
Aberystwyth University

Automatic 3d free form shape matching using the graduated assignment
algorithm.
Liu, Yonghuai

Published in:
Pattern Recognition

DOI:
10.1016/j.patcog.2005.01.008

Publication date:
2005

Citation for published version (APA):
Liu, Y. (2005). Automatic 3d free form shape matching using the graduated assignment algorithm. Pattern
Recognition, 38(10), 1615-1631. https://doi.org/10.1016/j.patcog.2005.01.008

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 26. Apr. 2024

https://doi.org/10.1016/j.patcog.2005.01.008
https://doi.org/10.1016/j.patcog.2005.01.008
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Graduated Assignment Algorithm
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Abstract

3D free form shape matching is a fundamental problem in both the machine vision
and pattern recognition literatures. However, the automatic approach to 3D free form
shape matching still remains open. In this paper, we propose using k closest points in the
second view for the automatic 3D free form shape matching. For the sake of computational
efficiency, the optimised k-D tree is employed for the search of the k closest points. Since
occlusion and appearance and disappearance of points almost always occur, slack variables
have to be employed, explicitly modelling outliers in the process of matching. Then the
relative quality of each possible point match is estimated using the graduated assignment
algorithm, leading the camera motion parameters to be estimated by the quaternion method
in the weighted least squares sense. The experimental results based on both synthetic data
and real images without any pre-processing show the effectiveness and efficiency of the
proposed algorithm for the automatic matching of overlapping 3D free form shapes with
either sparse or dense points.

Keywords: 3D free form shape, Automatic matching, K closest points, Graduated assignment,
Optimised k-D tree, Time complexity, Space complexity

1 Introduction

Recent technological development in electronics and optics enables the advent of laser scanning
systems which capture geometrical and/or optical information in the form of range and/or inten-
sity images of the object of interest in 3D space. Range images include the depth information of
the object of interest from the laser scanning systems (Figures 4 and 6) and thus, greatly facili-
tate research on 3D free form shape matching. Since the laser scanning systems (range cameras)
have limited field of view, a number of images have to be captured from different viewpoints
so that a full coverage of the object surface can be obtained. All these images are depicted in
local laser scanning system centred coordinate frame. For the construction of a full model of the
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object, all these images have to be aligned in a single coordinate frame. This process is called
registration, alignment, or matching (based on points).

3D free form shape matching has attracted much attention from both the machine vision and
pattern recognition communities, as it is a fundamental problem for numerous applications of
the latest laser scanning technologies in the areas like object recognition, motion estimation,
scene understanding, and computer aided geometric design (CAGD). Free form shape matching
has two goals: one is to determine correspondences between different data sets representing
the same free form shape from different viewpoints, the other is to estimate the camera motion
parameters bringing one data set into alignment with the other. Once one goal has been fulfilled,
then the other is relatively easier. However, these two goals are in practice often interwoven,
thus complicating free form shape matching.

1.1 Related work

In the last decade, a large number of techniques have been proposed to tackle the fundamental
and challenging 3D free form shape matching problem based on techniques, such as scatter matrix
[1], iterative closest point (ICP) [2, 3, 4], improved ICP algorithm [5, 6, 7, 8, 9, 10, 12, 11, 13, 14,
15, 16], interactive method [17], geometric histogram [18], and graduated assignment algorithm
[19, 20, 21, 22] among many others. Among these methods, the ideas of the ICP algorithm and
the graduated assignment algorithm are the most attractive and their brief analysis is thus given
as follows.

1.2 Analysis of ICP

The ICP algorithm assumes that given the initial camera motion parameters rotation matrix R

and translation vector t, for any point p in the first image, the closest point p′ in the second
image to the transformed point Rp+t is its possible correspondent. This criterion is so practical
and efficient that the ICP algorithm has become a de facto standard method for 3D free form
shape matching. However, due to inaccurate initial camera motion parameters, occlusion and
appearance and disappearance of points, the closest point criterion unavoidably introduces false
matches in almost every iteration of matching. As a result, the key to successfully applying
the closest point criterion for 3D free form shape matching lies in eliminating false matches.
Unfortunately, research has shown [8, 16] that it is very difficult, if not impossible, to accurately
evaluate the possible point matches established by the closest point criterion.

The false matches introduced by the ICP criterion are, to some degree, caused by the ignorance
of a two-way constraint: if point p′ is the correspondent of point p, then point p should also be
the correspondent of point p′. However, in practice, once this two-way constraint is enforced, the
matching algorithm often becomes much more complex not only in establishing possible point
correspondences, but the optimisation of camera motion parameters as well, given the possible
point correspondences between the free form shapes to be matched.

