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Linear Discriminant Analysis

A way to achieve robustness is to extract features that

emphasize sound discriminability and ignore irrelevant sources of

information. LDA tries to achieve this via a linear transform of the

feature data.

If the main sources of class variation lie along the coordinate

axes there is no need to do anything even if assuming a diagonal

covariance matrix (as in most HMM models):
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Outline of Today’s Lecture
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Eigenvectors and Eigenvalues

A key concept in feature selection are the eigenvalues and

eigenvectors of a matrix.

The eigenvalues and eigenvectors of a matrix are defined by the

following matrix equation:

Ax = λx

For a given matrix A the eigenvectors are defined as those

vectors x for which the above statement is true. Each eigenvector

has an associated eigenvalue, λ. To solve this equation, we can

rewrite it as

(A− λI)x = 0

If xis non-zero, the only way this equation can be solved is if the

determinant of the matrix (A − λI) is zero. The determinant of
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Principle Component Analysis-Motivation

If the main sources of class variation lie along the main source

of variation we may want to rotate the coordinate axis (if using

diagonal covariances):
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this matrix is a polynomial (called the characteristic polynomial)

p(λ). The roots of this polynomial will be the eigenvalues of A.

For example, let us say

A =

[

2 −4

−1 −1

]

.

In such a case,

p(λ) =

∣

∣

∣

∣

2− λ −4

−1 −1− λ

∣

∣

∣

∣

= (2− λ)(−1− λ)− (−4)(−1)

= λ2
− λ− 6

= (λ− 3)(λ + 2)

Therefore, λ1 = 3 and λ2 = −2 are the eigenvalues of A.

To find the eigenvectors, we simply plug in the eigenvalues into
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Linear Discriminant Analysis - Motivation

If the main sources of class variation do NOT lie along the main

source of variation we need to find the best directions:
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Now, let e be a unit vector in an arbitrary direction. In such a case,

we can express a vector x as

x = m + ae

For the vectors xk we can find a set of aks that minimizes the
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(A− λI)x = 0 and solve for x. For example, for λ1 = 3 we get

[

2− 3 −4

−1 −1− 3

] [

x1

x2

]

=

[

0

0

]

Solving this, we find that x1 = −4x2, so all the eigenvector

corresponding to λ1 = 3 is a multiple of [−4 1]T . Similarly, we

find that the eigenvector corresponding to λ1 = −2 is a multiple of

[1 1]T .
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mean square error:

J1(a1, a2, . . . , aN , e) =

N∑

k=1

|xk − (m + ake)|2

If we differentiate the above with respect to ak we get

ak = e
T (xk −m)

i.e. we project xk onto the line in the direction of e that passes

through the sample mean m. How do we find the best direction

e? If we substitute the above solution for ak into the formula for

the overall mean square error we get after some manipulation:

J1(e) = −e
T
Se +

N∑

k=1

|xk −m|2
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Principle Component Analysis-Derivation

First consider the problem of best representing a set of vectors

x1,x2, . . . ,xn by a single vector x0. More specifically let us try to

minimize the sum of the squared distances from x0

J0(x0) =

N∑

k=1

|xk − x0|
2

It is easy to show that the sample mean, m, minimizes J0, where

m is given by

m = x0 =
1

N

N∑

k=1

xk
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In this case, we can write the mean square error as

Jd =
N∑

k=1

|(m +
d∑

i=1

akiei)− xk|
2

and it is not hard to show that Jd is minimized when the vectors

e1, e2, . . . , ed correspond to the d largest eigenvectors of the

scatter matrix S.
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where S is called the Scatter matrix and is given by:

S =
N∑

k=1

(xk −m)(xk −m)T

Notice the scatter matrix just looks like N times the sample

covariance matrix of the data. To minimize J1 we want to

maximize e
T
Se subject to the constraint that |e| = e

T
e = 1. Using

Lagrange multipliers we write

u = e
T
Se− λe

T
e

. Differentiating u w.r.t e and setting to zero we get:

2Se− 2λe = 0

or

Se = λe
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Linear Discriminant Analysis - Derivation

Let us say we have vectors corresponding to c classes of data.

We can define a set of scatter matrices as above as

Si =
∑

x∈Di

(x−mi)(x−mi)
T

where mi is the mean of class i. In this case we can define

the within-class scatter (essentially the average scatter across the

classes relative to the mean of each class) as just:

SW =
c∑

i=1

Si
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So to maximize e
T
Se we want to select the eigenvector of S

corresponding to the largest eigenvalue of S.

