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Abstract

We present two scalable model-based clustering systems based on a Gaussian mix-
ture model with independent attributes within clusters. They first summarize data
into sub-clusters, and then generate Gaussian mixtures from their clustering features
using a new algorithm — EMACF. EMACF approximates the aggregate behavior
of each sub-cluster of data items in the Gaussian mixture model. It provably con-
verges. The experiments show that our clustering systems run one or two orders of

magnitude faster than the traditional EM algorithm with few loss of accuracy.
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1 Introduction

With the explosive growth of data amassed from business, scientific and engi-
neering disciplines, scalable cluster analysis and other data mining function-
alities play a more and more important role [1-3]. Among many clustering
techniques [1,4-6], model-based clustering techniques have attracted much re-
search interest [2,7-11]. They can identify clusters of a variety of shapes and
can handle complicated data sets with different kinds of attributes [12,13].
They have solid probabilistic foundations [14-17]. They have also been success-
fully applied to various real-life applications, such as image segmentation [7],
microarray gene expression data clustering [10], Web navigation pattern recog-
nition [11], and OLAP aggregate query optimization [18]. This paper concen-
trates on scalable cluster analysis based on a Gaussian mixture model with

independent attributes within each cluster.

Expectation-Maximization (EM) is an iterative algorithm for finding a Max-
imum Likelihood Estimate (MLE) of a mixture model. It normally generates
more accurate clustering results than hierarchical model-based clustering [19]
and the incremental EM algorithm [3,17]. Though some attempts have been
made to speed up the algorithm [12,16,17], EM and its extensions are still
computationally expensive for large data sets, especially when they are too
large to be stored in main memory. In particular, the lazy EM algorithm [20]
evaluates the significance of each data item at scheduled iterations and then
proceeds for several iterations actively using only the significant ones. How-

ever, its speedup factor is less than three. Moore [21] first used a KD-tree
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to cache sufficient statistics of interesting regions of data, and then applied
EM to the KD-tree nodes. His algorithm handles low-dimensional data sets
efficiently, but its performance degenerates dramatically as the dimensionality
increases [21]. The Scalable EM (SEM) algorithm [3] uses the Extended EM
(ExEM) algorithm to identify compressible data regions, and then only retains
their sufficient statistics in order to load next batch of data. It needs to invoke

ExEM many times, and hence its speedup factor is less than 10 [3].

In this paper, we present two scalable model-based clustering systems that can
run one or two orders of magnitude faster than the traditional EM algorithm
for the Gaussian mixture model. Moreover, there is little or no sacrifice in the
clustering quality. They, using similar computational resources, can also gen-
erate significantly more accurate clustering results than the existing scalable
model-based clustering systems. Their basic idea is to incrementally summa-
rize a data set into sub-clusters first, and then generate a mixture estimate
from their clustering features directly by a specifically designed EM algorithm
— EMACF (EM Algorithm for Clustering Features). EMACF works on the
clustering features of sub-clusters. It is associated with a pseudo mixture model
that approximates the aggregate behavior of each sub-cluster of data items in
the Gaussian mixture model. Thus, it can efficiently generate good estimates

of the Gaussian mixture model from the clustering features.

The rest of the paper is organized as follows. Two clustering systems, gEMACF
and bEMACF, are proposed in Section 2. In Section 3, two data summarization
procedures are presented to generate clustering features. In Section 4, EMACF
is derived and analyzed. Section 5 describes the experimental setup and results,

followed by discussion and conclusion in Section 6.



2 Two Scalable Model-based Clustering Systems

Given a data set X = {x3,---,xy} of size N, model-based clustering tech-
niques assume that each data item x; = [xy;,- -+, xps]T (€ RP) is drawn from

a K-component mixture model ®:

p(Xz‘|‘I)) = ];pk¢(xz‘|9k)- (1>

Here, ¢(x;|0k) is a component density function with parameters 0, and it
represents a cluster, and py, is the mixing proportion of the cluster (0 < p, < 1
fork=1,---, K,and kf:lpk = 1). Given @, a crisp clustering is got by assigning
a data item x; to clust;r k where its posterior probability reaches maximum,

ie., k= argmax {pio(xi[6r) -

A Gaussian mixture model follows Eq.(1) but each function ¢(x;|0) indicates
a multivariate Gaussian distribution. Gaussian mixture models can effectively
approximate any distribution [3]. They have successfully been used in a vari-
ety of real-life applications [7,10,11,13,18]. Thus, research efforts on Gaussian
mixture models are theoretically and practically important. In this paper, we
concentrate on a parsimonious Gaussian mixture model where, conditional on

clusters, attributes are independent [12]. Its component density function is
P

2041 .
o(x;|0k) = 11 & where parameters 6}, consists of a mean vector
d=1 (2moar)2
T . T
e = [k, -+, pk) and a variance vector oy = [0k, -+ ,0pk] . Two data

sets generated according to the Gaussian mixture model are illustrated in

Fig. 1. Given the number of clusters K, EM for the Gaussian mixture model
N

estimates its parameters to maximize log-likelihood L(®) = 3 logp(x;|P)
i=1

iteratively. It alternates between the following two steps.

(1) E-Step: Given the model parameters at iteration j, compute the member-
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(2) M-step: Given tl(i), update the mixture model parameters for k£ = 1,-- -,

K from the N data items:
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where ® is the array multiplication operation, i.e., (A ® B);; is a;;b;;.

EM can generate very accurate results and is widely used in practice [12,16,18].
But it needs to scan the whole data set for each iteration, which prohibits it

from handling large databases [2,3].