1.3 Analysis of the graduated assignment algorithm

In [20], a graduated assignment (GA) algorithm was proposed for 3D free form shape matching.
Recently, it was extended for the alignment of a 3D model and a 2D projective image [23]. The

2



advantages of the GA algorithm lie in that:

1. It maximises entropy for the estimation of the probability of each possible point corre-
spondence and the entropy maximization leads to the least biased estimate of probability
distributions possible on the given information [24];

2. While it explicitly models outliers in the process of 3D free form shape matching, it adopts
the Sinkhorn iterative alternate row and column normalization procedure [25] to gradually
impose the two-way constraint, greatly simplifying the establishment of point correspon-
dences between the free form shapes to be matched;

3. It can be justified in the framework of the EM algorithm [26]: in the expectation step, the
camera motion parameters are fixed and the correspondence matrix M is then estimated;
in the maximization step, the correspondence matrix M is fixed and the camera motion
parameters rotation matrix R and translation vector t are then estimated in the weighted
least squares sense; and finally

4. Both the point correspondence probabilities and the camera motion parameters are simul-
taneously optimised by the efficient deterministic annealing scheme.

As a result, the GA algorithm is theoretically elegant. Practically, once the GA algorithm
correctly matches 3D free form shapes with small motions, it can successfully match 3D free
form shapes subject to a motion with a rotation angle up to 90◦ around a certain rotation axis.
This robust characteristic implies that, in practice, the number of images to be captured, and
thus time required for processing, can be greatly reduced.

However, the GA algorithm has a fatal shortcoming in that its time and space complexities are
too high [27] for the matching of 3D free form shapes with thousands of points, which will hinder
its application. In this case, resampling [28], feature point extraction and resampling [21], or
feature point extraction and fusion [22] has to be used to reduce the number of points for feasible
matching. Unfortunately, resampling makes it difficult to replicate the algorithm’s performance
as different resampling schemes may lead to different results. Since feature extraction is often
sensitive to noise due to resampling of points on the object surface, quantization of measurement,
shape discontinuity, or different optical characteristics of object surface, feature extraction itself
is also a challenging task in both the machine vision and pattern recognition communities. Hence,
feature extraction and resampling are just an expedient solution to the problem and they do not
really solve the problem, since they transform one difficulty to another.

1.4 Our work

The purpose of this paper is to investigate whether it is indispensable for a point in the first
image to match all points in the second as is the case for the GA algorithm. If not, then both the
time and space efficiency can be obtained, leading to a promoted application of the GA algorithm
for 3D free form shape matching. Hence, we propose using k closest points in the second image
for 3D free form shape matching, instead of all points. For the sake of computational efficiency,
the optimised k-D tree [29] is employed for the search of the k closest points. Since occlusion and
appearance and disappearance of points in different views almost always occur, slack variables
have to be employed to explicitly model outliers in the process of matching. The relative quality
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of each possible point match is then estimated using the GA algorithm. The motion parameters
of interest are finally estimated by the quaternion method [2] in the weighted least squares sense.
Both the time and space efficiency enable the proposed improved GA algorithm to operate
without any pre-processing directly on 3D free form shapes consisting of either sparse or dense
points. The proposed improved GA algorithm has an advantage of easy implementation as it
does not require any feature extraction or resampling and it only assumes that the 3D free
form shapes to be matched are represented as either sparse or dense unorganised points. This
assumption is reasonable since other representation of 3D free form shapes like line segments,
triangular meshes, planar patches, or analytic forms can all be transformed into points [2].

For a comparative study of performance, we also implement the original GA algorithm [20]
and the geometric ICP algorithm (GICP) [15] with the closest point search accelerated by the
optimised k-D tree [29]. The reason why the GICP algorithm was chosen is that it was developed
for the matching of unorganised points data and it also has an advantage of easy implementation.
While both the GA and improved GA algorithms use the two-way constraint to evaluate the
possible point matches, the GICP algorithm uses the rigid motion constraints for the same
purpose.

The rest of this paper is structured as follows: Section 2 outlines the GA algorithm, Section 3
extends the GA algorithm while Section 4 presents experimental results. Finally, Section 5 draws
some conclusions.

