2020

Collectives in hybrid MPI+MPI code: design, practice and performance

Huan Zhou*, José Gracia, Naweiluo Zhou, Ralf Schneider

High Performance Computing Center Stuttgart (HLRS), University of Stuttgart, 70569 Stuttgart, Germany

Abstract

The use of hybrid scheme combining the message passing programming models for inter-node parallelism and the shared memory
programming models for node-level parallelism is widely spread. Existing extensive practices on hybrid Message Passing Interface
(MPI) plus Open Multi-Processing (OpenMP) programming account for its popularity. Nevertheless, strong programming efforts are
required to gain performance benefits from the MPI+OpenMP code. An emerging hybrid method that combines MPI and the MPI
shared memory model (MPI+MP]I) is promising. However, writing an efficient hybrid MPI+MPI program — especially when the
collective communication operations are involved — is not to be taken for granted.

In this paper, we propose a new design method to implement hybrid MPI+MPI context-based collective communication

operations. Our method avoids on-node memory replications (on-node communication overheads) that are required by semantics in

-

pure MPI. We also offer wrapper primitives hiding all the design details from users, which comes with practices on how to structure
hybrid MPI+MPI code with these primitives. Further, the on-node synchronization scheme required by our method/collectives gets

AN optimized. The micro-benchmarks show that our collectives are comparable or superior to those in pure MPI context. We have

further validated the effectiveness of the hybrid MPI+MPI model (which uses our wrapper primitives) in three computational kernels,

—— by comparison to the pure MPI and hybrid MPI+OpenMP models.

Keywords: MPI, MPI shared memory model, collective communication, hybrid programming

s.DC

O 1. Introduction

For decades the Message Passing Interface (MPI) [[1]] has
been a dominant parallel programming model in the area of
high-performance computing (HPC). It is widely utilized by
applications of interest to various fields and will continue to be
prosperous for its efficiency, adaptivity, and portability. Nowa-
days, the computational capability of a single processor grows
- in a way that increases its number of computational cores, which
strengthens the hierarchical memory structure (shared mem-
ory within nodes and message passing across nodes). Memory
technology, however, lags behind processor technology. This

=" dilutes per-core-memory in the current commodity supercomput-
. 2 ers. Traditionally, the applications that are written in pure MPI
>< may face two problems. One is the latency, where extra mem-
E ory copings are internally required by MPI semantics, and the
other is the memory utilization, where some (on-node) copies of
replicated data are needed when memory is partitioned across
multiple cores for separate address space. In this regard, the
reduced per-core-memory is abused. Partitioned Global Address
Space (PGAS) and hybrid programming models could be the
solutions to the above two problems. PGAS, such as Unified
Parallel C (UPC) [2] and OpenSHMEM |[3]], provides convenient
access to shared global address space. However, migrating exist-
ing MPI parallel programs to another PGAS model will burden

11496v1 |

2007

*Corresponding author
Email addresses: huan.zhou@hlrs.de (Huan Zhou), gracia@hlrs.de
(José Gracia), naweiluo.zhou@hlrs.de (Naweiluo Zhou),
schneider@hlrs.de (Ralf Schneider)

Preprint submitted to Elsevier

the users with a large amount of rewriting work. Conversely,
the hybrid model offers an incremental pathway to extend exist-
ing MPI programs by combining MPI (inter-node parallelism)
and a shared memory programming approach (node-level par-
allelism). Open Multi-Processing (OpenMP) [4] is the most
frequently-used shared memory programming model [S]]. The
simplest approach is to incrementally add OpenMP directives
to the computationally-intensive parts of the existing MPI code,
which is also called OpenMP fine-grained parallelism [[6]. This
approach can produce serial sections that are only executed by
the master thread. Coupled with the extra overheads from shared
memory threading, such hybrid implementation may hardly out-
perform the pure MPI implementation when the scaling of the
MPI implementation is still good [7,8]. When the scalability of
the pure MPI code suffers a lot, the hybrid one could perform
better with less communication time [9} [10]]. There are still two
new hybrid parallel programming methods: MPI+UPC [11] and
MPI+OpenSHMEM [12]. They attract little attention, since
a profound grasp of both MPI and OpenSHMEM or UPC is
needed to write efficient applications.

Further, an innovative hybrid programming approach com-
bining MPI and the MPI Shared Memory (SHM) model emerges
(MPI+MPI [13]). The MPI SHM model [14, [15} (16} [17] is
process-based and introduced in the MPI-3 standard for sup-
porting shared memory address space among MPI processes on
the same node. In the hybrid MPI+MPI model, the on-node
shared data is logically partitioned and a portion of it is affinity
to each process. Compared with the MPI model, the computa-

July 23, 2020

tional parallelism in the MPI+MPI version stays unchanged and
the on-node communication overhead is eliminated. Therefore,
this hybrid scheme is expected to benefit performance, even
when the pure MPI applications are already good in scalability.
Nevertheless, there are so far very limited practices to guide the
users in writing scalable as well as efficient hybrid MPI+MPI
applications, except the study [13]] that demonstrates a hybrid
MPI+MPI programming paradigm featuring the point-to-point
communication operations (e.g., halo exchanges). However, this
paradigm does not strictly follow the shared memory program-
ming scheme that demands only one (shared) copy of replicated
data among on-node processes. Besides the point-to-point com-
munication operations, MPI provides a rich suite of collective
operations that involve a group of processes rather than a pair
of processes. The MPI collectives are important, as they are
frequently invoked in a spectrum of scientific applications or ker-
nels [18]. They always appear in performance-critical sections
of these applications. If the hybrid MPI+MPI code continues
to harness the standard MPI collectives as the pure MPI code
does, scalable performance is difficult to achieve. Therefore,
designing hybrid MPI+MPI context-based collective communi-
cation operations and creating experience in writing scalable and
efficient hybrid MPI+MPI programs including these collectives
are inspired.

In the pure MPI version, the collectives give a copy of the
result to every on-node process, which is dispensable in the
hybrid MPI+MPI version when each process proceeds to read
the result with visible or no change to it. This is the case in most
of the existing applications or kernels containing the collective
operations [18]] and the benchmarks used in this paper as well.
The visible change, as the name implies, the change is visible
to other processes (shared between processes). Further, the visi-
ble changes to the same data can be synchronized by using the
method proposed in [19]]. Conversely, invisible change signifies
private change, which entails a copy of the accessed data. Previ-
ously, we discussed the programmatic differences between the
approach of collectives in the hybrid MPI+MPI context with
the standard one in the pure MPI context [20]. In this paper, we
(take allgather, broadcast and allreduce as concrete cases) fur-
ther explore the challenges associated with designing the hybrid
MPI+MPI context-based collective operations and writing an
efficient hybrid MPI+MPI code with an acceptable number of
lines. The main contributions of our work are fourfold:

1. Besides allgather and broadcast, we describe the design
method of allreduce in the hybrid MPI+MPI context. We
provide the users with fully-functional MPI wrappers that
hide all the design details of our collectives and demon-
strate the necessity of applying these wrappers to the hy-
brid MPI+MPI programming.

2. We highlight all synchronization points that are inherently
required by our allgather, broadcast and allreduce to guar-
antee data integrity inside nodes. We then discuss how to
implement them with minimal overhead.

3. We perform a series of micro-benchmarks to first quantify
the implementation overhead brought by our collectives
and then compare our collectives and the standard MPI

collectives, under the same distribution of workload on all
cores.

4. We conduct three case studies to show the benefit of the
hybrid MPI+MPI code calling our collectives over the
pure MPI and hybrid MPI+OpenMP code.

The paper is organized as follows. In the next section, we
briefly give the related work. Section [3]describes the MPI SHM
model that forms a basis for our hybrid MPI+MPI context-based
collectives, and the skeleton of a simple hybrid MPI+MPI pro-
gram. Section 4] starts with a description of our collectives,
provides the users with wrapper functions, presents examples
written in the hybrid MPI+MPI context and proposes a relatively
light-weight synchronization method. In Section[5] the experi-
mental results and analyses based on the micro- and kernel-level
benchmarks are demonstrated. Section [6] discusses and con-
cludes our paper.

2. Related work

In the early stage of optimizing MPI collective operations,
the researchers put much effort into studying optimal algo-
rithms. This leads to the coexistence between different al-
gorithms catering to different message sizes and numbers of
processes[21) 22]]. The high-performance implementations of
MPI, such as MPICH [23]], Intel MPI [24]] and Open MPI [25]],
thus choose the most appropriate algorithm to use at runtime.

The prevalence of clusters of shared memory nodes high-
lights a hybrid architecture combining distributed (across nodes)
and shared memory (constrained within a single node). The opti-
mized works have shifted to distinguish between intra-node
and inter-node communication (aka., hierarchical algorithm
[26} 27, 128]]). The hierarchical algorithm has been adopted by
the existing MPI implementations and pays off. MPI collectives
are expected to be highly tuned for shared memory as well as
distributed architecture. In [29, 30], the MPI collectives are
optimized by using the shared cache as an intra-node data trans-
fer layer. Nowadays, a typical shared memory node features
non-uniform memory access (NUMA) architecture, the NUMA-
aware shared memory MPI collectives are thus proposed to fur-
ther minimize the inter-NUMA (intersocket) memory traffic [31].
Besides that, remote direct memory access (RDMA) is used for
inter-node communication to improve performance [32,[33]]. All
the aforementioned optimizations pave the way to the maturity of
MPI collectives. Furthermore, the scalability of MPI+OpenMP
hybrid application has been improved by making full use of idle
OpenMP threads to parallelize the MPI collectives [34].