There are three strategies to scale-up iterative clustering algorithms such as
EM [22]. The first is to analyze random samples from the data set. This is easy
to achieve, but often performs badly due to sampling biases [1,23]. The second
strategy is to analyze weighted samples. The weighted (pseudo) data items
emulate the local distribution of the original data set [6,23]. This strategy
requires a slight modification to traditional clustering techniques. However,
as shown in Section 5, when this is used to scale-up model-based clustering,
the performance depends on the sampling procedure and often degenerates
greatly. The third one is to construct summary statistics of the large data set

on which to base the desired analysis [3,4]. It usually involves several phases.



Our scalable model-based clustering framework falls into the third strategy.
It is motivated by the following observations. In a scalable clustering system,
we usually handle a sub-cluster of similar data items as an object in order to
reduce computational resources. Within model-based clustering, a component
density function essentially determines clustering results. Thus, for a sub-
cluster of similar data items, a new pseudo component density function should
be introduced so as to remedy the possible loss of clustering quality caused
by handling trivially the data items as their mean vector. Such a loss often
happens in the second scaling-up strategy. A new mixture model, defined over
the summary statistics, can approximate the aggregate behavior of each sub-
cluster of data items in the original one. Then, its associated model-based
clustering algorithm, e.g., one derived from the general EM algorithm [16],
effectively generates a good estimate of the original mixture model from the
summary statistics. Thus, as illustrated in Fig. 2, our framework consists of

the following two phases.

(1) Data Summarization: A large data set is partitioned into mutually ex-
clusive sub-clusters, and only summary statistics of sub-clusters are re-
tained in the main memory;

(2) In-Memory Model-based Cluster Analysis: A mixture is generated
from the summary statistics directly by the new EM algorithm associated

with the pseudo mixture model.

We introduce a clustering feature to serve as the summary statistics of a sub-
cluster. The clustering feature includes variance information because the parsi-
monious Gaussian distribution functions embody variance vectors. For the m!®
sub-cluster, its clustering feature is a triplet s,, = {nm, Vm, Ym} (m =1, -,

M), where n,, is the number of data items in the m!* sub-cluster, v, =



Vims s Vom]' = ﬁ > Xiy and Y = [Yim, -+ 5 Yom] ' = ﬁ 2. X ®X;.
x;€CFy, x;€CFyp,
Here x; € CF,, indicates x; belongs to the m!* sub-cluster. Similar to the
one in [4], the clustering feature contains the zeroth, first, and second mo-
ments of the sub-cluster [1]. It has a simple additivity property [4,22]. This
facilitates our incremental data summarization procedures. A grid-based and
the BIRCH’s data summarization procedures will be outlined in Section 3. In
Section 4, we will derive EMACF which generates Gaussian mixtures from
clustering features directly. Combining EMACF with these two data summa-

rization procedures, we then can establish two scalable model-based clustering

systems, called gEMACF and bEMACF respectively.

3 Data Summarization Procedures

The data summarization procedure sums up similar data items into clustering
features according to a definition of sub-clusters. This section outlines two

possible data summarization procedures.

The grid-based data summarization procedure partitions a data set by impos-
ing a multidimensional grid structure in the data space, and then incrementally
sums up the data items within a cell into its clustering feature. That is, the
data items within a cell form a sub-cluster. For simplicity, each attribute may
be partitioned into several equal-width segments by grids. Thus, each cell has
the same width in each attribute and has the same volume, as exemplified
in Fig. 3(a). To operate within the given main memory, we only store clus-
tering features for the non-empty cells in a Clustering Feature (CF) array:
CF-array. This CF-array has a fixed number of entries, M, according to the

given amount of main memory. When a new data item is input, we calculate



in which cell it is located. Then we efficiently search for its associated entry in
the CF-array by using a hash function [22]. If a corresponding entry is found,
its clustering feature is updated to absorb the data item. Otherwise, a new

entry will be allocated to store the clustering feature of the cell.

Our grid-based data summarization procedure adaptively determines the cell
width to make better use of the given main memory. At the beginning, the
cell widths are initialized to some reasonable values. If the cell widths are very
small, then the number of non-empty cells may be greater than the number of
entries in the CF-array. When the entries in the CF-array are used up, the grid-
based data summarization procedure increases the cell widths to squash all
of the clustering features into the given main memory. During the adaptation
procedure, the CF-array is rebuilt. To avoid reading through the whole data
set again, the rebuilding procedure merges every two adjacent cells into one
along the dimension with the smallest width. Hence, a new clustering feature

is directly calculated from the two old ones due to the additivity property.

If Euclidean distance is used to define the similarity among data items within
sub-clusters, we can employ existing distance-based clustering techniques [1],
such as BIRCH [4], to generate sub-clusters from a data set. BIRCH uses the
clustering feature and the CF-tree to summarize cluster representations [4]. It
scans the data set to build an initial in-memory CF-tree, which can be viewed
as a multilevel compression of the data set that tries to preserve its inherent
clustering structure. The CF-tree is built dynamically as data items are in-
put. A data item is inserted into the closest leaf entry. If, after insertion, the
diameter of the sub-cluster stored in the leaf node is greater than a threshold
value, then the leaf node and possibly other nodes are split. After inserting

a new data item, its information is passed toward the root of the tree. The



size of the CF-tree can be changed by modifying the threshold. If the amount
of memory required for storing the CF-tree is greater than the given amount
of main memory, then a larger threshold value is specified and the CF-tree is
rebuilt. The rebuilding process is conducted without reading the data items
again. This is similar to the insertion and node split in the construction of
BT-trees. Therefore, for building the CF-tree, data items have to be read only
once. Fig. 3(b) plots the clustering features generated by the BIRCH’s data
summarization procedure from the data set shown in Fig. 1(b). Once all data
items are stored in the CF-tree, BIRCH applies a hierarchical agglomerative
clustering algorithm to cluster the leaf nodes of the CF-tree [4]. If the clusters
are not spherical in shape, for example, the clusters in Fig. 1(b), BIRCH does
not perform well because it uses the notion of radius or diameter to control

the boundary of a cluster [1,3,22].