2 Outline of the GA Algorithm

In this paper, the following notations are used: capital letters denote vectors or matrices, lower
case letters denote scalars, || · || denotes the Euclidean norm of a vector, superscript T denotes
transpose of a vector or a matrix, | · | denotes the absolute value of a scalar, parameters with
and withoutˆin Section 4 denote calibrated and real ones.

Given that the two overlapping free form shapes to be matched are represented as two sets
of unorganised points P = {p1,p2, · · · ,pn1

} and P′ = {p′

1,p
′

2, · · · ,p
′

n2
}. Due to occlusion and

appearance and disappearance of points, n1 here is not necessarily equal to n2. The points
with the same subscript do not mean that they are correspondences. The GA algorithm [20]
is outlined from the following five aspects: objective function, matching algorithm, property of
correspondence matrix, an example of correspondence matrix, and time and space complexities.
For details, please refer to [20].

2.1 Objective function

The objective function proposed in [20] for 3D free form shape matching can be rewritten as:

E3D(M,R, t) =
n2
∑

j=1

n1
∑

i=1

mij ||p
′

j −Rpi − t||2 +
1

β

n2
∑

j=1

n1
∑

i=1

mij ln mij − (
1

β
+ α)

n2
∑

j=1

n1
∑

i=1

mij

This objective function simultaneously optimises the correspondence matrix M = {mij} between
P and P′ to be matched and the camera motion parameters rotation matrix R and translation
vector t. In this objective function, mij(mij ∈ [0, 1]) denotes the probability for the ith point pi

in P to match the jth point p′

j in P′. Intuitively, a point in P can at most match a point in P′,
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and vice versa. Thus,
∑n1

i=1 mij = 1 and
∑n2

j=1 mij = 1 hold. Since occlusion and appearance and
disappearance of points almost always occur in the process of data acquisition, slack variables
pn1+1 and p′

n2+1 have to be introduced so that they can correspond to all occluded and appearing
and disappearing points. Consequently,

∑n1+1
i=1 mij = 1 and

∑n2+1
j=1 mij = 1 then hold. This two

way constraint is enforced using the Sinkhorn iterative alternate row and column normalisation
procedure [25], leading to an optimal estimation of the correspondence matrix M.

A careful analysis of the objective function E3D(M,R, t) above reveals (Figure 1) that the
first term is to minimise the matching error of the point match (pi,p

′

j). The second term can
be rewritten as: 1

β

∑n2

j=1

∑n1

i=1 mij lnmij =− 1
β

∑n2

j=1

∑n1

i=1(−mij ln mij). From information theory

[30], it is known that (−mij ln mij) denotes the entropy of mij . When all point matches (pi,p
′

j)
are equally likely, then mij = 1

n1n2
and Entropy(M) =

∑n2

j=1

∑n1

i=1(−mij ln mij) reaches the maxi-
mum. For the sake of minimization, the negative of Entropy(M) is used in the objective function
E3D(M,R, t). Thus, the second term can be interpreted as equalising the weights for different
point matches (pi,p

′

j), forcing them to yielding the same matching error and consequently, ren-
dering one shape to run parallel, rather than intersecting, with the other due to Equations 1 and
2 in the next section. The third term is to maximise the overlapping area between P and P′ to
be matched. As a result, the objective function E3D(M,R, t) can be represented as:

E = minimizing weighted matching errors+equalizing weights +maximizing overlapping area

2.2 Matching algorithm

The following algorithm was proposed in [20] to optimise the objective function E3D(M,R, t),
taking the two-way constraint into account:

Initialize R to the identity matrix, t, β to β0, m̂ij to (1 + ǫ)

Begin A: Do A until (β ≥ βf)

Begin B: Do B until M converges or # of iterations > I0

Begin C (update correspondence parameters by softassign):

Qij ←
∂E3D

∂mij

(1)

m0
ij ← exp(−β(Qij − α)) (2)

Begin D: Do D until M̂ converges or # of iterations > I1

Update M̂ by nomalising across all rows:

m̂1
ij ←

m̂0
ij

∑j=n2+1

j=1
m̂0

ij

Update M̂ by nomalising across all columns:

m̂0
ij ←

m̂1
ij

∑i=n1+1

i=1
m̂1

ij

End D

End C

Begin E (update pose parameters using Walker et al.′s method):

Update R, t
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End E

End B

β ← βrβ

End A

where β0 denotes the initial temperature control parameter for deterministic annealing, βr the
temperature control parameter increasing rate, βf the final temperature control parameter, I0

and I1 are the maximum iteration numbers, α determines when two points should be regarded
as a plausible point match.