3. MPI+OpenMP versus MPI+MPI

In this section we describe the MPI-3 shared memory model
and two-level of communicator splitting. They are foundations
of the hybrid MPI+MPI programming model. We further pro-
vide a brief comparison between two skeleton programs of
MPI+OpenMP and MPI+MPI containing collective commu-
nication operations.

Flat MP1
Init MPI
{spawn n ranks)
Rank 0...n-1: OpenMP
MPI_Alloc_mem Memcir'\,r g
" | allocation Thread-level parallelism:

#omp begin
num_threads{m)

Computation | <4

Over n ranks:
MPI_Allreduce
MPI_Allgather

... Computation...

, #omp end

Synchronization

| Rank 0..n-1:
MPI_Free_mem

| Deallocation
Finalize MPI

Figure 1: The workflow of the hybrid MPI+OpenMP programming model with
the fine-grained on-node parallelization approach

3.1. MPI+OpenMP

In the hybrid MPI+OpenMP hybrid model, MPI is used for
communication across distributed memory nodes and OpenMP
is responsible for on-node parallelization. Assuming there is
a cluster of n shared memory nodes, each of which consists
of m computational cores. Figure[I]illustrates the workflow of
writing a hybrid MPI+OpenMP program (run on the n nodes)
by using the OpenMP fine-grained parallelization approach [6].
At the period of initialization, n MPI processes are spawned and
each of them is allocated on distinct node. The left part shows
that each MPI process allocates or frees memory which has its
own address space (not addressable by each other). The com-
putation component will resort to OpenMP directives, which is
demonstrated in the right part of the figure. Here, each process
spawns m threads (each thread is pinned to a core) executing the
computation concurrently. In this scenario, the standard MPI
collective communication operations over the n MPI processes
are directly harnessed. The advantage of OpenMP offering incre-
mental approach towards parallelization facilitates the porting
work from MPI code to hybrid MPI+OpenMP one. In the hybrid
MPI+OpenMP version, however, creating the same parallelism
as in the MPI version is daunting and needs plenty of human ef-
forts, which will, in turn, reduce the advantage in using OpenMP.
Besides the fine-grained parallelism, another parallelism ap-
proach of coarse-grained is also studied but not so mature as
the former. Therefore, the hybrid MPI+OpenMP program with
fine-grained parallelism is considered as one of the baselines for
evaluating the hybrid MPI+MPI program in Section

3.2. MPI+MPI

MPI-3 extends the standard MPI with the shared memory
programming that supports direct load/store operations on a sin-
gle node. In this section, we introduce the shared memory and
bridge communicators. The concept of the shared memory win-
dow is also critical for us to understand how MPI SHM exposes
a global view of on-node memory to the users. With all these

knowledge in hand, we introduce the workflow of writing a typi-
cal hybrid MPI+MPI program running on the aforementioned
cluster of n nodes.

3.2.1. Two level of communicator splitting

The function MPI_Comm _split_type is called with the param-
eter of MPI_COMM _TYPE_SHARED to divide the communica-
tor into discrete node-level communicators. Each node-level
(aka. shared memory) communicator identifies a group of pro-
cesses that are connected to the same shared memory system,
inside which all processes can perform load/store operations
instead of explicit remote memory access (RMA). Besides the
shared memory communicator, the hybrid MPI+MPI program-
ming model entails an across-node communicator to serve for
the explicit communication between processes residing on dif-
ferent nodes. A process per node (often with the lowest rank) is
chosen as a leader to take responsibility for the data exchanges
across nodes, while the other on-node processes are viewed as
its children. The across-node communicator acts as a bridge
between nodes and thus is also called bridge communicator [28]],
which is formed by calling MPI_Comm _split.

3.2.2. MPI shared memory window

The usage of MPI_Win_allocate_shared is crucial to create
a window spanning a region of addressable shared memory
with an individual size that is contributed by each on-node pro-
cess. By default, the memory in a window is allocated contigu-
ously in hardware. Creating non-contiguous memory is also
possible when the parameter of alloc_shared_noncontig is set
to true. The function MPI_Win_shared_query is used to obtain
the base pointer to the beginning of the shared memory segment
contributed by another process. This base pointer allows the
allocated memory to be accessed with immediate load/store in-
structions by all on-node processes. Intuitively, the function
MPI_Win_sync is defined to synchronize between the private
and public window copies. Nowadays, the majority of hard-
ware architectures feature a unified memory model, where the
public and private copies can be maintained consistent implic-
itly. Nevertheless, the usage of MPI_Win_sync is still valuable
in achieving a memory synchronization when there are concur-
rent accesses to the same memory location by different on-node
processes.

3.2.3. Workflow

Theoretically, the migration from pure MPI programs to hy-
brid MPI+MPI ones should be smooth due to their interoperabil-
ity. Figure[2]presents the hybrid MPI+MPI programming pattern,
where the right part presents the possible rewriting efforts for
achieving this hybridization. Here, n * m (equal to the number
of available cores) MPI processes are spawned during initializa-
tion, where the shared memory and bridge communicators are
required to be generated. The leader allocates the entire shared
memory region for all on-node processes and then its children
attach to a separate portion of this shared memory region. When
a global communication operation happens, the shared region
can be accessed by executing load/store instructions, with all
the node-level synchronizations to guarantee its consistent status

MPI SHM

Flat MPI i

Init MPI
(spawn n*m ranks)

!

- Create shared-memory
communicator

~~._ | - Create bridge communicator

Memory On-node shared-memory
allocation “1--._ | allocation

Computation

L il - Sync among on-node processes
‘ y g p

__ | - Data transfer across nodes

Synchronization
_-~" | -Free the shared memory

- Free shared-memory
“~._ | communicator
- Free bridge communicator

Deallocation

Finalize MPI

Figure 2: The workflow of the hybrid MPI+MPI programming model

among on-node processes. This shared region can also certainly
be touched by the processes residing on different nodes via RMA,
collective and point-to-point communication operations. Before
finalizing the program, the above-mentioned two communicators
and the shared region should be deallocated.

Our comparison between hybrid MPI+MPI and pure MPI or
hybrid MPI+OpenMP consists in two aspects: programmability
and performance. In detail, preparing the aforementioned com-
municators and shared memory windows for a hybrid MPI+MPI
program can be tedious. Moreover, a hybrid MPI+MPI program
is error-prone when the users mishandle the node-level synchro-
nization operations. The rewriting efforts are clearly not negligi-
ble. Therefore, wrapper functions encapsulating these rewriting
details should be available to the users for well-modularized
programming. Like MPI, the problems/tasks are also forced to
be decomposed and evenly assigned to separate processes for
locality in hybrid MPI+MPI. Hence unequal parallelism will not
be the reason for the performance benefits of MPI over hybrid
MPI+MPI. Besides measuring the performance of our collec-
tives, their implementation overheads need to be considered
when the holistic performance of a hybrid MPI+MPI program is
assessed.

4. Implementation and practices

In this section, we present several generic wrapper interfaces
that should always be included to enable a hybrid MPI+MPI
program with the pattern shown in Figure[2] We take three typi-
cal collectives (MPI_Allgather, MPI_Allreduce, and MPI_Bcast)
for example, to describe our efforts in implementing the hybrid
MPI+MPI context-based collectives by assuming that the block-
style rank placement is employed. lL.e. the consecutive ranks
fill up each compute (shared memory) node before moving to
the next. Each of the standard MPI collective communication

interfaces referenced above has a counterpart in our hybrid ap-
proach. The counterparts change the parameters slightly. In
addition, there could be specific wrapper functions contributing
to their implementations. Based on the wrapper primitives, we
give a practice in building a prototypical hybrid MPI+MPI code,
where the allgather is involved. Furthermore, the linkﬂ provides
examples describing the usage of our broadcast and allreduce
in the hybrid MPI+MPI context. We prove that these wrapper
interfaces play an important role in improving the productivity
of the hybrid MPI+MPI application developers by unveiling the
implementation details hidden in them. According to Figure
on-node synchronization should be carefully considered for the
hybrid approach inside the communication component. We thus
discuss how the node-level synchronizations could be imple-
mented for benefiting the performance of the hybrid MPI+MPI
programs.

4.1. Common wrapper primitives

In all MPI+MPI programs embracing the collective oper-
ations, the steps manipulating communicators and shared re-
gions are common places. To obviate code duplication, we
wrap all the common steps into the corresponding wrapper
functions, whose interfaces are demonstrated in Figure 3| The
structure comm_package defines variables associated with the
shared memory and bridge sub-communicators. The function
Wrapper _MPI_ShmemBridgeComm_create takes a communica-
tor as input parameter and returns an instance of the above
structure. Aside from the MPI_COMM_WORLD, other com-
municators deriving from it are supported by this function for
complex use cases. The msize, bsize and flag — in function
Wrapper MPI_Sharedmemory_alloc — are parameters defined
to determine the total size (in bytes) of a shared region allo-
cated in the leader. These two wrapper functions are both one-
off activities whose overheads are evaluated in Section
The function Wrapper_Get_localpointer needs to be invoked to
output a local pointer pointing to the shared memory location
with affinity to the calling process. In the end, we need to ex-
plicitly deallocate the communicators via the wrapper function
Wrapper_Comm _free.