Both the BIRCH’s and the grid-based data summarization procedures at-
tempt to generate good clustering features using the restricted computational
resources. Their computation complexity is linear with the number of data
items, but the storage requirement is linear with the number of sub-clusters.
They both read through the data set once. However, the former uses a tree
indexing, while the latter employs a hash indexing. The former makes bet-
ter use of memory, while the latter is simpler to implement and manipulate,

especially for low-dimensional data sets.

4 Derivation and Analysis of EMACF

Before deriving EMACF for getting good estimates of the Gaussian mixture

model, we establish a new pseudo component density function. It is only based



on to which sub-cluster a data item x; belongs since individual data are inac-
cessible at this stage. We also embed the sub-cluster variance into our pseudo
density function so as to pay more attention to denser data area as Gaussian

distribution does.

Definition 1 For a data item x; in the m'* sub-cluster, its probability in the

pseudo component density function ¢ with parameters 0y = {jx, op} is

D exp[— (Vdm—l'gm)'i'(l/dm—udk)Z]

b(x; € CFplfi) £ ¥(smlbe) = [ 204 . (6)

d=1 (2m)203,

In this pseudo density function, the dispersion of a sub-cluster influences the
probability of its associated data items. The smaller (V4 — v3,,) is, the larger
the probability is. In other words, the data within a denser sub-cluster has
a relatively larger probability, and vice versa. This point complies with the
Gaussian mixture model which pays more attention to denser data areas.
This pseudo density function is equivalent to a Gaussian density function when
Yam — V3, = 0, i.e., the sub-cluster variance is zero. However, it is not a genuine
density function in general since its integral is less than 1.0. With this function,
we can uniformly treat data items within each sub-cluster without accessing
data items, and then reduce much computation time and main memory for
large data sets. Furthermore, we shall see that its associated EM algorithm,
EMACF, can approximate the aggregate behavior of each sub-cluster. Hence,

the pseudo density function is practicable.

With the pseudo density function in Eq.(6), a K-component pseudo mixture

model ¥ for each data item x;(€ CF,,) can be defined as

K
p(xi € CFulW) £ p(s,|W) = 37 pith (St o). (7)
k=1

10



Its log-likelihood that indicates the fitness of the mixture model is defined as
N M

1) = o | [T 1) = 3 oot 1) ®)

Here N and M are the numbers of data items and sub-clusters respectively.

The pseudo mixture model ¥ has the same parameters as the Gaussian mix-

ture model ®. In addition, this model can approximate the aggregate behav-

ior of a sub-cluster of data items in the Gaussian mixture model. Thus, good

Gaussian mixtures ® can be got by finding MLEs of W.

We now derive EMACF to get MLEs of the pseudo mixture model W. The
derivation is based on the general EM algorithm by interpreting cluster la-
bels as ‘missing’ values. If x; is in the k' cluster, then its indicator vector
z; = [z14, - ,zKi]T equals 0 except that z; equals one. Then the complete

data vector is y; = {XT ZT} . Tts likelihood is g(y;|¥) = p(x;|zs, ¥)p(z;|¥) =

7 )7

K
(%:]0)pe = 11 [(x5]0k)pr] ™. This holds because z;; is either 0 or 1. For the

N data items, we get the likelihood for the complete data set

N K

g(yb T ’yN‘\Ij) = HH [ (szk pk

i=1k=1

K
H (SO )pe] ™™ . (9)

|
HE§

It holds because that, in the pseudo mixture model ¥, any x; in the m!" sub-
cluster has the same indicator vector denoted by z,, = [Zim, - ,sz]T. In
the E-step, we compute the expectation of the complete data log-likelihood,
Q(¥; ¥)) conditional on the observed data {x} (which is replaced by {s}

below) and the current parameter value W),

Q(¥; ¥Y)) = Eflog <{y}|\v> {x}, 9] = B [log g({y }|W) |{s}, ¥ (10)

= 5 3 15199 o+ 1 (o o)

m= k=1
& " 130 [log i+ log 6 (s |2 0] (1)
m=1 k=1

11



The random variable Zj,,, corresponds to Zj,,. The membership probability of

x;(€ CF,,) for the k™ component, r9) s got according to Bayes’ rule:

mk>
6 (s i, 01)

1 2 BZinl{s}, 99 = pyo) (Zim = 1/{s}) = ) ) ()
lgpl] ¢ (Sm ‘,ulj aalj )

. (12)

In the M-step, we maximize Q(¥; W) in Eq.(11) with respect to W. To re-
estimate the mixing proportion pi, we introduce a Lagrange multiplier A to

K , K
handle the constraint Zpk = 1. Differentiating Q(¥; ¥0)) — X (Zpk — 1)
k=1

with respect to pg, we get Z mnt ok —A=0for k=1,--, K. Summing up

these K equations together, one has A = N, and then gets the re-estimate

©)

M
of pr, Dp = % Zlnmrmk. For the other parameters, their partial derivatives
m=

0log Y(sm|pk,0k) _ Vam—pdk and

on the pseudo component density function are

Optar Tak
alogw(as:;,lfhak) = de_Qléfidmwﬁ’“ - ﬁ Differentiating Q(¥; W) with re-
Spect to pgr and equating the partial differential to zero gives %ﬁ:j)) =
Z ”mrmkaik( am — Hax) = 0. This gives the re-estimate of pge as fige =
Z ”m’”fnLVdm
m=——— So, the new cluster center fi; is a weighted average of the sub-