If we now want to fi nd the b est d directions, the prob lem is now to

express x as

x = m +

d∑

i=1

aiei
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A reasonable measure of discriminability is the ratio of the

volumes represented by the scatter matrices. Since the

determinant of a matrix is a measure of the corresponding volume,

we can use the ratio of determinants as a measure:

J =

|SB|

|SW |

So we want to fi nd a set of directions that maximiz e this

expression. In the new space, we can write the above expression
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Another useful scatter matrix is the between class scatter matrix,

defined as

SB =
c∑

i=1

(mi −m)(mi −m)T

�� �

E E C S E 6 8 7 0 : Adv anced S p eech R ecog nition 1 6

as:

S̃B =
c∑

i=1

(m̃i − m̃)(m̃i − m̃)T

=
c∑

i=1

V(mi −m)(mi −m)T
V

T

= VSBV
T

and similarly for SW so the discriminability measure becomes

J(V) =
|VSBV

T |

|VSWVT
|

W ith a little bit of manip ulation similar to that in P C A , it turns out

that the solution are the eig env ectors of the matrix

S
−1

W
SB
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We would like to determine a set of projection directions V

such that the classes c are maximally discriminable in the new

coordinate space given by

x̃ = Vx
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n The LDA procedure is applied to the supervectors yt.

n The top M direction s (usually 4 0 -6 0 ) are chosen an d the

supervectors yt are projected in to this low er dim en sion al space.

n The recog n ition sy stem is retrain ed on these low er dim en sion al

vectors.

n P erform an ce im provem en ts of 1 0 % -1 5 % are ty pical.

� � �

E E C S E 6 8 7 0 : Advan ced S peech R ecog n ition 2 2

which can be generated by most common mathematical

packages.
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Training via Maximum Mutual Information

The F und ame ntal E q uation of S p e e c h R e c ognition states that

p(S|O) = p(O|S)p(S)/P (O)

where S is the sentence and O are our observations. We

model p(O|S) using Hidden Markov Models (HMMs). The HMMs

themselves have a set of parameters θ that are estimated from a

set of training data, so it is convenient to write this dependence

explicitly: pθ(O|S).

We estimate the parameters θ to maximize the likelihood of the

training data. Although this seems to make some intuitive sense,

is this what we are after?

Not really! (Why?). So then, why is ML estimation a good thing?
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Linear Discriminant Analysis in Speech

Recognition

The most successful uses of LDA in speech recognition are

achieved in an interesting fashion.

n S peech recognition training data are aligned against the

underly ing w ords using the V iterb i alignment algorithm

describ ed in Lecture 4 .

n U sing this alignment, each cepstral vector is tagged w ith a

different phone or sub -phone. F or E nglish this ty pically results

in a set of 1 5 6 (5 2 x 3 ) classes.

n F or each time t the cepstral vector xt is spliced together w ith

N/2 vectors on the left and right to form a “supervector” of

N cepstral vectors. (N is ty pically 5 -9 frames.) C all this

“supervector” yt.
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This means the ML estimate on the average will produce the

closest estimate to the true parameters of the system.

If we assume that the system has its best performance when the

parameters match the true parameters, then the ML estimate will,

on average, perform as good as or better than any other estimator.
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Maximum Likelihood Estimation Redux

ML estimation results in a function that allows us to estimate

parameters of the desired distribution from observed samples of

the distribution. For example, in the Gaussian case:

µ̂MLE =
1

n

n∑

k=1

xk

Σ̂MLE =
1

n

n∑

k=1

(xk − µ̂MLE)(xk − µ̂MLE)T

S ince µ and Σ themselves are computed from the random

variables xk we can consider them to be random variables as well.

More g enerally we can consider the estimate of the parameters θ

as a random variable. T he function that computes this estimate is

called an estimator.
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Main Problem with Maximum Likelihood

Estimation

The true distribution of speech is (probably) not generated by an

HMM, at least not of the type we are currently using. (How might

we demonstrate this?)

Therefore, the optimality of the ML estimate is not guaranteed and

the parameters estimated may not result in the lowest error rates.