4.2. Allgather

This section first describes the implementation dissimilarities
of the pure MPI context-based allgather (MPI_Allgather) and
the hybrid MPI+MPI context-based allgather in Figure] The
latter is called Wrapper_Hy_Allgather in our hybrid MPI+MPI
version. Our previous paper [20] can be referred to for a more
elaborate description. Then we focus on the practices in writing
hybrid MPI+MPI code based on our wrapper interfaces and
compare it with the one without the use of them.

Both legends in Figure] describe their implementation ap-
proaches according to the usage and status of buffer in each
process instead of the switch between the allgather algorithms
(e.g., recursive doubling or ring). Shown in Figure da] initially
process i assigns a valid value to the i-th element as its local data,

!https://github.com/HyMPIMPIColl/BenchHyCollWithWrapper

/* The structure of data type comm_package */
struct comm_package
{
MPI_Comm shmem_comm;
MPI_Comm bridge_comm;
int shmemcomm_size;//Size of shared memory communicator
int bridgecomm_size;//Size of bridge communicator
3
/* Two level of communicator splitting */
void Wrapper_MPI_ShmemBridgeComm_create(MPI_Comm par_comm,
struct comm_package *comm_handle) ;
/* Shared memory allocation */
void Wrapper_MPI_Sharedmemory_alloc(int msize, int bsize,
int flag, struct comm_package *comm_handle,
void **shmem_addr, MPI_Win *winPtr);
/* Affinity =/
void Wrapper_Get_localpointer(void *start_addr,
int rank, int dsize, void **local_addr);
/* Free shared memory and bridge communicators */
Wrapper_Comm_free(struct comm_package *comm_handle);

Figure 3: The wrapper interfaces handling with communicators and regions of
shared memory.

Before-allgather @ n

buffer

After-allgather @

1|2
buffer @ @

(a) Allgather in the pure MPI version

Before-allgather buffer

©

[
[
[
T
_______________________ mmm e e e emmman
.
h
[
h
[

After-allgather buffer
(b) Allgather in the hybrid MPI+MPI version

Figure 4: Comparison of the pure MPI context-based and hybrid MPI+MPI
context-based allgather according to the changes in buffers for each process. f:
empty element; bold font: gathered element from other processes; black arrow:
an inter-process communication; red arrow: a local pointer.

that is about to be sent to other processes. After this operation,
the message sent from each process is placed in rank order in all
processes’ after-allgather buffers, where the copies of replicated
data inside node are noticed. Besides, the intra-node commu-
nication involves extra buffer allocation and copies, which are
determined by the underlying MPI library and occur transpar-
ently to the user. Unlike the allgather in the pure MPI version,
only one copy of buffer, which is allocated as a shared memory
segment, is demanded on a node in our allgather, shown in
Figureb] This buffer is shared among all the on-node processes

and thus the intra-node communication is eliminated. Therefore,
in our allgather the leaders (comprise process 0 and 2), as the
representatives of the two nodes, are required to exchange all the
valid messages. The irregular allgather variant (MPI_Allgatherv)
is leveraged for this across-node data exchanges, due to that the
valid message size could vary from one node to another. In order
to achieve the same computational parallelism as the standard
allgather, the on-node shared region is evenly partitioned into
separate portions, each of which builds an affinity with a process
via a pointer. This is done before the Wrapper_Hy_Allgather is
executed.

1 struct comm_package comm_handle;

2 struct allgather_param param_handle;
3 MPI_Win win;

4 double *result_addr, *s_buf, *r_buf;

5 s_buf = r_buf = NULL;

6 int nprocs, *sharedmem_sizeset, rank;

7 Wrapper_MPI_ShmemBridgeComm_create (MPI_COMM_WORLD,
8 &comm_handle) ;

9 MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

10 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

11 Wrapper_MPI_Sharedmemory_alloc(msg, sizeof (double),

12 nprocs, &comm_handle, (void**)&r_buf, &win);
13 Wrapper_ShmemcommSizeset_gather (&comm_handle,

14 &sharedmem_sizeset);

15 Wrapper_Create_Allgather_param(msg, &comm_handle,
16 sharedmem_sizeset, ¶m_handle);

17 Wrapper_Get_localpointer(r_buf, rank,

18 msg*sizeof (double), (void**)&s_buf);

19 for(int i = 0; i < msg; i++){ s_buf[i] = i; }

20 Wrapper_Hy_Allgather<double>(r_buf, s_buf, msg,

21 MPI_DOUBLE, ¶m_handle, &comm_handle) ;

2 MPI_Win_free(&win);//Free the allocated shared memory
23 Wrapper_Param_free(&comm_handle, ¶m_handle) ;

24 Wrapper_ShmemcommSizeset_free(&comm_handle,

25 sharedmem_sizeset);

26 Wrapper_Comm_free (&comm_handle) ;

Figure 5: A simple hybrid MPI+MPI example including an allgather operation.

Figure[5|shows a complete and simple example (micro bench-
mark) of how to illustrate a hybrid MPI+MPI program con-
taining an allgather operation by using our wrapper interfaces.
Besides the common wrapper functions defined above, there
are several wrapper functions and data structures specifically
provided for implementing our allgather approach. The data
structure allgather_param (line 2) stores two integer arrays (i.e.,
recvcounts and displs) specifying the receive counts and
displacements. These two arrays are required by our template
function Wrapper_Hy_Allgather, which is the counterpart to
the MPI_Allgather used in pure MPI version and thus is the
object to be measured in Section[5.2.2] Lines 13 and 14 gen-
erate an array (i.e., sharedmem_sizeset) that collects the sizes
of all the shared memory communicators. The function Wrap-
per_Create_Allgather_param receives this array as input data and
returns a value to param_handle of type struct allgather_param
(lines 15 and 16). This function computes the sets of received
counts and displacements for irregular allgather and is also
a one-off, which could be amortized in the future by repeat-
edly invoking Wrapper_Hy_Allgather operation. In the end, the
sharedmem _sizeset and param_handle should be properly freed.

1 /* Hierarchical communicator splitting [28] */
2 comm = MPI_COMM_WORLD;
3 MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED,
4 0, MPI_INFO_NULL, &shmem_comm) ;
s MPI_Comm_rank(shmem_comm, &shmemcomm_rank) ;
6 leader = 0;

MPI_Comm_split (comm,
8 (shmemcomm_rank==1eader) 70:MPI_UNDEFINED,O,
9 &bridge_comm) ;
10 Every process gets shmemcomm_size and bridgecomm_size;
11 MPI_Comm_size(comm, &nprocs);
12 msgSize = (shmemcomm_rank==leader)?msg*nprocs:0;
13 MPI_Win_allocate_shared(msgSize, sizeof(double),

14 MPI_INFO_NULL, shmem_comm, &r_buf, &win);
15 if (shmemcomm_rank != leader){
16 MPI_Win_shared_query(win, leader, &r_buf);}

17 MPI_Comm_rank(comm, &rank);
18 if (bridge_comm != MPI_COMM_NULL){

19 sharedmem_sizeset = malloc(.);

20 recvcounts = malloc(.);displs = malloc(.);

21 MPI_Allgather (shmemcomm_size, sharedmem_sizeset,
2 bridge_comm) ;

3 for (int i = 0; i < bridgecomm_size; i++){

24 recvcounts = msg*sharedmem_sizeset[i];

25 displs[i] = 0;

2% for (int j = 0; j < i; j++)

27 displs[i] = recvcounts[j];}}

28 s_buf = r_buf + msg+*rank;
29 for(int i = 0; i < msg; i++){ s_bufl[i] = i; }
3 if (bridgeComm !'= MPI_COMM_NULL){// Leaders

31 MPI_Barrier (sharedmemComm) ;

32 MPI_Allgatherv(s_buf, r_buf, recvcounts, displs,
bridgeComm) ;

33 MPI_Barrier (sharedmemComm) ;}

34 else{// Children

35 MPI_Barrier (sharedmemComm) ;

36 MPI_Barrier (sharedmemComm) ; }

37 MPI_Win_free(&win);

33 MPI_Comm_free(shmem_comm) ;

39 if (bridge_comm != MPI_COMM_NULL){

40 MPI_Comm_free(bridge_comm) ; free(sharedmem_sizeset);
41 free(recvcounts) ;free(displs);}

Figure 6: Pseudo-code that illustrates how to implement the above example (see
Figure[5) without the wrapper interfaces.