5% )
m=1

cluster means. Similarly, differentiating Q(¥; ")) with respect to o4 and

equating it to zero leads to

M .
> Ny fﬁq (Yam — 2ftakVam + 13,)
Odr — m=1 . (13)

Z nmrm%c

It is worth pointing out that this re-estimate approximates the aggregate be-
havior of a sub-cluster of data items in the Gaussian mixture model. Each x;
in the m' sub-cluster is similar to one another, and then has a similar t(i) in

Egs.(2)-(5). We approximate these tzk with Y k, in Eq.(5), and see the aggre-

gate behavior of the sub-cluster in the Gaussian mixture model as follows,

12
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(j+1) _ m=1x,€CFp, ~ m=1x,ECF,
Odk = M : ~ M ,
> ox td > ox o
m=1x;,ECF, ! m=1x,ECF,, m
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P e R AR (AN

_ — . (14
> nmrnjzk
m=1
Thus, the re-estimate of EMACF approximates the re-estimate in the tradi-
tional EM algorithm for the Gaussian mixture model. We summarize EMACF

in terms of vectors as follows.

1) Imitialization: Initialize the parameters in the mixture model, p(j (>0 ,
k
p9 and 09 (> 0) (k=1,---, K), and set the current iteration j to 0.

(2) E-step: Given the mixture model parameters W), compute the member-

ship probability r for each sub-cluster:

7“7(,]136 _ p/(cj)@b (Sm ’uk 7012])) ‘ (15)

$ P (s [u?, o)

(3) M-step: Given 7"7(71343, update the mixture model parameters fork =1,--- , K:

]+1 Z nmrmlw (16)
M . M
41 _ > N > o) Vi
J+1 m=1 _ m=
M M () - N. G+1) (17)
2 nmrrr]zk Pk
m=1
M .
J,E;Hl) =m=l . : (18)
N ~p;(f+1)

(4) Termination: If |L(WTUTD) — L(WW)| > ¢|L(TW)], set j to j + 1 and go

to (2).

Though EMACF embodies the variance information explicitly in its E-step

and M-step, it involves only several equations (Eqgs.(15)-(18)) and is still easy

13



for implementation. Furthermore, it can surely terminate as supported by the

following theorem.

Theorem 2 If yg, —v3. >(>0ford=1,---,D andm=1,---, M, then

the log-likelihood L(V) for EMACE converges monotonically to a value L(W*).

Proof: Since {p;} and {04} are initialized with values larger than zero, they

will always keep positive according to Eqs.(15)-(18). In particular, according

M) G+ <)

52 nrh| Can) (ran )| 2 marlle

m=1 i > m=1 _ — > 0
Np;ij+1) — N'P](C]+l> C

to Eq.(18), o U™ =
Then, the algorithm is feasible. We now prove that the log-likelihood value
does not decrease. As we can see in the derivation procedure, the Q)-function
value doesn’t decrease, i.e., Q(WU+D: dU)) > Q(¥W); 1)), Moreover, EMACF
is derived from the general EM algorithm, and then EMACF is its instance.
Thus, the fact that the Q-function value does not decrease implies the log-
likelihood value does not decrease, i.e., L(¥UtD) > L(¥W) (the proof see,

c.g., [16, P83)).

Then we prove the log-likelihood of EMACEF has an upper bound. As shown

above, 0((1],2 > ( > 0 for any 7, thus we have v (xi e CF,, ‘0,(5)) =1 (Sm ‘0,(3)) <

, M K . ,
1 . S (271-4')_% . Hence’ L (\I{(])) — Z Nom log [Z pé]),lp (Sm ‘9}2]) )]

s

IN

M K . .
> g, log [Z pY (27r§)_§] = glogﬁ is bounded. Thus, L(¥¥)) con-
m=1 k=1

verges monotonically to a value L(¥*). It completes the proof. |

The prerequisite of Theorem 2 is easily satisfied. With the Jensen’s inequal-

2
ity [16], Yam =5 > ad; > [L > xdi] = v3 .. The inequality strictly

x;ECFp,

holds if there exist x; and x; in the m!" sub-cluster having x4 # Zgq5. In other
words, if, for any m and d, there exist two different data items in the m®

sub-cluster having the different d* elements, then the prerequisite is satisfied.

14



Let us have a brief discussion of the complexity of EMACF. In the E-step,
()

mk*

o

For each 7,

it needs to calculate M x K membership probabilities r
calculates the probability of each sub-cluster in each pseudo component dis-
tribution according to Eq.(6). It involves O(D) arithmetic operations. Thus
the E-step takes O(M K D) operations. Similarly, the M-step of EMACF takes
O(MKD) operations. In a word, the computational complexity of EMACF
is O(MKDI) where I is the number of iterations. The maximal number of
iterations is usually set as a constant [20], say, 500 in this paper. The total
storage requirement of EMACF is 2M D+ M K +2K D+ K + M floating point
numbers. Thus, the computation and the storage complexity of EMACF are

linear with respect to the number of sub-clusters M, the number of clusters

K, and the data dimensionality D.

5 Experimental Results

5.1 Methodology and Synthetic Data

To study the performance of our proposed systems, gEMACF and bEMACF,

we compare them with the following model-based clustering systems.

The iEM algorithm, which is the traditional EM algorithm for the Gaus-
sian mixture model as described in Section 2 and ‘i’ indicates that the data
attributes are statistically independent within each cluster.

The sampling iEM system, which is iEM working on, if not specified, 5%
random samples, and is referred to as sampiEM hereinafter.