A reasonable criterion is rather than maximizing the likelihood of

the data given the model, we try to maximize the a posteriori

probability of the model given the data (Why?):

θMAP = arg max
θ

pθ(S|O)
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Any estimator, maximum likelihood or other, since it is a random

variable, has a mean and a variance. It can be shown that if

n T he samp le is actually drawn from the assumed family of

distributions

n T he family of distributions is well-behaved

n T he samp le is larg e enoug h

then, the maximum likelihood estimator has a G aussian

distribution with the following g ood p rop erties:

n T he mean converg es to the true mean of the p arameters

(consistent)

n T he variance has a p articular form and is just a function of

the true mean of the p arameters and the samp les (F isher

information)

n N o other consistent estimator has a lower variance

	
 �

E E C S E 6 8 7 0 : Advanced S p eech R ecog nition 2 5



Comparison to ML Estimation

In ordinary ML estimation, the objective is to find θ :

θML = arg max
θ

∑

i

log pθ(Oi|Si)

Therefore, in ML estimation, for each i we only need to make

computations over the correct sentence Si. In MMI estimation,

we need to worry about computing quanitities over all possibile

sentence hypotheses - a much more computationally intense

process.

Another advantage of ML over MMI is that there exists a

relatively simple algorithm - the forward-backward, or Baum-

Welch, algorithm, for iteratively estimating θ that is guaranteed

to converge. When originally formulated, MMI training had to be

done by painful gradient search.
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MMI Estimation

Let’s look at the previous equation in more detail. It is more

convenient to look at the problem as maximizing the logarithm

of the a posteriori probability across all the sentences:

θMMI = arg max
θ

∑

i

log pθ(Si|Oi)

= arg max
θ

∑

i

log
pθ(Oi|Si)p(Si)

pθ(Oi)

= arg max
θ

∑

i

log
pθ(Oi|Si)p(Si)∑
j pθ(Oi|S

j
i )p(Sj

i )

w here S
j
i refers to the jth possible sentence hypothesis given a

set of acoustic observations Oi
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MMI Training Algorithm

A big breakthrough in the MMI area occured when it was shown

that a forward-backward-like algorithm existed for MMI training [2].

The derivation is complex but the resulting esitmation formulas are

surprisingly simple. We will just give the results for the estimation

of the means in a Gaussian HMM framework.

The MMI objective function is

∑

i

log
pθ(Oi|Si)p(Si)∑
j pθ(Oi|S

j
i )p(Sj

i )

We can view this as comprising two terms, the numerator, and the

denominator. We can increase the objective function in two ways:

n Increase the contribution from the numerator term

n D ecrease the contribution from the denominator term
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Why is this Called MMI Estimation?

There is a quantity in information theory called the Mutual

Information. It is defined as:

E

[

log
p(X, Y )

p(X)p(Y )

]

S ince p(Si) does not dep end on θ, the term can b e drop p ed from

the p rev ious set of equations, in w hich case the estimation formula

look s lik e the ex p ression for mutual information, ab ov e.

W hen orig inally deriv ed b y B row n[1 ], the formulation w as actually

in terms of mutual information, hence the name. H ow ev er, it is

easier to quick ly motiv ate in terms of max imiz ing the a p osteriori

p rob ab ility of the answ ers.
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Computing the Denominator Counts

The major component of the MMI calculation is the computation of

the denominator counts. Theoretically, we must compute counts

for every possible sentence hypotheis. How can we reduce the

amount of computation?

1. From the previous lectures, realize that the set of sentence

hypotheses are just captured by a large HMM for the entire

sentence:
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Basic idea:

n C o llect estim atio n co u n ts fro m b o th th e n u m erato r an d

den o m in ato r term s

n In crease th e o b jectiv e fu n ctio n b y su b tractin g th e den o m in ato r

co u n ts fro m th e n u m erato r co u n ts.

M o re sp ecifi cally , let:

θnum
mk =

∑

i,t

Oi(t)γ
num
mki (t)

θden
mk =

∑

i,t

Oi(t)γ
den
mki(t)

w h ere γnum
mki (t) are th e co u n ts fo r state k, m ix tu re co m p o n en t

m, co m p u ted fro m ru n n in g th e fo rw ard-b ack w ard alg o rith m o n

th e “co rrect” sen ten ce Si an d γden
mki(t) are th e co u n ts co m p u ted

acro ss all th e sen ten ce h y p o th eses co rresp o n din g to Si T h e M M I
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Counts can be collected on this HMM the same way counts are

collected on the HMM representing the sentence corresponding

to the correct path.

2. Use a ML decoder to generate a “reasonable” number of

sentence hypotheses and then use FST operations such as

determinization and minimization to compactify this into an HMM

graph (lattice).