Figure [6] is added to expand the wrapper functions of rel-
evance to Figure [5] and it shows how our design is originally
realized in the hybrid MPI+MPI context without our wrapper
interfaces. Due to space limit, Figure [6] skips the declarations of
variables. Obviously, the program listed in Figure [6| (hereafter
called verbose program) produces more lines of code (LOC)
than that demonstrated in Figure [5] (hereafter called wrapper
program). In order to better grasp the contribution of these
wrapper interfaces, the positional correspondence between the
functionalities of the above two programs is further generated
and shown in Table [T} where the leftmost column lists the in-
volved functionalities. On the right columns, the line numbers
indicate the position of the given functionality in each program.
We can observe that each functionality corresponds to one or
several wrapper interfaces, which make the wrapper program
more structured and readable. Conversely, the verbose program
is prone to obscurity or even failure due to that it explicitly
handles the details of all the listed functionalities. In addition,

the hybrid MPI+MPI program developers can benefit from this
mapping table that enables them to better apply our wrapper
interfaces to their own applications. In short, the above study
emphasizes the need for the use of the wrapper interfaces with
proven benefits — better productivity and applicability — to the
hybrid MPI+MPI users.

. . Lines
Functionality
wrapper program | verbose program
Communicator splitting 7-8 2-10
Shared memory allocation 11-12 12-16
Fill recvcounts and displs 13-16 18-27
Get local pointer 17-18 28

Allgather 20-21 30-36
Deallocation 23-26 38-41

Table 1: Correspondence between wrapper program and verbose program.

4.3. Broadcast

void Wrapper_Get_transtable (MPI_Comm p_comm,
const struct comm_package* comm_handle,
int **shmem_transtable, int **bridge_transtable)
template<class myType>
void Wrapper_Hy_Bcast(myType** bcast_addr,
myType* start_addr, int msize, int* shmem_transtable,
int* bridge_transtable, MPI_Datatype data_type,
int root, struct comm_packagex* comm_handle) ;

Figure 7: The specific wrapper interfaces with respect to our broadcast.

A broadcast operation happens when one MPI process, called
root, sends the same message to every other process. Likewise,
in our MPI+MPI context-based broadcast approach, a region of
memory is allocated to store the broadcast data in each leader
and can be shared by its children. Only the root is eligible to
alter the broadcast data according to the MPI broadcast seman-
tics. All processes on the same node independently read the
broadcast data via a local pointer to the beginning of this shared
memory location. Here, performing the across-node broadcast
operation (over all the leaders) is straightforward since the size
of the broadcast message remains the same as that of the pure
MPI context-based broadcast.

Broadcast operation is rooted and can only be performed
when the root’s rank is correctly given. Every process can be the
root in real world. This confronts us with the challenge of deter-
mining the relative rank of the root in both the shared memory
and bridge sub-communicators. Two absolute-to-relative rank
translation tables — shmem_transtable and bridge _transtable —
are thus generated in function Wrapper_Get_transtable. 1t brings
implementation overhead to our broadcast approach. The func-
tion Wrapper_Hy_Bcast receives the above two translation tables
as input data to perform our hybrid broadcast operation. The
above two primitives provided for our broadcast are shown in

Figure

4.4. Allreduce
The implementation method of the hybrid MPI+MPI context-
based allreduce is illustrated in Figure (8] Each process points to

an element (as an input), which is located in the shared region
and supposed to be updated by its affiliated process. Besides, an
output vector with 2 elements is appended to store the locally
and globally reduced results, respectively. Rather, the reduction
computation in step 1 proceeds at the node level. Step 2 is per-
formed by all leaders and applies the sum operation to the first
elements with the final result stored in the second element of the
output vector. This output vector is shared and can be accessed
by all processes on the same node, but only under a proper
synchronization to secure the computational determinacy. The
reduced result is thus not necessarily broadcast to all other on-
node processes. Clearly, the order of operands in our allreduce
approach is not defined to be in ascending order of process rank
beginning with zero. In this example with block-style placement,
we take advantage of the associativity of the sum operation to
guarantee the correction of the reduced result. However, the
operation should be both commutative and associative when a
non-block-style placement is applied. This allreduce approach
is thus valid for all predefined operations, which are assumed to
be commutative as well as associative.

@‘I#]#\ pEIE # | | Before

&

step1 [o[1]1#] [2]2]#]

© .9

o[1l1l3] | [2][2][3]

Figure 8: Illustration of the hybrid MPI+MPI context-based allreduce. The
input data is enclosed with black cubic and the reduced results — either locally
or globally — are enclosed with red cubic, where the globally reduced ones are
stressed with bold font. ® means MPI_SUM operation, which is applied to the
input and locally reduced data. Refer to Figure[d]for the explanations of arrows.

After

Step 2

template<class myType>

void Wrapper_Hy_Allreduce(myType* start_addr,
myType** result_addr, int sharedmem_rank,
int msize, MPI_Datatype data_type, MPI_Op op,
struct comm_package* comm_handle, MPI_Win win) ;

Figure 9: The template interface to Wrapper_Hy_Allreduce.

The template function Wrapper_Hy_Allreduce acts as the
counterpart to the allreduce in the pure MPI version. Each node
is required to contribute an intermediate result to the output vec-
tor in step 1, which can be completed in two ways. One is letting
the leader serially perform the sum operation on an element-
wise basis, which however leads to the issue of core idles and
extra synchronization (explained in Section[4.5)). The other is
performing an MPI_Reduce to return the locally-reduced result
to the leader, which implies a synchronization point among
on-node processes, and however brings MPI internal memory
copies. Step 2 proceeds with a standard allreduce operation
called by all leaders. Figure [9] shows the template interface

to Wrapper_Hy_Allreduce, where the input parameters shared-
mem_rank and win are responsible for the identification of local
pointer in step 1 and the synchronization operations after step 2,
respectively.

4.5. Synchronization consideration

if (comm_handle->bridge_comm != MPI_COMM_NULL){// Leaders
sync (comm_handle->shmem_comm) ;
MPI_Allgatherv(sbuf,rbuf,...,comm_handle->bridge_comm) ;

B

else{// Children
sync (comm_handle->shmem_comm) ;

s

(a) allgather

if (comm_handle->bridge_comm != MPI_COMM_NULL){// Leaders
MPI_Bcast (buf, ., comm_handle->bridge_comm) ;

B
else// Children
(b) broadcast
/* Step 1 */
Method 1:
MPI_Reduce(..., comm_handl->shmem_comm) ;
Method 2:

sync (comm_handle->shmem_comm) ;

Each leader applies the operation on node-level;

/* Step 2 */

if (comm_handle->bridge_comm !'= MPI_COMM_NULL)
MPI_Allreduce(sbuf,rbuf,...

3

, comm_handle->bridge_comm) ;

(¢) allreduce

Figure 10: Three pieces of pseudo-code handling with the synchronization
among on-node processes for our allgather, broadcast and allreduce.

Leader: Children:
status = 0; ref = 0; ref++;
compute&communication; while(1){
status++; MPI_Win_sync(win);

MPI_Win_sync(win); if (status==ref) break;}

Figure 11: Pseudo-code that demonstrates the spinning method.

The synchronization and communication among processes
are more decoupled in hybrid MPI+MPI, than those in pure MPL
Therefore, the synchronization operations need to be explicitly
added to guarantee the data integrity and support a deterministic
computation in hybrid MPI+MPI. This section supplements the
illustration of our collectives with due consideration of the node-
level synchronization points, which are intuitively marked with
sync in Figure[I0] The calls to sync are highlighted using two
kinds of colors featuring different synchronous patterns.

Next, we shed lights on the two different synchronous pat-
terns reflected in the above three MPI+MPI context-based collec-
tive functions (prefixed with Wrapper_Hy), which are assumed
to execute on more than one node. We start with the implementa-
tion of the function Wrapper_Hy_Allgather, where two sync calls

among all the on-node processes need to be added before and af-
ter the irregular allgather operation, respectively. The first sync,
shown in red, guarantees that all processes finish the updates to
the shared data that has affinity to them. The second sync, shown
in yellow, is invoked to block the children until the leaders exit
from the irregular allgather operation. Figure shows its im-
plementation. Then it comes to the function Wrapper_Hy_Bcast,
in which a sync operation is needed after the broadcast oper-
ation to guarantee that the broadcast data is ready for all the
on-node processes. Figure shows the related pseudo-code.
This is followed by the function Wrapper_Hy_Allreduce, charac-
terizing the two methods of the intermediate reduction among
on-node processes. The method 1 is adopted to return the re-
duced result to each leader for simplicity and flexibility, which
could bring performance issues due to the MPI internal buffering
policy. Instead of calling MPI_Reduce, we can use an ad hoc
method (method 2). It adds a sync operation to guarantee that
all the input data is ready to be used by the leader to compute
the reduced result. In addition, the second sync comes to let
the children wait for the completion of the allreduce operation
called by leaders. Its implementation is shown in Figure|10c
Based on the Figure we can draw a general conclusion
that the sync in red entails a collective synchronization among
a set of processes and the sync in yellow can be treated as a
lightweight one in comparison to the former. Rather, with the
sync in red, each process must stop at this point until all other
processes reach this sync. The function MPI_Barrier is thus
applicable to this sync. And yet all the children must pause until
their leader reaches the sync in yellow. In short, the sync in
yellow synchronizes the leader with its children. If this sync is
also substituted by a barrier, the children will end up waiting for
each other, which implies unnecessary handshaking and leads
to severe degradation of performance. This sync occurs after a
barrier point in terms of our allgather and allreduce approaches,
where the expected wait time for the leaders should not be
long. Because in this situation the process skew is caused by the
fact that only the leaders participate in the collective operation.
Therefore, spinning in a loop [35] could be a simple as well as a
more efficient alternative synchronized method to the barrier.
To implement the spinning method, a shared variable (named
status) is defined, which can only be updated by the leader. The
children check the shared variable by spinning in a polling loop.
In other words, The children do not exit the loop until the update
to the shared variable meets an exit condition. This spinning
method is worthwhile only if the update to the shared variable
takes low clock cycles, otherwise performance issues will be
caused, since many cores waste time doing useless computation.
We thus simply use the increment (++) operator to modify the
shared variable. MPI establishes a restriction [1] on the con-
current access to the same shared memory location as it does
not support atomic operators (such as increment) on numeric
values requiring more than one byte. This restriction permits
polling on a shared memory location for a change from one
value to another value rather than comparing them. In our im-
plementation, the shared variable is contained within an MPI
shared memory window. Hence, the above restriction must
be considered to guarantee a definite outcome and prevent the

children from being stuck in an endless loop. The exit condition
is then expressed as ‘the shared variable == a certain value’,
rather than as ‘the shared variable >/< a certain value’. Note
that the routine MPI_Win_sync must be included by both the
leader and its children to achieve a processor-memory barrier

(see Section [3.2.2).