2.3 Property of correspondence matrix

The continuous correspondence matrix M in the GA algorithm converges toward a discrete
matrix due to the following two mechanisms that are used concurrently:

1. First, a technique due to Sinkhorn [25] is applied. When each row and column of M is
normalised (several times, alternately) by the sum of the elements of that row and column
respectively, the resulting matrix has positive elements with all rows and columns except
those corresponding to slack variables summing to one.

2. The term β is increased as the iteration proceeds. As β increases and each row or column of
M is renormalized, the terms mij corresponding to the smallest Qij in the overlapping area
tend to converge to non-zero and all others except those corresponding to slack variables
tend to converge to zero. This is a deterministic annealing process known as softmax. This
is desirable behaviour, since it leads to an assignment of point correspondences that satisfy
the matching constraints and the minimization of the objective function.

2.4 An example of correspondence matrix

An example of the final correspondence matrix M estimated by the GA algorithm is presented
in Table 1 where data points were generated using the procedure to be described in Section 4.
From Table 1, it can be seen that most elements of the correspondence matrix M are zero,
implying that the correspondence matrix M can be condensed without losing useful information
for matching.

From Table 1, it can be seen that p6 and p′

6 are slack variables, (p2,p
′

1), (p3,p
′

2), (p4,p
′

3), and
(p5,p

′

4) are real correspondences, p1 and p′

5 are disappearing and appearing points respectively.
The probabilities of real correspondences are not necessarily equal to 1, affected by a number of
factors, including β, their actual matching errors, and slack variables.

2.5 Time and space complexities

From the outline of the GA algorithm, it can be seen that the algorithm has both the time
and space complexities of O(n1n2) [19]. However, the whole process is often both very time
and space consuming [27]. When both n1 and n2 are large, the two-way constraint enforcement
dominates the matching process. Both the high time and space demands render it difficult, if
not impossible, for the GA algorithm to match overlapping 3D shapes with thousands of points.
This claim is to be demonstrated in Section 4.
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3 The improvement to GA

As outlined in the last section, the GA algorithm is essentially time consuming and storage
expensive [27]. On the other hand, while the GA algorithm uses all points for matching, we
wonder whether it is absolutely necessary for each point in one image to match all points in
another. This motivates us to propose using k-closest points instead for matching. In this case,
the rows in correspondence matrix M corresponding to points in the first image and slack variable
pn1+1 have different numbers of columns. For the sake of avoiding a misuse of term matrix, the
correspondence matrix M is thus called ragged matching array. The proposed improvement to
the GA algorithm is made from the following five aspects: ragged matching array computation,
the two-way constraint enforcement, camera motion estimation, an example of ragged matching
array, and time and space complexities which are detailed as follows.

3.1 Ragged matching array computation

For each point pi in P, the optimised k-D tree [29] can be used to find k closest points p′

ci1
,

p′

ci2
, · · ·, and p′

cik
in P′ to the transformed point Rpi + t. Here, cij(j = 1, 2, · · · , k) denotes

the subscript of points in P′. The operation of finding k closest points here is essentially a
mapping C that associates k closest points in P′ to each point pi in P. This mapping C plays a
critical role for the computational efficiency of the proposed improved GA algorithm. Then the
corresponding matching error Q can be computed as:

Qij = ||p′

cij
−Rpi − t||2 (i = 1, 2, · · · , n1; j = 1, 2, · · · , k),

Qik+1 = ||p′

n2+1 −Rpi − t||2 (i = 1, 2, · · · , n1), Qn1+1j = ||p′

j −Rpn1+1 − t||2 (j = 1, 2, · · · , n2).

Consequently, the ragged matching array M can be computed as:

mij = exp(−β(Qij − α)) (i = 1, 2, · · · , n1; j = 1, 2, · · · , k),

mik+1 = exp(−β0(Qij − α)) (i = 1, 2, · · · , n1), mn1+1j = exp(−β0(Qij − α)) (j = 1, 2, · · · , n2).

The ragged matching array M has the following structure:


















m11 m12 · · · m1k m1k+1

m21 m22 · · · m2k m2k+1
...

... · · ·
...

...
mn11 mn12 · · · mn1k mn1k+1

mn1+11 mn1+12 · · · · · · mn1+1n2



















.