The gEMAWS and bEMAWS systems, which are EMAWS (EM Algo-

rithm for Weighted Samples) working on the clustering features generated

15



by the grid-based and the BIRCH’s data summarization procedures respec-
tively, but without considering the variance information [22]. EMAWS can
be viewed as iEM handling each data item in the same way as the mean vec-
tor of its associated sub-cluster. These mean vectors, with the cardinalities
of their associated sub-clusters as weights, can surely approximate the local
distribution of the original data set. Hence, gEMAWS and bEMAWS can be
regarded as density-biased-sampling model-based clustering techniques [6].
Both follow the second scaling-up strategy as discussed in Section 2.

The gExEM and bExEM systems, which are ExEM working on the clus-
tering features generated by the grid-based and the BIRCH’s data summa-
rization procedures respectively. ExXEM, the core algorithm of SEM [3], con-
siders the covariance information only in the M-step. Furthermore, different
from EMACF, ExEM is derived in a heuristic way and it is not easy to
ascertain its convergence. SEM invokes ExEM to identify the compressible
regions of data in the memory, and then compress these regions and read
in more data. In order to squash all the data into the memory, SEM has
to invoke ExEM many times, and this leads to its speedup factor being
smaller than 10 with respect to the traditional EM algorithm [3]. On the
other hand, both gExEM and bExEM invoke ExEM only once, and thus
can run much faster than SEM. They are mainly designed to make a fair

comparison between ExEM and EMACEF.

All the algorithms were coded in MATLAB and experiments were conducted
on a Sun Enterprise E4500 server. EMACF, ExEM, EMAWS, and iEM were
initialized with the cluster centers generated by K-means from 4,000 random
samples. They were terminated if the successive log-likelihood modification

was within 1075 of the current value as did in [19,20]. All experimental results

16



reported were averaged on 10 independent runs. The data summarization pro-
cedures were set to generate at most 4,000 clustering features and used about
8Mb main memory. Hence, EMACF, ExEM, and EMAWS only needed mem-
ory to store 4,000 clustering features respectively. In contrast, there was no re-
striction on the amount of the main memory used for both iEM and sampiEM

in our experiments.

We generated three groups of synthetic data sets based on random Gaussian
mixtures with independent attributes in each component. The first group has
two data sets in a 2-dimensional space. For each mixture model, the means of
the Gaussian components are located on grids, and are [1,1]7-- -, [[V K], 1],
[1,2]7,---, [[VK], |VK]]". The mixing proportion pj varies in {ﬁ, %}, and
the cluster sizes can be very skew. The variance for each attribute falls into
[0.001,0.5]. The first data set is exemplified in Fig. 1(a). The second group
of 8 data sets are also generated according to random Gaussian mixtures.
The main difference from the first group is the method of generating the
mean vectors. Two mean vectors are generated together to ensure that their
Euclidean distance is 1.0. Hence, these two clusters are very close and not well
separated. A typical data set is illustrated in Fig. 1(b). For these 10 data sets
as summarized in Table 1, the number of data items N ranges from 60,000
to 480,000, the data dimensionality D ranges from 2 to 6, and the number of
clusters K ranges from 6 to 41. The third group of 8 data sets are generated,
similar to the second group, according to a random Gaussian mixture. This
mixture has 10 components in a 4-dimensional space. These data sets differ
in their numbers of data items, which increase exponentially from 6,250 to

800,000.

17



We used the clustering accuracy to measure a generated mixture for the syn-
thetic data. Comparing with the clustering results generated by original mix-
tures, the clustering accuracy is defined as the proportion of data items that
are correctly clustered by the generated mixture [19]. Since all the systems
finally generate Gaussian mixtures, another natural evaluation metric is their
log-likelihood values. For ease of reading, we averaged the log-likelihood values

over the samples.

5.2 Sensitivity Examination

Because it is easy to manipulate the shapes and the granularities of the sub-
clusters in the grid-based data summarization procedure, we use gEMACF,
gExEM, and gEMAWS to examine the sensitivity of EMACF, ExEM, and
EMAWS to the structures and the sizes of sub-clusters respectively. In ad-
dition, sampiEM, is also examined. The first data set shown in Fig. 1(a) is
taken as an example to examine the sensitivity. Fig. 4 summaries the cluster-
ing accuracy of the four clustering systems for different data summarization
or sampling results, which are determined by different grid structures. For
the first 40*40 grid structure, we partition two attributes into 40 equal-width
segments respectively. Here, sampiEM(M) refers to sampiEM working on M
random samples where M is the total number of sub-clusters. Hence, these

four clustering systems spend similar execution time.

For the first five grid structures, the segment numbers for each attribute are
40, 32, 24, 16, and 8 respectively. As shown in Fig. 4, the clustering accuracy
of gEMACF decreases gradually from 97.6% to 90.5%, while the clustering ac-

curacy values of gExEM, gEMAWS, and sampiEM(M) decrease quickly from
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95.3% to 85.6%, from 94.6% to 60.9%, and from 83.9% to 65.5% respectively.
The clustering accuracy of gEMACEF is usually much higher than that of its
three counterparts for each grid structure. Moreover, its clustering accuracy
is still acceptable when the sub-cluster granularity is reasonably small. The
last four grid structures in Fig. 4 can lead to very skew sub-clusters. For ex-
ample, the 8%128 grid structure divides the two attributes into 8 and 128
segments respectively. Hence, the cell width is about 16 times larger than the
cell height, and the cell is very skew. For this grid structure, the clustering ac-
curacy of gEMACEF is at least 2.3% higher than that of its three counterparts.
For these four grid structures, the clustering accuracy of gEMACF decreases
gradually from 99.8% to 89.2%. On average, the clustering accuracy values
of gEMACF, gExEM, gEMAWS, and sampiEM (M) are, respectively, 94.8%,
91.0%, 84.0%, and 79.1% for the 9 grid structures. The one-tailed paired Stu-
dent’s t-Test indicates that gEMACF statistically significantly outperforms its
three counterparts at the 0.01 level. Moreover, the performance of gEMACF

is not sensitive to the data summarization results.