5. Evaluation

In this section, we compare the performance characteristics
of the hybrid MPI+MPI programs (including our collectives)
with the pure MPI and hybrid MPI+OpenMP programs (contain-
ing the standard MPI counterparts). Our studies were conducted
on two parallel clusters by measuring the latencies with a vary-
ing number of cores and different message sizes. We first briefly
describe our experimental testbed, then discuss the overheads
of the aforementioned one-off activities, and finally evaluate
the performance of the micro-benchmarks and application ker-
nels. These micro-benchmarks were developed according to the
OSU benchmarkE] and averaged over 10, 000 executions. The
kernel-level experiments consist of a computation with Scal-
able Universal Matrix Multiplication Algorithm (SUMMA), 2D
Poisson solver and Bayesian Probabilistic Matrix Factorization
(BPMF). We used the default MPI rank placement scheme —
block-style — to run all these benchmarks.

5.1. Experimental setup

We used a Cray XC40 and a NEC cluster for our experi-
ments:

1. Cray XC40 (aka. Hazel Hen): Each of the Hazel Hen
compute nodes has 24 Intel Haswell cores running at
2.5 GHz with 128 GB of DDR4 main memory. The cores
are organized as two sockets with 12 cores per socket
(each socket is seen as a NUMA domain). The nodes are
connected with dedicated Cray Aries network which has a
dragonfly topology. The GNU programming environment
6.0.5 and the version of cray-mpich/7.7.6 were applied to
this system.

2. NEC cluster (aka. Vulcan): Vulcan consists of several
compute nodes of different types. We used SandyBridge
(SB) and Haswell compute nodes. Each of the SB com-
pute node has in total 16 SB cores running at 2.6 GHz
with 64 GB DDR3 main memory (8 cores per NUMA
domain). The configuration of the Haswell compute node
is the same as above. The applied GNU compiler version
was 8.3.0. The nodes are connected via the InfiniBand
network. The version of Open MPI/4.0.1 was run.

5.2. Microbenchmark evaluation

All the microbenchmark evaluations were executed on both
of the two clusters and described in two aspects: the overhead
caused by our design (called implementation overhead below)
and the performance comparison between the standard MPI

2http://mvapich.cse.ohio—state.c:du/benchmarks/

collectives and their counterparts (our approaches) in the hybrid
MPI+MPI context. For brevity we mostly present the evaluation
results on Vulcan with Haswell compute nodes. But we will go
into details when the results on Hazel Hen are different from
those on Vulcan. The labels prefixed with Wrapper _Hy in the
following figures indicate our collectives, otherwise they refer
to the standard ones.

5.2.1. Implementation overhead

Table [2|displays the implementation overhead imposed by
our design on Vulcan with the leftmost columns listing the
primitives. Besides the common primitives of two-level com-
municator splitting (Communicator) and shared memory allo-
cation (Allocate), the primitives of Wrapper_Get_transtable
and Wrapper_Create Allgather_param are abbreviated as the
the Bcast_transtable and Allgather_param, respectively.
Their overheads are subject to the number of cores rather than
message sizes. Hence, their overheads over the number of cores
(16, 64, 256 and 1, 024) are given to investigate the scalability
of these wrapper functions.

#Cores

Primitives 16 64 256 1024

Mean | Mean | Mean Mean

(us) (us) (us) (us)
Common Communicator 64.8 1709 | 413.7 1098.7
Allocate 188.3 | 262.5 307.1 311.8
Bcast_transtable 0.7 9.2 95.9 1462.8

Allgather_param 0.3 2.9 7.1 19.9

Table 2: One-off overheads associated with the hybrid MPI+MPI programs
containing collective operations.

The rows of Communicator and Bcast_transtable show
that their overheads increase nearly proportionally to the number
of cores. The Allocate shows good scalability but its overhead
should still be analyzed in a hybrid MPI+MPI program. The
overhead in regard to our allgather approach — shown in the last
row — is almost negligible. The evaluation on Hazel Hen shew
similar implementation overheads as were shown on Vulcan, ex-
cept the overheads for Communicator and Bcast_transtable
were one magnitude fewer. All of these overheads can be treated
as one-offs, which means they will not repeatedly be added up to
the total elapsed time of a hybrid MPI+MPI program. Neverthe-
less, we need to check the effectiveness of applying the hybrid
MPI+MPI mechanism to an application by analyzing the oc-
currence frequency and accumulated overhead of the collective
operation. We should thus guarantee that the implementation
overheads are traded for the greater performance benefits of
our collectives’ counterparts (i.e., Wrapper_Hy_Allgather, Wrap-
per_Hy_Bcast and Wrapper_Hy_Allreduce).

5.2.2. Allgather comparison

Figure|12|shows the time performance comparison between
MPI_Allgather and Wrapper_Hy_Allgather on 2, 4, 8, 16 and
32 nodes for a fixed message length of 800 B. Here each of the
nodes was populated with 24 processes. The same number of

processes in different nodes leads to a regular allgather prob-
lem. We can observe the advantage of our allgather due to its
constant lower latencies. However, the study of the performance
characteristics of our proposed Wrapper_Hy_Allgather does
not merely discuss the regular problems. The MPI_Allgatherv
suffers a performance penalty, since its performance is deter-
mined by the maximum amount of data to be received by a
node [36]. The irregular problem, where the number of MPI
processes varies from node to node, is however a common-
place for our allgather approach. Hazel Hen is equipped with
non-power-of-two cores (24) nodes throughout the system, lead-
ing to irregularly-populated nodes when we request power-of-
two processes. Our previous work [20] confirms a compre-
hensive insight into the performance benefits of our allgather
approach for irregular as well as regular problem on Vulcan and
Hazel Hen clusters.

5.2.3. Broadcast comparison

The Open MPI/4.0.1 supports several implementation algo-
rithms for each of the collective communication operations. The
decision to switch between them depends on the size of commu-
nicator as well as the message size. More precisely, two message
size thresholds, 2 KB and ~ 362 KB, are used in the Open MPI
broadcast implementation. We decided upon defining small,
medium, and large message as < 2KB, > 2 KB and < 362 KB,
and > 362 KB for the purpose of this experiment.

Figure|13|compares the time performance of MPI_Bcast and
Wrapper_Hy_Bcast, with 16, 64, 256 and 1,024 cores on Vulcan.
We varied the numbers of the broadcast elements of double preci-
sion floating pointer (8 B) from 2° to 2!7 in this benchmark. For
brevity, we reported only the latency results for element counts
of 22, 2%, 214 and 2'®, which represent small (32 B), medium
(4 KB and 128 KB) and large messages (512 KB), respectively.
The current version of Wrapper_Hy_Bcast replaces the synchro-
nization point with a barrier operation. We observe that our
proposed broadcast approach offers significantly lower latency
than the standard one, except for the small message running on
64 cores. This is probably because the synchronization over-
head contributes more to the latency of broadcast than the data

10*
MPI_Allgather

Wrapper_Hy_Allgather

Time (us)
- -
o o
N w
1 1

Y
Q,
1

Y
o
©

#Nodes

Figure 12: The performance comparison between Wrapper_Hy_Allgather and
MPI_Allgather on Hazel Hen with varying number of nodes. The size of the
gathered message from every process is 800 B.

10* 10* -
MPI_Bcast
103 4| Wrapper_Hy_Bcast &
3
102 4 10
ERUEE)
@ 10° 1
E 10° 4
=
-1]
10 10" 1
-2] 16 cores
10 64 cores
10 4 s — 10° 4 . —
25 212 217 919 25 212 217 19

Message length (B) Message length (B)

10* + 10* +
10° 4 10° 4
102 4 102 4
10" 4 10" 4
1024 cores
256 cores
10° 4 . — 10 L . —
25 212 217 219 25 212 217 219

Message length (B) Message length (B)

Figure 13: The time performance comparison between Wrapper_Hy_Bcast and MPI_Bcast on Vulcan with varying numbers of cores and message lengths.

transfer overhead. The impact of the synchronization point on
the performance of our collectives will be discussed at length
in Section [5.2.4] On Hazel Hen, the standard broadcast was
always inferior to our approach. The first subplot shows the
results running on 16 cores, where all the MPI processes reside
on the same node and thus no inter-node data exchanges will be
involved. In this scenario, only an MPI_Barrier is called by the
on-node processes and as we expected, its latency almost keeps
constant, regardless of the message lengths. The remaining three
subplots show the latency results across different nodes, wherein
the curves go up steadily as the broadcast message size grows
except when the message size reaches 512 KB. Such exception
happens, since the broadcast algorithm is changed from split
binary tree [37] to pipeline.