3. Do not regenerate the lattice after every MMI iteration.
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estimate for µmk is:

µkm =
θnum

mk
− θden

mk
+ Dmkµ

′

mk

γnum

mk
− γden

mk
+ Dmk

T h e fac tor Dmk is c h ose larg e en ou g h to av oid p rob lems w ith

n eg ativ e c ou n t d ifferen c es. N otic e th at ig n orin g th e d en omin ator

c ou n ts resu lts in th e n ormal mean estimate. A similar ex p ression

ex ists for v arian c e estimation .
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Variations and Embellishments

n MPE - Minimum Phone Error

n b MMI - B oos ted MMI

n MC E - Minimum C la s s ifi c a tion Error

n fMPE/fMMI - fea ture-b a s ed MPE a nd MMI
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Other Computational Issues

Because we ignore correlation, the likelihood of the data tends

to be dominated by a very small number of lattice paths (Why?).

To increase the number of confusable paths, the likelihoods are

scaled with an exponential constant:

∑

i

log
pθ(Oi|Si)

κp(Si)
κ

∑
j pθ(Oi|S

j
i )

κp(Sj
i )

κ

F or similar reasons, a weaker language model (unigram) is

used to generate the denominator lattice. This also simplifi es

denominator lattice generation.
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MPE

∑

i

∑
j pθ(Oi|Sj)

κp(Sj)
κA(Sref , Sj)

∑
j pθ(Oi|S

j
i )

κp(Sj
i )

κ

n A(Sref , Sj is a phone-frame accuracy function. A measures the

number of correctly labeled frames in S

n P ov ey [3 ] show ed this could be optimiz ed in a w ay similar to that

of M M I.

n U sually w ork s somew hat better than M M I itself
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Results

Note that results hold up on a variety of other tasks as well.
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MCE

∑

i

f(log
pθ(Oi|Si)

κp(Si)
κ

∑
j pθ(Oi|S

j
i )

κp(Sj
i )

κ e x p (−bA (Sj
i ,Si)

)

where f(x) = 1

1+ e2ρ x

n T he s u m o v er c o m p etin g m o d els ex p lic itly ex c lu d es the c o rrec t

c la s s (u n lik e the o ther v a ria tio n s )

n A p p ro x im a tes s en ten c e erro r ra te o n tra in in g d a ta

n O rig in a lly d ev elo p ed fo r g ra m m a r-b a s ed a p p lic a tio n s

n C o m p a ra b le to M P E , n ev er c o m p a red to b M M I
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bMMI

∑

i

log
pθ(Oi|Si)

κp(Si)
κ

∑
j pθ(Oi|S

j
i )

κp(Sj
i )

κ e x p (−bA(Sj
i ,Sr e f ))

n A is a phone-frame accuracy function as in MPE.

n B oosts contrib ution of paths w ith low er phone error rates.
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fMPE/fMMI

yt = Ot + Mht

n ht are the set of Gaussian likelihoods for frame t. May be

clustered into a smaller number of Gaussians, may also be

combined across multiple frames.

n T he training of M is ex ceeding ly complex inv olv ing both the

g radients of your fav orite objectiv e function w ith respect to M

as w ell as the model parameters θ w ith multiple passes throug h

the data.

n R ather amaz ing ly g iv es sig nifi cant g ains both w ith and w ithout

MMI.
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Various Comparisons

Language A rab ic E nglis h E nglis h E nglis h

D o m ain T elep h o ny N ew s T elep h o ny P arliam ent

H o urs 8 0 5 0 1 7 5 8 0

M L 4 3 .2 2 5 .3 3 1 .8 8 .8

M P E 3 6 .8 1 9 .6 2 8 .6 7 .2

b M M I 3 5 .9 1 8 .1 2 8 .3 6 .8
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ROVER - Recognizer Output Voting Error

Reduction[1]

ROVER is a technique for combining recognizers together to

improve recognition accuracy. The concept came from the

following set of observations about 11 years ago:

n C ompare errors of recognizers from two d ifferent sites

n Error rate performance similar - 4 4 .9 % vs 4 5 .1%

n Out of 5 9 19 total errors, 7 3 8 are errors for only recognizer A

and 7 5 5 for only recognizer B

n S uggests that some sort of voting process across recognizers

might red uce the overall error rate
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fMPE/fMMI Results

