4] Bautista-Gomez, L., Tsuboi, S., Komatitsch, D., Cappello, F., Maruyama,
N., Matsuoka, S., 2011. Fti: High performance fault tolerance interface
for hybrid systems, in: 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC), pp. 1–12.
doi:10.1145/2063384.2063427.

[5] Bellard, F., 2005. Qemu, a fast and portable dynamic translator., in:
USENIX Annual Technical Conference, FREENIX Track, p. 46.

[6] Besnard, J.B., Adam, J., Shende, S., Pérache, M., Carribault, P., Jaeger,
J., Malony, A.D., 2016. Introducing task-containers as an alternative
to runtime-stacking, in: Proceedings of the 23rd European MPI Users’
Group Meeting, ACM. pp. 51–63.

[7] Bland, W., Bouteiller, A., Herault, T., Bosilca, G., Dongarra, J.,
2013. Post-failure recovery of mpi communication capability: De-
sign and rationale. The International Journal of High Performance
Computing Applications 27, 244–254. URL: https://doi.org/

10.1177/1094342013488238, doi:10.1177/1094342013488238,
arXiv:https://doi.org/10.1177/1094342013488238.

[8] Bland, W., Bouteiller, A., Herault, T., Hursey, J., Bosilca, G., Dongarra,
J.J., 2012. An evaluation of user-level failure mitigation support in mpi,
in: European MPI Users’ Group Meeting, Springer. pp. 193–203.

[9] Bouteiller, A., Bosilca, G., Dongarra, J.J., 2015. Plan b: Interruption
of ongoing mpi operations to support failure recovery, in: Proceedings
of the 22Nd European MPI Users’ Group Meeting, ACM, New York,
NY, USA. pp. 11:1–11:9. URL: http://doi.acm.org/10.1145/

2802658.2802668, doi:10.1145/2802658.2802668.
[10] Buntinas, D., Coti, C., Herault, T., Lemarinier, P., Pilard, L.,

Rezmerita, A., Rodriguez, E., Cappello, F., 2008. Blocking vs.
non-blocking coordinated checkpointing for large-scale fault tolerant
mpi protocols. Future Generation Computer Systems 24, 73 – 84.
URL: http://www.sciencedirect.com/science/article/pii/

S0167739X07000258, doi:https://doi.org/10.1016/j.future.
2007.02.002.

[11] Cao, J., Kerr, G., Arya, K., Cooperman, G., 2014. Transparent
checkpoint-restart over infiniband, in: Proceedings of the 23rd Interna-
tional Symposium on High-performance Parallel and Distributed Com-
puting, ACM, New York, NY, USA. pp. 13–24. URL: http://doi.acm.
org/10.1145/2600212.2600219, doi:10.1145/2600212.2600219.

[12] Corbet, J., 2012. Autonuma: the other approach to numa scheduling.
LWN. net .

[13] Derradji, S., Palfer-Sollier, T., Panziera, J.P., Poudes, A., Atos, F.W.,
2015. The bxi interconnect architecture, in: 2015 IEEE 23rd Annual Sym-
posium on High-Performance Interconnects, pp. 18–25. doi:10.1109/
HOTI.2015.15.

[14] Dinan, J., Grant, R.E., Balaji, P., Goodell, D., Miller, D., Snir, M., Thakur,
R., 2014. Enabling communication concurrency through flexible mpi end-
points. The International Journal of High Performance Computing Appli-
cations 28, 390–405.

[15] EMELYANOV, P., 2011. Criu: Checkpoint/restore in userspace, july
2011. URL: https://criu.org/.

[16] Fagg, G.E., Dongarra, J.J., 2000. Ft-mpi: Fault tolerant mpi, supporting
dynamic applications in a dynamic world, in: Dongarra, J., Kacsuk, P.,
Podhorszki, N. (Eds.), Recent Advances in Parallel Virtual Machine and
Message Passing Interface, Springer Berlin Heidelberg, Berlin, Heidel-
berg. pp. 346–353.