5.2.4. Allreduce comparison

The intermediate message threshold (~9 KB) defined in
the Open MPI allreduce implementation roughly determines
whether the involved message in this experiment is small, medium
or large.

Figure 14 compares the time performance of MPI_Allreduce
and Wrapper_Hy_Allreduce on Vulcan, as either the message
length or the number of cores grows. We ran this experiment
with the increasing number of elements of double precision float-
ing point, where 22 29 215 and 2!7 were chosen as the represen-
tatives for the small (32 B), medium (4 KB) and large message
(256 KB and 1 MB). The version of Wrapper_Hy_Allreduce for
Figure|14|used method 1 to implement step 1 and replaced the
synchronization point in step 2 with a barrier call. Not surpris-
ingly, our allreduce approach fails to significantly outperform
the standard one for small messages on 16 cores. Otherwise,
speedups (range from 27.2% to 82.5%) of our allreduce over
the standard approach can be achieved anywhere. On Hazel
Hen, our allreduce performed worse than the standard approach
for small-size messages up to 2 KB on all the above number of
cores. The inferiority of our allreduce for small messages is
attributed to inadequate methods for step 1 or inefficient syn-
chronization implementation. The data transfer latency for small
messages is very low and thus strongly affected by the overhead
of the synchronization operation. However, in an application
the involved allreduce operation could be used with messages
centering on the sizes smaller than 1 KB [38]. This drives us
to evaluate the performance of the method 2 (for step 1) and

10

the spinning method (for step 2). Using method 2 instead will
slightly improve the performance of our approach on both Vul-
can and Hazel Hen only for a range of small message sizes. Then
again, adopting the spinning method can noticeably lessen the
latency of our allreduce, especially for small messages, on both
Vulcan and Hazel Hen. For large messages, we observed that our
allreduce latencies of both versions using barrier and spinning
are at the same level. This is because, for large messages the
synchronization time becomes insignificant and then the data
transfer overhead dominates the latency of our allreduce. There-
fore, the current version of Wrapper_Hy_Allreduce replaces the
synchronization point in step 2 with the spinning method and
chooses between method 1 and method 2 in terms of message
sizes for optimal performance.

Next, we develop two versions of our allreduce, one with
method 1 and the other with method 2, to determine the cut-
off value of the message size for switching from method 2 to
method 1 in the optimal version of our allreduce. Henceforth
the versions with method 1 and method 2 are abbreviated as Hy-
allreducel and Hy-allreduce?, respectively. Figure[I5]compares
the latency of Hy-allreducel and Hy-allreduce2 on 16 cores,
which all reside on the same node. This experiment ran with the
message sizes ranging from 8 B to 8 KB on Vulcan and Hazel
Hen. Besides, the performance curve for MPI_Allreduce is added
as baseline. Obviously, the cut-off value of the message size is
2 KB, which is marked with a vertical line. The Hy-allreduce2
performs slightly better before the cut-off point and becomes
worse when it is surpassed. Therefore, our allreduce is further
optimized to use method 2 and method 1 before and after the cut-
off point, respectively. Figure[I4]already shows us the scalability
of the initial version of our allreduce with the increasing number
of cores on Vulcan. It was therefore necessary to reevaluate the
scalability after the above tuning. The curve trends presented
in the new plots (omitted for brevity), that we obtained during
reevaluation, coincided well with those displayed in Figure[14]
except for the first subplot with 16 cores. Therefore, the results
reflected in Figure 14| are also partially fit for further reference
in Section[5.3.2] We then compute the performance gap between
our optimized allreduce and the standard approach on Hazel Hen
for 64, 256 and 1, 024 cores respectively. The results are shown
in Figure[T6] where the label MSG denotes the message length
in bytes. From this figure, we can observe that the standard

10* 10* 10% 10*

MPI_Allreduce
Wrapper_Hy_Allreduce
10° 4 10° 4 10° - 10° 4
N
2
gw2 E 102 4 102 - 102 4
g
10" 4 10" 4 10" - 10" 4
16 cores 64 cores 256 cores 1024 cores
10° ; — 10° 4 ; — 1004 ; — 10° & ; —
25 212 218 520 25 212 218 920 25 212 218 520 25 212 218 520
Message length (B) Message length (B) Message length (B) Message length (B)

Figure 14: The time performance comparison between Wrapper_Hy_Allreduce and MPI_Allreduce on Vulcan with varying numbers of cores and message lengths.

102 4
I\clPl_ﬁllrzduc;a - Hy-allreduce1 1 Performance gap IS
y-alireduce
Hy-allreduce2 —— 0.8
g ™ 0.6
210" 4 16 cores 2
E Hy-allreduce2 g o4 I
[= =
=
0.2
of M H _ m 1
10° 4 ; ; ; ; ; ;
22 24 26 25 210 212 214 -0.2
MSG 8 32 128 8 32 128 8 32 128
Message length (B) #Cores 64 #Cores 256 #Cores 1024
(a) Vulcan
102 4 Figure 16: The performance gap between MPI_Allreduce and the optimized
I\:lPLﬁllrzduc;a - Hy-allreduce1 Wrapper_Hy_Allreduce on Hazel Hen.
y-alireduce
Hy-allreduce2 —a—
s) 20 runs and those for BPMF were the average of 3 runs. All of
E 16 ..
f’g’m Hy-allreduce? cores them shew standard deviations of only a few percentages. For
" each benchmark we assessed the time performance and LOC of
the pure MPI, hybrid MPI+OpenMP and hybrid MPI+MPI im-
100 4 i ‘ ; ; : : plementations, where the former two utilized the standard MPI
2? 2* 28 2® 21 21 2™ primitives to implement the relevant collective operations and the

Message length (B)

last one utilized our wrapper primitives. Specifically, we simply
(b) Hazel Hen

used the loop-level parallelization in the hybrid MPI+OpenMP
implementations without putting great efforts into achieving
Figure 15: The time performance comparison of Hy-allreducel, Hy-allreduce2 optimal performance. It is to be noted that we only launched
and MPI_Allreduce for small messages on a single node (16 cores) on Vulcan one MPI process per node and then this MPI process spawned
and Hazel Hen. threads fully populating the available core resources on each

node when running them, regardless of whether they were run
allreduce still slightly outperforms our allreduce for 8B and ~ on Vulcan or Hazel Hen. A thread was pinned to a specific
32B. The negative performance gap at 128 B means that our core and this pinning went successively through available cores.

allreduce starts to perform better than the standard approach. To achieve this, the environment variables OMP_PLACES and

OMP_PROC_BIND, and the option of —-map-by needed to be cor-

5.3. Kernel-level benchmarks rectly set on Vulcan and the aprun option of -d was given to
In this section, we consider three benchmarks — SUMMA, specify the number of threads per MPI process on Hazel Hen.

2D Poisson solver and BPMF — that have different collective The total time shown in Figures[I7]to[T9 below is described

communication operations interweaving with real computations. ~ S the sum of computation overhead and relevant collective

The BPMF was executed on Hazel Hen with Haswell compute communication latency. This can facilitate us to intuitively com-
nodes (each contains 24 cores) while the SUMMA and 2D Pois- prehend the impacts of the latter on the fotal performance and
son solver were run on Vulcan with SB compute nodes, of which scalability of our benchmarks. The fotal here denotes the core
each contained power-of-two (16) cores. Each node was fully ~ Part including intensive computation and collective communica-
populated with MPI processes or OMP threads when the three ~ tion operations in each benchmark.

benchmarks were executed below. The experimental results for

SUMMA and 2D Poisson solver were the average of at least

11

5.3.1. SUMMA

SUMMA multiplies two dense matrices by using a scalable
universal algorithm [39]. In this kernel, two square matrices
of the same type (double-precision) and size are required as
input data and evenly decomposed into blocks, each of which
is assigned to an MPI process. This kernel is a typical example
of supporting multiple communicators in our design. Herein
we first logically laid out the MPI_COMM_WORLD into a two-
dimensional Cartesian grid and then created sub-communicators
for rows and columns. This kernel consists of multiple core
phases, whose elapsed time is our measurement target. In each
core phase, two broadcast operations on the row and column
sub-communicators are triggered due to the dependencies on the
blocks living on the other MPI processes.