5.3  Scalability

The second set of experiments are mainly designed to analyze the scalability
of gEMACF and bEMACEF. We compare them with iEM, sampiEM, bExEM,
and bEMAWS. Their performance on the third group of 8 data sets is shown

in Fig. 5. To show the scalability clearly, logarithm axes are used in Fig. 5(a).

As shown in Fig. 5(a), gEMACF takes 211.6 seconds for the data set with
6,250 data items, and takes 1,344.3 seconds for the data set with 800,000

data items. The bEMACF system takes 197.4 and 611.0 seconds for these two

19



data sets respectively. The execution time of the two systems increases very
slowly with the number of data items. Both systems scale up well with data
size. The bEMACF system run slightly faster than gEMACF because of their
different data summarization procedures. For example, for the largest data set,
the grid-based and the BIRCH’s data summarization procedures take 216.3
and 985.4 seconds respectively. Furthermore, as shown in Fig. 5(b), gEMACF
and bEMACF alternatively reach the highest clustering accuracy among the
six systems except for the smallest data set. The average clustering accuracy
values on the 8 data sets of gEMACF and bEMACF are, respectively, 91.9%

and 92.2%. Both perform quite well.

The execution time of iEM increases from 512.0 seconds for the smallest data
set to 307,654.6 seconds for the largest one. The execution time of iEM in-
creases almost linearly with the data size, because iEM has no restriction on
the amount of main memory used in our implementation. For the other data
sets, their speedup factors range from 2.4 to 503.5. Thus, both gEMACF and
bEMACEF can run one or two orders of magnitude faster than iEM. In addition,
the speedups are obtained without sacrifice of clustering quality. As shown in
Fig. 5(b), both gEMACF and bEMACF usually generate similar accurate re-
sults as iEM does. Though their average clustering accuracy is slightly lower
than the value of 92.3% for iEM, the one-tailed paired Student’s t-Test does
not indicate that there exists significant difference among the three systems

at the 0.05 level.

The execution time of sampiEM ranges from 30.9 seconds to 4,050.0 seconds as
plotted in Fig. 5(a). The execution time increases linearly with the data size,
because sampiEEM also has no restriction on the amount of main memory used.

Our scalable clustering systems need longer execution time than sampikEEM for
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the first three smallest data sets. However, the data summarization overhead
becomes relatively small as the data size increases. The execution time ratios of
bEMACF and gEMACEF to sampiEM are, respectively, 1:6.6 and 1:3.0 for the
largest data set. Furthermore, as shown in Fig. 5(b), sampiEM often generates
the worst Gaussian mixtures among the six systems. Its average clustering
accuracy is 87.9%, which is statistically worse than that of bEMACF and

gEMACEF at the 0.05 level.

The execution time of bExEM and bEMAWS ranges from 183.6 to 492.1 sec-
onds, and both run as fast as bEMACF. However, as plotted in Fig. 5(b),
bEXEM and bEMAWS usually generate worse clustering results than bE-
MACF and gEMACF. The average clustering accuracy of bEMAWS is 89.4%,
which is significantly lower than that of bEMACF and gEMACF at the 0.05
level. The average clustering accuracy of bExEM is 91.5%. Though it is only
0.7% lower than that of bBEMACF, the one-tailed paired t-Test shows that the

difference is significant at the 0.05 level.

5.4 Clustering Quality

The third set of experiments is designed to examine the clustering quality of
bEMACF and gEMACF, in comparison with iEM, sampiEM, bExEM, and
bEMAWS. The clustering accuracy and the execution time of the six systems
for the first 10 synthetic data sets are plotted in Fig 6. To clearly show the
execution time, a logarithm axis is used in Fig. 6(b). Two typical Gaussian
mixtures generated by gEMACF and bEMACF are illustrated in Figs. 3(a)

and 3(b) respectively. Both are very close to the original one.
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As shown in Fig. 6(a), bBEMACF usually generates more accurate clustering
results than iEM does. For the 10 data sets, the clustering accuracy of bE-
MACEF is higher than that of iEM except for the first and the seventh data
sets. On average, the clustering accuracy of bEMACF is 89.3%, which is 1.4%
higher than the accuracy of 87.9% for iEM. This situation may be caused by
two factors. One is that the BIRCH’s data summarization procedure can cap-
ture the clustering structure very well. The other one is that a smaller number
of clustering features may cause less local maxima in the log-likelihood space.
As shown in Fig. 6(b), bEMACF runs 18.7 to 262.3 times faster than iEM on
the 10 data sets, which accords with the comparison results in Section 5.3. As
shown in Fig. 6(a), gEMACF sometimes outperforms the other five systems,
e.g., on the first three data sets. Except the fourth, the fifth, and the eighth
data sets, gEMACF generates better Gaussian mixtures than iEM. The av-
erage clustering accuracy on the 10 data sets of gEMACF is 88.9%, which is
slightly better than the accuracy of 87.9% for iEM and comparable with the
accuracy of 89.3% for bEMACF. The speedup factors of gEMACF to iEM
range from 10.5 to 352.6. Hence, both gEMACF and bEMACF run one or two

orders of magnitude faster than iEM without loss of accuracy.

The average clustering accuracy of sampiEM over the 10 data sets is 85.3%,
which is at least 2.6% lower than that of bEMACF, gEMACF, and iEM.
According to the one-tailed paired t-Test, the performance of sampiEM is
significantly worse than that of the three systems at the 0.05 level. Moreover,
in comparison with bEMACF and gEMACF, sampiEM runs 1.4 to 17.4 times

longer.