[17] Gamell, M., Katz, D.S., Kolla, H., Chen, J., Klasky, S., Parashar, M.,
2014. Exploring automatic, online failure recovery for scientific appli-
cations at extreme scales, in: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Anal-
ysis, IEEE Press, Piscataway, NJ, USA. pp. 895–906. URL: https:
//doi.org/10.1109/SC.2014.78, doi:10.1109/SC.2014.78.

[18] Garg, R., Sodha, K., Jin, Z., Cooperman, G., 2013. Checkpoint-restart for
a network of virtual machines, in: 2013 IEEE International Conference
on Cluster Computing (CLUSTER), pp. 1–8. doi:10.1109/CLUSTER.
2013.6702626.

[19] Hakkarinen, D., Chen, Z., 2013. Multilevel diskless checkpointing. IEEE
Transactions on Computers 62, 772–783.

[20] Hargrove, P.H., Duell, J.C., 2006. Berkeley lab checkpoint/restart (blcr)
for linux clusters. Journal of Physics: Conference Series 46, 494. URL:
http://stacks.iop.org/1742-6596/46/i=1/a=067.

[21] Holmes, D., Mohror, K., Grant, R.E., Skjellum, A., Schulz, M., Bland,
W., Squyres, J.M., 2016. Mpi sessions: Leveraging runtime infrastructure
to increase scalability of applications at exascale, in: Proceedings of the
23rd European MPI Users’ Group Meeting, ACM. pp. 121–129.

[22] Hursey, J., Graham, R.L., Bronevetsky, G., Buntinas, D., Pritchard, H.,
Solt, D.G., 2011. Run-through stabilization: An mpi proposal for pro-
cess fault tolerance, in: Cotronis, Y., Danalis, A., Nikolopoulos, D.S.,
Dongarra, J. (Eds.), Recent Advances in the Message Passing Interface,
Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 329–332.

[23] Iancu, C., Hofmeyr, S., Blagojevic, F., Zheng, Y., 2010. Oversubscrip-
tion on multicore processors, in: 2010 IEEE International Symposium on
Parallel Distributed Processing (IPDPS), pp. 1–11.

[24] Kale, L.V., Krishnan, S., 1993. Charm++: A portable concurrent object
oriented system based on c++, in: Proceedings of the Eighth Annual Con-
ference on Object-oriented Programming Systems, Languages, and Ap-
plications, ACM, New York, NY, USA. pp. 91–108. URL: http://doi.
acm.org/10.1145/165854.165874, doi:10.1145/165854.165874.

[25] Kale, L.V., Zheng, G., 2009. Charm++ and ampi: Adaptive runtime
strategies via migratable objects. Advanced Computational Infrastruc-
tures for Parallel and Distributed Applications , 265–282.

[26] Kamal, H., Wagner, A., 2012. Added concurrency to improve mpi perfor-
mance on multicore, in: 2012 41st International Conference on Parallel
Processing, pp. 229–238. doi:10.1109/ICPP.2012.15.

[27] Karlin, I., Keasler, J., Neely, J., 2013. Lulesh 2.0 updates and changes.
Technical Report. Lawrence Livermore National Laboratory (LLNL),
Livermore, CA.

[28] Moody, A., Bronevetsky, G., Mohror, K., De Supinski, B.R., 2010. De-
sign, modeling, and evaluation of a scalable multi-level checkpointing
system, in: High Performance Computing, Networking, Storage and
Analysis (SC), 2010 International Conference for, IEEE. pp. 1–11.

[29] Naksinehaboon, N., Liu, Y., Leangsuksun, C., Nassar, R., Paun, M.,
Scott, S.L., 2008. Reliability-aware approach: An incremental check-
point/restart model in hpc environments, in: Cluster Computing and the
Grid, 2008. CCGRID’08. 8th IEEE International Symposium on, IEEE.