English BN 50 Hours, SI models

R T 03 D EV 04 f R T 04

M L 1 7 .5 2 8 .7 2 5.3

fBM M I 1 3 .2 2 1 .8 1 9 .2

fb M M I+ b M M I 1 2 .6 2 1 .1 1 8 .2

A ra b ic BN 1 4 00 Hours, SA T M odels

D EV 07 EV A L 07 EV A L 06

M L 1 7 .1 1 9 .6 2 4 .9

fM P E 1 4 .3 1 6 .8 2 2 .3

fM P E+ M P E 1 2 .6 1 4 .5 2 0.1
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ROVER - Basic Architecture

n Systems may come from multiple sites

n C an b e a sin g le site w ith d ifferen t processin g sch emes

�� �

E E C S E 6 8 7 0 : A d v an ced Speech R ecog n ition 4 7

References

[1] P. Brown (1987) “The Acoustic Modeling Problem in

Automatic Speech Recognition”, PhD Thesis, Dept. of

Computer Science, Carnegie-Mellon University.

[2] P.S. Gopalakrishnan, D. Kanevsky, A. Nadas, D. Nahamoo

(1991) “ An Inequality for Rational Functions with

Applications to Some Statistical Modeling Problems”,

IEEE Trans. on Acoustics, Speech and Signal Processing,

37(1) 107-113, January 1991

[3] D. Povey and P. Woodland (2002) “Minimum Phone Error

and i-smoothing for improved discriminative training”, Proc.

ICASSP vol. 1 pp 105-108.

	
 �

EECS E6 870: Advanced Speech Recognition 4 5



ROVER - Form Confusion Sets
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ROVER - Text String Alignment Process
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ROVER - Aligning Strings Against a Network

Solution: Alter cost function so that there is only a substitution

cost if no member of the reference network matches the target

symbol.
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ROVER - Example
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ROVER - Example

n Error not guaranteed to be reduced.

n S ens itiv e to initial ch oice of bas e s y s tem us ed for alignm ent -

ty p ically tak e th e bes t s y s tem .
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ROVER - Aligning Networks Against Networks

No so much a ROVER issue but will be important for confusion

networks.

Problem: How to score relative probabilities and deletions?

Solution: cost subst(s1,s2)= (1 - p1(winner(s2)) + 1 - p2(winner(s1))/2
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ROVER - As a Function of Number of Systems [2]

n Alphabetical: take systems in alphabetical order.

n C u rv es ordered by error rate.

n N ote error actu ally g oes u p slig htly w ith 9 systems
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ROVER - Vote

n Main Idea: for each confusion set, take word with highest

frequency

S Y S 1 S Y S 2 S Y S 3 S Y S 4 S Y S 5 ROVER

4 4 .9 4 5 .1 4 8 .7 4 8 .9 5 0 .2 3 9 .7

n Im p rov em ent v ery im p ressiv e - as large as any signifi cant

algorithm adv ance.
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Consensus Decoding[1] - Introduction

P rob lem

n Standard SR evaluation procedure is word-based

n Standard h y poth esis scoring functions are sentence-based

G oa l

n E x plicitly m inim iz e word error m etric:

Ŵ = arg min
W

EP (R|A)[WE (W, R)] = arg min
W

∑

R

P (R|A)WE (W, R)

n F or each candidate word, sum th e word posteriors and pick th e

word with th e h ig h est posterior probability .
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ROVER - Types of Systems to Combine

n ML and MMI

n V ary ing am o u nt o f ac o u s tic c o nte x t in p ro nu nc iatio n m o de ls

(T rip h o ne , Q u inp h o ne )

n D iffe re nt le x ic o ns

n D iffe re nt s ig nal p ro c e s s ing s c h e m e s (MF C C , P LP )

n A ny th ing e ls e y o u c an th ink o f!

R o v e r p ro v ide s an e x c e lle nt w ay to ac h ie v e c ro s s -s ite c o llab o ratio n

and s y ne rg y in a re lativ e ly p ainle s s fas h io n.
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Consensus Decoding - Motivation

n Original work was done off N-best lists

n L attic es m u c h m ore c om p ac t and h av e lower orac le error rates
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Consensus Decoding Approach - cont’d

Input:

SIL

SIL

SIL

SIL

SIL

SIL

VEAL

VERY

H AVE

H AVE

H AVE

M O VE

M O VE

H AVE

VERY

VERY

VERY

VERY

VERY

VEAL

I

I

I

F IN E

O F T EN

O F T EN

F IN E

IT

IT

F AST

O utput:

I

-

V E A L  

V E R Y

F IN E

O F T E N

F A S T

H A V E

-

IT

M O V E
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Consensus Decoding - Approach

Find a multiple alignment of all the lattice paths

Input L attice:

SIL

SIL

SIL

SIL

SIL

SIL

VEAL

VERY

HAVE

HAVE

HAVE

MOVE

MOVE

HAVE

VERY

VERY

VERY

VERY

VERY

VEAL

I

I

I

FINE

OFTEN

OFTEN

FINE

IT

IT

FAST

M ultiple Alignm ent:

I

-

VEAL 

VERY

FINE

OFTEN

FAST

HAVE

-

IT

MOVE
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Consensus Decoding Approach - Multiple

Alignment

n Equivalence relation over word hypotheses (links)

n T otal ordering of the equivalence classes

Mathematical prob lem formulation:

n D efi ne a partial order on sets of links which is consistent with

the precedence order in the lattice

n C luster sets of links in the partial order to derive a total order
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Consensus Decoding Approach - cont’d

n Compute the word error between two hypotheses according to

the multiple alignment:

WE(W, R) ≈ MWE(W, R)

n F ind the consensus hypothesis:

WC = a rg m in
W∈W

∑

R∈W

P (R|A) ∗ MWE(W, R)
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Confusion Networks

(0.45)

(0.55)M O V E

H A V EI

-

V E A L  

V E R Y

F IN E

O F T E N

F A S T

(0.3 9 )IT

(0.6 1 )-

n Confidence Annotations and Word Spotting

n Sy stem Com b ination

n E rror Correction
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Consensus Decoding Approach - Clustering

Algorithm

Initializ e Clusters: a cluster consists of all the links having the

same starting time, ending time and word label

Intra-w ord Clustering: merge only clusters which are not in

relation and correspond to the same word

Inter-w ord Clustering: merge heterogeneous clusters which are

not in relation

�� �
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Consensus Decoding on DARPA Communicator

   40K     7 0K     2 8 0K 40K M L L R
1 4

1 6

1 8

2 0

2 2

2 4

A c o u s tic  M o d e l

W
o
rd

 E
rr

o
r 

R
a
te

 (
%

)

L A R G E  s L M 2
S M A L L  s L M 2
L A R G E  s L M 2 + C
S M A L L  s L M 2 + C
L A R G E  s L M 2 + C + M X
S M A L L  s L M 2 + C + M X
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Obtaining the Consensus Hypothesis

Input:

SIL

SIL

SIL

SIL

SIL

SIL

VEAL

VERY

H AVE

H AVE

H AVE

M O VE

M O VE

H AVE

VERY

VERY

VERY

VERY

VERY

VEAL

I

I

I

F IN E

O F T EN

O F T EN

F IN E

IT

IT

F AST

Output:

(0.45)

(0.55)M O V E

H A V EI

-

V E A L  

V E R Y

F IN E

O F T E N

F A S T

(0.3 9 )IT

(0.6 1 )-
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System Combination Using Confusion Networks

If we have multiple systems, we can combine the concept of

ROVER with confusion networks as follows:

n U se the same process as ROVER to alig n confusion networks

n T ake the overall confusion network and ad d the posterior

probabilities for each word .

n F or each confusion set, pick the word with the hig hest summed

posteriors.
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Consensus Decoding on Broadcast News

Word Error Rate (%)

A v g F 0 F 1 F 2 F 3 F 4 F 5 F X

C - 1 6 .5 8 .3 1 8 .6 2 7 .9 2 6 .2 1 0 .7 2 2 .4 2 3 .7

C + 1 6 .0 8 .5 1 8 .1 2 6 .1 2 5 .8 1 0 .5 1 8 .8 2 2 .5

Word Error Rate (%)

A v g F 0 F 1 F 2 F 3 F 4 F 5 F X

C - 1 4 .0 8 .6 1 5 .8 1 9 .4 1 5 .3 1 6 .0 5 .7 4 4 .8

C + 1 3 .6 8 .5 1 5 .7 1 8 .6 1 4 .6 1 5 .3 5 .7 4 1 .1
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System Combination Using Confusion Networks
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Consensus Decoding on Voice Mail

Word Error Rate (%)

S y s tem B as elin e C on s en s u s

S -V M 1 3 0 .2 2 8 .8

S -V M 2 3 3 .7 3 1 .2

S -V M 3 4 2 .4 4 1 .6

RO V ER 2 9 .2 2 8 .5
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COURSE FEEDBACK

n Was this lecture mostly clear or unclear? What was the

muddiest topic?

n O ther feedb ack (pace, content, atmosphere)?

� � �
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Results of Confusion-Network-Based System

Combination
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