The average clustering accuracy of bEMAWS is 86.5%. It is 2.8% lower than

the value of 89.3% for bEMACF and 2.4% lower than the value of 88.9% for
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gEMACEF. Though bEMAWS spends comparable execution time, its cluster-
ing accuracy is significantly worse than that of bPEMACF and gEMACF at
the 0.05 level. The average clustering accuracy of bEXEM is 87.1%. It is 2.2%
and 1.8% lower than that of bBEMACF and gEMACF respectively. Though
bExEM spends similar execution time, its clustering accuracy is significantly
worse than that of bEMACF at the 0.05 level. Thus, using comparable com-
putational resources, both gEMACF and bEMACF can generate significantly

more accurate clustering results than both bEMAWS and bExEM.

5.5 Application to Three Real-Life Data Sets

We study the performance of the model-based clustering systems on three
real-life data sets. The first one, Forest CoverType Data, is downloaded from
the UCI KDD Archive (http://kdd.ics.uci.edu). It describes forest cover for
30*30 meter cells obtained from U.S. Forest Service Region 2 Resource Infor-
mation System data. It has 581,012 data items. In the experiments, we use five
quantitative attributes of Elevation, Aspect, Horizontal Distance to Hydrol-
ogy, Horizontal Distance to Roadways, and Horizontal Distance to Fire Points.
The second one, the Census-Income Database, is also downloaded from the
UCI KDD archive. It contains weighted census data extracted from the 1994
and 1995 population surveys of the U.S. Census Bureau. The data set contains
299,285 data items. We use 3 continuous attributes including Age, Dividends
from Stocks, and Weeks Worked in Year. The last one is the California housing
data, downloaded from www.spatial-statistics.com. It describes all of the block
groups in California from the 1990 U.S. Census, and has 8 numeric attributes

and 20,640 data items. All of the attribute values are scaled into the inter-
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val from 0 to 3. Based on some preliminary experiments, we choose Gaussian
mixture models with 15, 10, and 7 components to describe these three data
sets respectively. Since gEMACF performs as well as bEMACF, we only give
the results of bEMACEF. Table 2 lists the performance of bEMACF, bEXEM,
bEMAWS, iEM, and sampiEM on the three data sets in terms of both qual-
ity and time, as well as their standard deviations. The average log-likelihood

indicates the quality of a generated Gaussian mixture.

For the large Forest CoverType Data, we only draw 15% random data items
for iEM, since iEM needs too much time for the whole data set. In fact, even
sampiEM(15%) takes 53,475.2 seconds and sampiEM(5%) takes 17,872.4 sec-
onds on average. However, bEMACF takes about 2,064.9 seconds. It runs,
respectively, 25.9 times faster than sampiEM(15%), and 8.7 times faster than
sampiEM(5%). Furthermore, the average log-likelihood values of bEMACF,
sampiEM(15%), and sampiEM(5%) are —3.242, —3.250, and —3.252 respec-
tively. So, bEMACEF can generate slightly more accurate Gaussian mixtures
than both sampiEM(15%) and sampiEM(5%), though there is no significant
difference at the 0.05 level. Though bExXEM runs fastest and spends only
1,689.4 seconds on average, its average log-likelihood is —3.256. It is not signif-
icantly different from that of sampiEM(15%), but it is significantly worse than
that of bEMACEF at the 0.05 level as indicated by the one-tailed t-Test. Simi-
larly, bPEMAWS spends 1,732.4 seconds on average. Its average log-likelihood
is —3.394, which significantly lags behind the other four systems at the 0.05

level as indicated by the one-tailed t-Test.

For the Census-Income Database, the average log-likelihood of bEMACEF is
—0.747, which is the best among the four systems for the real-life data set. It

is interesting to see that the average log-likelihood of iEM is also —0.747. Thus,
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the mixtures generated by bEMACF and iEM have the same quality. However,
iEM runs 154.2 times longer than bEMACEF. Hence, bPEMACF generates Gaus-
sian mixtures as accurate as iEM, but runs two orders of magnitude faster. The
average log-likelihood of sampiEM is —0.750, which is 0.003 lower than that
of bEMACEF. The one-tailed t-Test indicates that the difference is significant
at the 0.05 level. Furthermore, sampiEM spends around 3.2 times longer than
that of bEMACEF. For this data set, bExXEM and bEMAWS, respectively, spend
1,205.3 and 1,400.8 seconds, which are comparable with bEMACF. However,
their average log-likelihood value are —0.750 and —0.751 respectively. They
are at least 0.003 lower than the value of —0.747 for bPEMACEF. The difference
is significant at the 0.05 level according to the one-tailed t-Test. Thus, bE-
MACF significantly outperform bExEM, bEMAWS, and sampiEM in terms

of both execution time and clustering quality.

For the 8-dimensional California Housing Data, the average log-likelihood val-
ues of bEMACF, bExEM, bEMAWS, iEM, and sampiEM are 3.512, 3.462,
3.424, 3.804, and 3.380, respectively. Their average execution time is 684.9,
719.9, 512.6, 4,452.6, and 263.8 seconds, respectively. Though the clustering
quality of bPEMACEF is lower than that of iEM, bEMACF runs 6.5 times faster
than iEM. Compared with bExEM, bEMACF runs a little bit faster and gen-
erates more accurate results. For this moderate data set, bEMACF spends
slightly longer time than bEMAWS and sampiEM. However, the one-tailed
t-Test indicates that the mixture model quality of bEMACF is significantly
better than that of bPEMAWS and sampiEM at the 0.05 level. For this data
set, the advantage of bEMACF is not so apparent partially because the data

size is not very large.
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6 Discussion and Conclusion