17

http://doi.acm.org/10.1145/3236367.3236383
http://dx.doi.org/10.1145/3236367.3236383
http://dx.doi.org/10.1145/3236367.3236383
http://dx.doi.org/10.1145/2063384.2063427
https://doi.org/10.1177/1094342013488238
https://doi.org/10.1177/1094342013488238
http://dx.doi.org/10.1177/1094342013488238
http://arxiv.org/abs/https://doi.org/10.1177/1094342013488238
http://doi.acm.org/10.1145/2802658.2802668
http://doi.acm.org/10.1145/2802658.2802668
http://dx.doi.org/10.1145/2802658.2802668
http://www.sciencedirect.com/science/article/pii/S0167739X07000258
http://www.sciencedirect.com/science/article/pii/S0167739X07000258
http://dx.doi.org/https://doi.org/10.1016/j.future.2007.02.002
http://dx.doi.org/https://doi.org/10.1016/j.future.2007.02.002
http://doi.acm.org/10.1145/2600212.2600219
http://doi.acm.org/10.1145/2600212.2600219
http://dx.doi.org/10.1145/2600212.2600219
http://dx.doi.org/10.1109/HOTI.2015.15
http://dx.doi.org/10.1109/HOTI.2015.15
https://criu.org/
https://doi.org/10.1109/SC.2014.78
https://doi.org/10.1109/SC.2014.78
http://dx.doi.org/10.1109/SC.2014.78
http://dx.doi.org/10.1109/CLUSTER.2013.6702626
http://dx.doi.org/10.1109/CLUSTER.2013.6702626
http://stacks.iop.org/1742-6596/46/i=1/a=067
http://doi.acm.org/10.1145/165854.165874
http://doi.acm.org/10.1145/165854.165874
http://dx.doi.org/10.1145/165854.165874
http://dx.doi.org/10.1109/ICPP.2012.15

pp. 783–788.
[30] Ni, X., Meneses, E., Jain, N., Kalé, L.V., 2013. Acr: Automatic check-

point/restart for soft and hard error protection, in: Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, ACM. p. 7.

[31] Ni, X., Meneses, E., Kalé, L.V., 2012. Hiding checkpoint overhead in
hpc applications with a semi-blocking algorithm, in: Cluster Computing
(CLUSTER), 2012 IEEE International Conference on, IEEE. pp. 364–
372.

[32] Pérache, M., Carribault, P., Jourdren, H., 2009. Mpc-mpi: An mpi
implementation reducing the overall memory consumption, in: Ropo,
M., Westerholm, J., Dongarra, J. (Eds.), Recent Advances in Paral-
lel Virtual Machine and Message Passing Interface, Proceedings of the
16th European PVM/MPI Users’ Group Meeting (EuroPVM/MPI 2009).
Springer Berlin Heidelberg. volume 5759 of Lecture Notes in Com-
puter Science, pp. 94–103. URL: http://dx.doi.org/10.1007/

978-3-642-03770-2_16, doi:10.1007/978-3-642-03770-2_16.
[33] Pérache, M., Jourdren, H., Namyst, R., 2008. Mpc: A unified parallel

runtime for clusters of numa machines, in: Proceedings of the 14th In-
ternational Euro-Par Conference on Parallel Processing, Springer-Verlag,
Berlin, Heidelberg. pp. 78–88. URL: http://dx.doi.org/10.1007/
978-3-540-85451-7_9, doi:10.1007/978-3-540-85451-7_9.

[34] Plank, J.S., Li, K., Puening, M.A., 1998. Diskless checkpointing. IEEE
Transactions on Parallel and Distributed Systems 9, 972–986.

[35] Rieker, M., Ansel, J., Cooperman, G., 2006. Transparent user-level
checkpointing for the native posix thread library for linux., in: PDPTA,
pp. 492–498.