We ran all the three implementations (pure MPI, MPI+MPI,
and MPI+OpenMP) on Vulcan using three matrices of size
1,024 1,024, 2,048 x 2,048 and 4, 096 x 4, 096, each with 1, 4
and 16 nodes, respectively. The corresponding number of cores
are indicated in parenthesis, shown in Figure The same is
true of Figures[I8and[T9] Figure[T7]demonstrates the elapsed
time of the core phases of the three SUMMA implementations,
where the broadcast message size is 512 KB. The comparison
results on Hazel Hen can be found in [20]]. We observe that the
hybrid MPI+OpenMP implementation indeed brings the mini-
mal broadcast overhead, but its computation overhead is greater
than the other two implementations. However, the broadcast
message size in the hybrid MPI+OpenMP implementation is
always larger than those in the other two implementations due
to the fewer number of MPI processes. This disparity can lead
to an exception — the hybrid MPI+OpenMP implementation
delivers larger broadcast overhead than the other two — on 16
nodes. More significantly, the hybrid MPI+MPI implementa-
tion consistently has the best performance of the three SUMMA
implementations. Further, the improvements (i.e., 3%, 6%, and
10%) of the hybrid MPI+MPI implementation over the pure MPI
one are explicitly given in this figure. This is not unexpected,
since the hybrid MPI+MPI implementation constantly delivers
less broadcast overhead in terms of the lower height of Bcast bar.
After revisiting the Figure[I3] it can be found that our broadcast
(Wrapper_Hy_Bcast) outperforms at 512 KB, from which we
can infer that the superiority of this hybrid MPI+MPI implemen-
tation over the pure MPI one is due to the usage of our broadcast
method. Compared with LOC for the pure MPI implementation,
the hybrid MPI+MPI implementation brings 6 additional LOC
for an increase of 2% in program size.

5.3.2. 2D Poisson solver

This kernel solves the 2D Poisson equation in an iterative
way. A square grid holding elements of floating point is initial-
ized and evenly decomposed by rows among the MPI processes.
In an iteration each MPI process first uses the Gauss-Seidel
method to do a five-point stencil computation on the current grid,
and then locally computes the maximum difference between the
updated and exact grid, and finally collectively calls the allre-
duce operation to obtain the global maximum difference among
all MPI processes. This iteration is repeated until the global
maximum difference is less than a predefined convergence value.

12

25

Bcast ———
Computation

1.5

Time (s)

0.5

Figure 17: The time performance comparison between different implementations
of SUMMA on Vulcan.

In this experiment, the Gauss-Seidel module contains data trans-
fers between adjacent processes as well as the five-point stencil
computation. The data transfers are performed using a pair of
MPI point-to-point routines (i.e, MPI_Send and MPI_Recv). The
computation proceeds in the form of two nested loops. We
started our timing at the beginning of iterations and stopped it
until the convergence is reached. We used three input grids of
size 256 x 256, 512 x 512 and 1,024 x 1,024, each running on
the number of nodes — 1, 4 and 16, respectively. In Figure [I8]
we discuss the performance of the 2D Poisson solver kernel. The
involved allreduce operation is always used with small message
of 8 B(aka. global maximum difference), regardless of the grid
size or node counts. The curves in Figures |14]and reveal
that the performance benefits of our allreduce over the standard
approach are marginal on the small system (i.e., smaller than 64
cores) and increase as the system size grows, for small messages
(i.e., smaller than 32 B). This, in turn, explains that on 16 nodes
the hybrid MPI+MPI implementation yields a 10% time per-
formance improvement over the pure MPI one, while it brings
smaller performance gains of 2% and 1% on 1 and 4 nodes, re-
spectively. We can also learn that these performance advantages
offered by the hybrid MPI+MPI implementation are credited to
the application of our allreduce. The hybrid MPI+MPI imple-
mentation adds 7 more additional LOC for a code size increase
of 1.6%, by comparison to the pure MPI one.

5.3.3. BPMF

The BPMF kernel [40, 41] predicts compound-on-target
activity in chemogenomics based on machine learning. The
number of iterations to be sampled was set to be 20 for this
experiment. Each iteration consists of two distinct sampling
regions on compounds and on-target activities followed by a
prediction. Both regions end with three calls to the regular all-
gather operation. In the three allgather operations, the sizes of
the gathered messages from every process are 80 000 B, 800 B
and 8 B, respectively. The linkE] provides more information

3https://github.com/Eancience/bpmf/

12
Allreduce ———
Computation
10
8
=
[}
g °
=
4
2
2%
0 — —
N

Figure 18: The time performance comparison between different implementations
of 2D Poisson solver on Vulcan.

about the BPMF code. The strong scaling performance of the
BPMF kernel with three different implementations is demon-
strated in Figure[T9] Here, the elapsed time of the sampled 20
iterations is evaluated. We used the chembl_20 as our input train-
ing dataset, which is a sparse matrix converted from ChEMBL
publicly available data. This kernel was run on different num-
bers of nodes, as shown in Figure[I9] It is obviously observed
that the hybrid MPI+MPI implementation is constantly superior
to the other two implementations. The hybrid MPI+OpenMP
implementation fails to be comparable to the other two, although
the performance gap between them shrinks as the system size
increases. The performance of both the pure MPI and hybrid
MPI+MPI implementation degrades when the node count in-
creases from 16 to 32, since the increased allgather overhead
overrides the decreased computation time. Still, it is true that
the performance of the pure MPI implementation deteriorates
more and the improvement of the hybrid MPI+MPI implemen-
tation over the pure MPI one increases to 10.3% on 32 nodes.
Figure[12]implies that the application of our allgather can take
credit for the performance advantage of the hybrid MPI+MPI
implementation over the pure MPI one. The hybrid MPI+MPI
implementation brings 12 extra LOC with an increase of less
than 0.1% in code size, compared with the pure MPI one.

6. Discussion and conclusion

This paper proposes an innovative design method of the col-
lective communication operations (such as broadcast, Allgather
and Allreduce) that adapts to the hybrid MPI+MPI context, and
then describes them by assuming the block-style MPI rank place-
ment. With the other MPI rank placement schemes, our previous
work [20] discusses the measures that can be taken to ensure
the validity of our method. Unlike the standard MPI collectives,
our collectives only maintain one copy of replicated data shared
by all on-node processes. In this way, the explicit on-node
inter-process data transfers are completely eliminated. However,
synchronization calls need to be adequately added to guarantee
the determinacy of the shared data among the on-node processes.

13

85.03 76.21 51.90 34.10

Allgather ——

||| | | |C.m.u.." |
%, %,

3

S

2!

a

2

Time (s)
@ 5

o

o

o

% 4., % % “ %, 4«,
% ", %% “% “o, s
#Node 2 (48) #Node 4 (96) #Node 8 (1 9/2) #Node 16 (384) #Node 32 (768)

Figure 19: The time performance comparison between different implementations
of BPMF on Hazel Hen.

The micro-benchmark evaluations present the overheads im-
posed by our implementation and reveal that our collectives are
on par with or outperform those in the pure MPI context on
Hazel Hen and Vulcan. The synchronization overhead and its
influence on the time performance of allreduce are also ana-
lyzed. The application kernel evaluations show the superiority
of the hybrid MPI+MPI implementations to the other two im-
plementations — pure MPI and hybrid MPI+OpenMP — in time
performance, which is credited to our collectives. Further, the
productivity gained from the hybrid MPI+MPI model can be
comparable to that gained from the pure MPI model in terms of
LOC, owing to the wrapper primitives that encapsulate all the
implementation details of our design from programmers.

For the evaluation results illustrated in Section[5.3} further ex-
planations are given. First, the speedups of the hybrid MPI+MPI
implementations are clearly quantified, from which we observe
that they are insignificant on a smaller number of nodes. This
does not necessarily mean that the performance advantage of
our approach increases as the system grows but instead the pro-
portion of time spent in the collectives is greater. Second, note
that the obtained performance gains are kept above the overall
implementation overhead (see Table[2)) in all the three hybrid
MPI+MPI implementations. Otherwise, the performance bene-
fits caused by our collectives are pointless.

Our design method lacks in the distinction between the intra-
and inter-NUMA data accesses, since all the children — no mat-
ter they and their leader are located in the same NUMA domain
or not — are limited to access the shared data allocated in the
leader’s memory space. To enable NUMA awareness, the most
intuitive solution is to elect a leader in each NUMA domain at
the price of maintaining a copy of replicated data in it. This
comes with extra memory copes and thus needs to be further
investigation. Note that our collectives may not apply to the ap-
plications using the master/slave pattern, where the master needs
to broadcast/gather a large amount of data to/from its slaves.
This is due to that the allocation of the MPI shared memory
window fails when the total amount of shared memory required
by on-node processes exceeds a limit of size determined by

MPI implementation. E.g., with Open MPI, the available shared
memory space on a Haswell compute node (see Section[5.)) is
in the order of 63 GB. Therefore, the use of our collectives is
limited, but to a lesser extent.

7. Acknowledgments

The authors would like to thank Eric Gedenk for proofread-

ing the article and Tom Vander Aa for offering the pure MPI
implementation of the BPMF benchmark. The comments made
by the editor and reviewers are deeply appreciated. Part of this
work was supported by the European Community’s Horizon
2020 POP project [grant numbers 676553, 824080].

References

(1]

[2]

[3]

(4]

[3]

(6]

[7]
[8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

Message Passing Interface Forum, MPI: A message-passing inter-
face standard, version 3.1, http://mpi-forum.org/docs/mpi-3.1/
mpi31-report.pdf, 2015 (accessed 13 July 2020).

W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, K. Warren., Intro-
duction to UPC and language specification, Tech. Rep. CCS-TR-99-157,
IDA Center for Computing Sciences (1999).