Based on our scalable model-based clustering framework, we have established
two scalable clustering systems for the parsimonious Gaussian mixture model
with independent attributes in each cluster. They first summarize a data set
into disjoint sub-clusters, and then generate Gaussian mixtures using our new
model-based clustering algorithm — EMACF. EMACF takes account of the
cardinality, mean, and variance of each sub-cluster, and approximates its ag-
gregate behavior in the Gaussian mixture model. It is theoretically convergent
and is empirically not sensitive to the data summarization results. The two
proposed clustering systems, gEMACF and bEMACF, are EMACF working
on clustering features generated by the grid-based and the BIRCH’s data sum-
marization procedures respectively. Comparison results on both synthetic and
real-life data have shown that both systems run one or two orders of mag-
nitude faster than the traditional expectation-maximization algorithm with
few or no loss of clustering quality. They, using comparable computational
resources, can generate significantly more accurate clustering results than the

existing scalable model-based clustering techniques.

Based on the same principle presented in this paper, new model-based cluster-
ing algorithms can be developed to generate clusters effectively from summary
statistics. Combining these algorithms with some sophisticated data summa-
rization procedures, new scalable model-based clustering systems may be es-
tablished to analyze large complicated data, such as time sequences and data
sets with different kinds of attributes. We are currently working on this di-
rection. We are also interested in some effective approaches to automatically

determine the number of clusters for large data sets.
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Fig. 1. Hlustration of two synthetic data sets (20% plotted). A dot indicates a

data item. An ellipse and its associated “o0” indicate a contour and the center of a

Gaussian distribution component respectively. “x” indicates noise.
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Fig. 2. A scalable model-based clustering framework.

Table 1

Parameters of 10 synthetic data sets. NV, D, and K indicate the number of data

items, the data dimensionality, and the number of clusters respectively.

Data Set N D | K
Group 1 1 60,000 2|6
2 | 480,000 | 2 | 16

3 [ 100,000 | 2 | 9

4 1100,000 | 2 |20

5 | 120,000 | 2 | 31

Group 2 6 | 120,000 | 2 | 41
7 | 100,000 | 3 |10

8 | 100,000 | 4 | 10

9 [ 100,000 | 5 |10

10 | 100,000 | 6 | 10
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(a) Clusters generated by gEMACF. (b) Clusters generated by bEMACF.

Fig. 3. Clusters generated by gEMACF and bEMACEF for the fourth data set. Clus-

tering features are indicated by “*”. An “0” and an ellipse indicate a generated

Gaussian component, while a “+” and a dashed ellipse indicate an original one.
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Fig. 4. The clustering accuracy of four model-based clustering systems for different

data summarization or sampling results.

Table 2

The performance of five clustering systems on three real-life data sets. N, D, K,

and M indicate the number of data items, the data dimensionality, the number

of clusters, and

Data, iEM runs

the number of sub-clusters respectively. For the Forest CoverType

on 15% samples as indicated by “*” in the second row.

Real-life Data N DIK| M Measures bEMACF bEXEM bEMAWS iEM sampiEM(5%)
Forst 581,012 | 5 15]3.186 Log-likelihood -3.242 +0.019 | -3.256 +0.019 -3.394 £ 0.023 -3.250 * +0.018 -3.252 £ 0.022
CoverType Data Time(Sec.) 2,064.9 +891.2 1,689.4 £+ 6189 [1,732.4 +376.9 53,475.2+10,166.3 17,872.4 £5,198.4
Census-Income 299285 | 3 |10]3.836 Log-likelihood -0.747 + 0.003 [ -0.750 + 0.005 -0.751 + 0.006 -0.747 +0.0 08 -0.750 + 0.007
Database ’ : Time(Sec.) 1,361.3+371.6 |[1,205.3+362.2 |1,400.8+476.1 |209,865.6 + 35,892.2 4,300.7 + 1996.4
California 20,640 8|7 |2907 Log-likelihood 3.512+£0.101 3.462 + 0.166 3.424 £ 0.127 3.804 +0.162 3.380 £ 0.211
Housing Data Time(Sec.) 684.9 + 113.2 719.9 + 468.1 512.6 £ 143.8 4,452.6 + 691.40 263.8 £59.8
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Summary

Scalability, one of the most significant challenges of data mining, addresses the
problem of processing large data sets with limited computational resources,
e.g., main memory and computation time. In this paper, we present two scal-
able clustering systems based on a Gaussian mixture model with independent
attributes in each component. The basic idea is as follows: first, a data set is
summarized into sub-clusters; then, clusters are directly generated from the
clustering features of the sub-clusters by our specifically designed Expectation-
Maximization (EM) algorithm — EMACF (EM Algorithm for Clustering Fea-
tures). EMACF embodies the cardinality, mean, and variance of each sub-
cluster. It may approximate the aggregate behavior of each sub-cluster of
data items in the Gaussian mixture model. EMACF is proved to converge to

local maxima. It is linear with respect to the number of sub-clusters.

Combining with an adaptive grid-based data summarization and the BIRCH’s
data summarization procedures, EMACF is used to construct two scalable
model-based clustering systems: gEMACF and bEMACEF. A series of experi-
ments are conducted on both synthetic and real-life data sets. Both bEMACF
and gEMACF usually run one or two orders of magnitude faster than the
traditional EM algorithm for the Gaussian mixture model. Though there is
sometimes a slight loss of clustering quality, it is not statistically significant
at the 0.05 level. The two systems may run faster and can generate much
more accurate clustering results than the random sampling EM algorithm.
The two clustering systems, using comparable computational resources, gen-
erate significantly more accurate clustering results than the existing scalable

model-based clustering techniques at the 0.05 level.
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