[36] Teranishi, K., Heroux, M.A., 2014. Toward local failure local recovery
resilience model using mpi-ulfm, in: Proceedings of the 21st European
MPI Users’ Group Meeting, ACM, New York, NY, USA. pp. 51:51–
51:56. URL: http://doi.acm.org/10.1145/2642769.2642774,
doi:10.1145/2642769.2642774.

[37] Utrera, G., Corbalan, J., Labarta, J., 2014. Scheduling parallel jobs
on multicore clusters using cpu oversubscription. The Journal of Su-
percomputing 68, 1113–1140. URL: https://doi.org/10.1007/

s11227-014-1142-9, doi:10.1007/s11227-014-1142-9.
[38] Wende, F., Steinke, T., Reinefeld, A., 2015. The impact of process place-

ment and oversubscription on application performance: A case study for
exascale computing, in: Gray, A., Smith, L., Weiland, M. (Eds.), Pro-
ceedings of the 3rd International Conference on Exascale Applications
and Software, EASC 2015, pp. 13 – 18.

[39] Zheng, G., Huang, C., Kalé, L.V., 2006. Performance evaluation of auto-
matic checkpoint-based fault tolerance for ampi and charm++. SIGOPS
Oper. Syst. Rev. 40, 90–99. URL: http://doi.acm.org/10.1145/
1131322.1131340, doi:10.1145/1131322.1131340.

[40] Zheng, G., Shi, L., Kale, L.V., 2004. Ftc-charm++: an in-memory
checkpoint-based fault tolerant runtime for charm++ and mpi, in:
2004 IEEE International Conference on Cluster Computing (IEEE Cat.
No.04EX935), pp. 93–103. doi:10.1109/CLUSTR.2004.1392606.

18

http://dx.doi.org/10.1007/978-3-642-03770-2_16
http://dx.doi.org/10.1007/978-3-642-03770-2_16
http://dx.doi.org/10.1007/978-3-642-03770-2_16
http://dx.doi.org/10.1007/978-3-540-85451-7_9
http://dx.doi.org/10.1007/978-3-540-85451-7_9
http://dx.doi.org/10.1007/978-3-540-85451-7_9
http://doi.acm.org/10.1145/2642769.2642774
http://dx.doi.org/10.1145/2642769.2642774
https://doi.org/10.1007/s11227-014-1142-9
https://doi.org/10.1007/s11227-014-1142-9
http://dx.doi.org/10.1007/s11227-014-1142-9
http://doi.acm.org/10.1145/1131322.1131340
http://doi.acm.org/10.1145/1131322.1131340
http://dx.doi.org/10.1145/1131322.1131340
http://dx.doi.org/10.1109/CLUSTR.2004.1392606

	1 Introduction
	2 Related Work
	2.1 Explicit Methods
	2.2 Transparent Methods
	2.3 MPI Failure Mitigation
	2.4 Summarizing Checkpointing Approaches

	3 MPC Overview
	4 Contribution
	5 Transparent Checkpoint-Restart with DMTCP
	5.1 DMTCP Overview
	5.2 Network Modularity in MPC
	5.2.1 Multi-Rail
	5.2.2 Signaling Network
	5.2.3 Network Bootstrap

	5.3 DMTCP Support
	5.3.1 Thread-Based MPI Checkpoint
	5.3.2 Limitations in DMTCP
	5.3.3 High-Speed Network Support
	5.3.4 Checkpointing Interface

	5.4 Evaluating our DMTCP Integration
	5.4.1 DMTCP Performance Evaluation on Lulesh
	5.4.2 Checkpointing Lulesh with Constant Overhead
	5.4.3 Generalizing to other MPI Implementations

	6 Application-level Checkpointing
	6.1 FTI Overview
	6.2 MPC's Unified user-level thread scheduler
	6.3 Supporting FTI in MPC
	6.3.1 Port of FTI atop MPC

	6.4 Evaluating the FTI Integration

	7 Conclusion
	8 Future Work
	Appendix A Usage Example