S. Poole, O. Hernandez, J. Kuehn, G. Shipman, A. Curtis, K. Feind, Open-
SHMEM - Toward a unified RMA model, in: D. Padua (Ed.), Encyclopedia
of Parallel Computing, Springer US, 2011, pp. 1379-1391.

L. Dagum, R. Menon, Open MP: An industry-standard API for shared-
memory programming, IEEE Comput Sci Eng 5 (1998) 46-55. |doi:
10.1109/99.660313.

D. E. Bernholdt, S. Boehm, G. Bosilca, M. Gorentla Venkata, R. E. Grant,
T. Naughton, H. P. Pritchard, M. Schulz, G. R. Vallee, A survey of MPI us-
age in the US exascale computing project, Concurrency and Computation:
Practice and Experience (2017) e4851.

F. Cappello, D. Etiemble, MPI versus MPI+ OpenMP on IBM SP for the
NAS benchmarks, in: Proceedings of the 2000 ACM/IEEE conference on
Supercomputing, IEEE Computer Society, 2000, p. 12.

INTERTWinE, Best practice guide to hybrid MPI + OpenMP program-
ming, Tech. rep. (April 2017).

G. Krawezik, F. Cappello, Performance comparison of MPI and OpenMP
on shared memory multiprocessors, Concurrency and Computation: Prac-
tice and Experience 18 (1) (2006) 29-61.

R. Rabenseifner, G. Hager, G. Jost, Hybrid MPI/OpenMP parallel pro-
gramming on clusters of multi-core SMP nodes, in: D. E. Baz, F. Spies,
T. Gross (Eds.), PDP, IEEE Computer Society, 2009, pp. 427—436.

N. Drosinos, N. Koziris, Performance comparison of pure MPI vs hybrid
MPI-OpenMP parallelization models on SMP clusters, in: IPDPS, IEEE
Computer Society, 2004.

J. Dinan, P. Balaji, E. Lusk, P. Sadayappan, R. Thakur, Hybrid parallel
programming with MPI and unified parallel C, in: Proceedings of the 7th
ACM international conference on Computing frontiers, ACM, 2010, pp.
177-186.

J. Jose, K. Kandalla, M. Luo, D. K. Panda, Supporting hybrid MPI and
OpenSHMEM over InfiniBand: Design and performance evaluation, in:
2012 41st International Conference on Parallel Processing, IEEE, 2012,
pp. 219-228.

T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell,
W. Gropp, V. Kale, R. Thakur, MPI+ MPI: A new hybrid approach to
parallel programming with MPI plus shared memory, Computing 95 (12)
(2013) 1121-1136.

M. Brinskiy, M. Lubin, An Introduction to MPI-3 Shared Memory Pro-
gramming, Tech. rep. (November 2017).

H. Zhou, K. Idrees, J. Gracia, Leveraging MPI-3 shared-memory exten-
sions for efficient PGAS runtime systems, in: J. L. Tréff, S. Hunold, F. Ver-
saci (Eds.), Euro-Par, Vol. 9233 of Lecture Notes in Computer Science,
Springer, 2015, pp. 373-384.

T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. W. Barrett, R. Brightwell,
W. Gropp, V. Kale, R. Thakur, Leveraging MPI’s one-sided communication
interface for shared-memory programming, in: J. L. Triff, S. Benkner,

14

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[36]

[37]
[38]

[39]

[40]

[41]

J. J. Dongarra (Eds.), EuroMPI, Vol. 7490 of Lecture Notes in Computer
Science, Springer, 2012, pp. 132-141.

D. Karlbom, A performance evaluation of MPI shared memory program-
ming (2016).

NASA, NASA parallel benchmarks, https://www.nas.nasa.gov/
publications/npb.html, 2019 (accessed 13 July 2020).

H. Zhou, Y. Mhedheb, K. Idrees, C. W. Glass, J. Gracia, K. Fiirlinger,
Dart-mpi: An mpi-based implementation of a pgas runtime system, in:
Proceedings of the 8th International Conference on Partitioned Global
Address Space Programming Models, 2014, pp. 1-11.

H. Zhou, J. Gracia, R. Schneider, MPI collectives for multi-core clus-
ters: Optimized performance of the hybrid MPI+ MPI parallel codes, in:
Proceedings of the 48th International Conference on Parallel Processing:
Workshops, ACM, 2019, p. 18.

R. Thakur, R. Rabenseifner, W. Gropp, Optimization of collective commu-
nication operations in MPICH, The International Journal of High Perfor-
mance Computing Applications 19 (1) (2005) 49-66.

J. Pjesivac-Grbovi¢, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel,
J.J. Dongarra, Performance analysis of mpi collective operations, Cluster
Computing 10 (2) (2007) 127-143.

MPICH, https://www.mpich.org/, 2020 (accessed 13 July 2020).
Intel MPI, https://software.intel.com/en-us/mpi-library,
2020 (accessed 13 July 2020).

Open MPI: Open source high performance computing, https://www!
open-mpi.org/, 2020 (accessed 13 July 2020).

K. Hasanov, Hierarchical approach to optimization of MPI collective com-
munication algorithms, Ph.D. thesis, University College Dublin, Ireland
(2015).

H. Zhu, D. Goodell, W. Gropp, R. Thakur, Hierarchical collectives in
MPICH2, in: European Parallel Virtual Machine/Message Passing Inter-
face Users Group Meeting, Springer, 2009, pp. 325-326.

J. L. Tréff, A. Rougier, MPI collectives and datatypes for hierarchical
all-to-all communication, in: EuroMPI/ASIA, ACM, 2014, p. 27.

R. L. Graham, G. M. Shipman, MPI support for multi-core architec-
tures: Optimized shared memory collectives, in: A. L. Lastovetsky, M. T.
Kechadi, J. Dongarra (Eds.), PVM/MPI, Vol. 5205 of Lecture Notes in
Computer Science, Springer, 2008, pp. 130-140.

A. R. Mamidala, R. Kumar, D. De, D. K. Panda, MPI collectives on
modern multicore clusters: Performance optimizations and communication
characteristics., in: CCGRID, IEEE Computer Society, 2008, pp. 130-137.
S. Li, T. Hoefler, M. Snir, NUMA-aware shared-memory collective com-
munication for MPI, in: M. Parashar, J. B. Weissman, D. H. J. Epema,
R. J. O. Figueiredo (Eds.), HPDC, ACM, 2013, pp. 85-96.

A. R. Mamidala, A. Vishnu, D. K. Panda, Efficient shared memory and
RDMA based design for MPI_Allgather over infiniband, in: European
Parallel Virtual Machine/Message Passing Interface Users Group Meeting,
Springer, 2006, pp. 66-75.

Y. Qian, A. Afsahi, RDMA-based and SMP-aware multi-port all-gather on
multi-rail QsNet" SMP clusters, in: ICPP, IEEE, 2007, p. 48.

A. Mahéo, P. Carribault, M. Pérache, W. Jalby, Optimizing collective
operations in hybrid applications, in: J. Dongarra, Y. Ishikawa, A. Hori
(Eds.), EuroMPI/ASIA, ACM, 2014, p. 121.

W. Xiong, S. Park, J. Zhang, Y. Zhou, Z. Ma, Ad hoc synchronization
considered harmful, in: OSDI, Vol. 10, 2010, pp. 163-176.

J. L. Traff, Relationships between regular and irregular collective com-
munication operations on clustered multiprocessors, Parallel Processing
Letters 19 (01) (2009) 85-96.

J. Pjesivac-Grbovic, Towards automatic and adaptive optimizations of mpi
collective operations (2007).

H. A. Council, HYCOM performance benchmark and profiling, Tech. rep.
(January 2010).

R. A. Van de Geijn, J. Watts, SUMMA: Scalable universal matrix multi-
plication algorithm, Concurrency - Practice and Experience 9 (4) (1997)
255-274.

R. Salakhutdinov, A. Mnih, Bayesian probabilistic matrix factorization
using Markov chain Monte Carlo, in: Proceedings of the International
Conference on Machine Learning, Vol. 25, 2008.

T. V. Aa, I. Chakroun, T. Haber, Distributed Bayesian probabilistic matrix
factorization, in: CLUSTER, IEEE Computer Society, 2016, pp. 346-349.

http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
https://www.nas.nasa.gov/publications/npb.html
https://www.nas.nasa.gov/publications/npb.html
https://www.mpich.org/
https://software.intel.com/en-us/mpi-library
https://www.open-mpi.org/
https://www.open-mpi.org/

	1 Introduction
	2 Related work
	3 MPI+OpenMP versus MPI+MPI
	3.1 MPI+OpenMP
	3.2 MPI+MPI
	3.2.1 Two level of communicator splitting
	3.2.2 MPI shared memory window
	3.2.3 Workflow

	4 Implementation and practices
	4.1 Common wrapper primitives
	4.2 Allgather
	4.3 Broadcast
	4.4 Allreduce
	4.5 Synchronization consideration

	5 Evaluation
	5.1 Experimental setup
	5.2 Microbenchmark evaluation
	5.2.1 Implementation overhead
	5.2.2 Allgather comparison
	5.2.3 Broadcast comparison
	5.2.4 Allreduce comparison

	5.3 Kernel-level benchmarks
	5.3.1 SUMMA
	5.3.2 2D Poisson solver
	5.3.3 BPMF

	6 Discussion and conclusion
	7 Acknowledgments