3.2 The two-way constraint enforcement

For the application of the Sinkhorn procedure for imposing the two-way constraint, special at-
tention must be given. For each row i (i = 1, 2, · · · , n1), the normalisation is relatively easy

to implement: m̂1
ij ←

m̂0
ij

∑j=k+1

j=1
m̂0

ij

. However, the column normalisation is significantly different.

Even though the former n1 rows have just k columns respectively, we have to process them in
the same manner as the last row, corresponding to each point in P′. The column normalisation
can be implemented in the following three steps as:
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1. Initialise the sum of matching probabilities for each point in P′ as: s(j) = m̂1
n1+1j (j =

1, 2, · · · , n2);

2. Consider the matching probability for any point in P′ found as a possible point correspon-
dent by a point in P:

s(cij)← s(cij) + m̂1
ij (i = 1, 2, · · · , n1; j = 1, 2, · · · , k);

3. Normalise each column (with sparse elements) in M as:

m̂0
ij =

m̂1
ij

s(cij)
(j = 1, 2, · · · , k; i = 1, 2, · · · , n1), m̂0

n1+1j =
m̂1

n1+1j

s(j)
(j = 1, 2, · · · , n2).

The two-way constraint enforcement leads to an optimal estimation of the ragged matching array
M.

3.3 Camera motion estimation

Once the ragged matching array M has been estimated, the motion parameters rotation matrix
R and translation vector t can be estimated using the quaternion method [2] in the weighted
least squares sense as:

1. Initialise the matching probabilities wi (i = 1, 2, · · · , n1) and w′

j (j = 1, 2, · · · , n2) as zero
for each point in P and P′ respectively;

2. Compute the accumulated matching probabilities wi and w′

j for each point in P and P′

respectively as:

wi ← wi + mij (j = 1, 2, · · · , k), w′

cij
← w′

cij
+ mij (i = 1, 2, · · · , n1; j = 1, 2, · · · , k);

3. Compute the weighted centroid of each point set as: p̄ = 1
∑n1

i=1
wi

∑n1

i=1 wipi, p̄
′ = 1

∑n2

j=1
w′

j

∑n2

j=1 w′

jp
′

j ;

4. Compute the covariance matrix H as: H =
∑n1

i=1

∑k
j=1 mij(pi − p̄)(p′

cij
− p̄′)T ;

5. Use the quaternion method [2] to estimate the rotation matrix R from H, leading the
translation vector t to be estimated in the weighted least squares sense as: t = p̄′ −Rp̄.

Then the above steps in the traditional GA algorithm described in the last section can be iterated.
When the relative variation of either the rotation or translation vector at successive two iterations
is smaller than the desired matching error ρ or the iteration number is larger than I1, the cycle
B terminates. In practice, the algorithm is not sensitive to ρ. In general, it can be set in the
interval [0.00001, 0.1].
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3.4 An example of ragged matching array

An example of the final ragged matching array M estimated by the proposed improved GA
algorithm is presented in Table 2 where data points were generated using the procedure to be
described in Section 4. From Table 2, it can be seen that M here still possesses the properties
of the correspondence matrix described in the last section and correctly identifies all the real
correspondences and appearing and disappearing points between the two overlapping 3D free
form shapes to be matched. However, it is much more compact than that in Table 1. This shows
that condensing the correspondence matrix without losing useful information for matching is
feasible.

3.5 Time and space complexities

From the development of the proposed improved GA algorithm, it can be seen that it has a time
complexity of O(n1k ln n2) and a space complexity of O(n1 + n2), which are much smaller than
those, O(n1n2), of the traditional GA algorithm. Both the time and space efficiency enable the
improved GA algorithm to operate without any pre-processing directly on whole 3D free form
shapes consisting of either sparse or dense points as demonstrated in the next section. Since the
proposed improvement to the GA algorithm is based on k closest points, we call it the k-GA
algorithm.

4 Experimental results

In order to provide a better understanding of the performance of the improved k-GA algorithm,
we implemented the original GA algorithm, the improved k-GA algorithm and the GICP algo-
rithm [15] with the desired matching error equal to 0.003 and the maximum iteration number
equal to 300 for a comparative study based on both synthetic data and real images. All algo-
rithms were directly applied to data points without any pre-processing, feature extraction, or
segmentation and also without any knowledge about the distribution of points, occlusion, ap-
pearance and disappearance of points, or motion information. Thus, the experiments based on
such images are objective and they represent typical imaging conditions.

All these algorithms were initialised using a pure translational motion derived from the centroid
difference of the first and second point sets, representing the free form shapes to be matched.
In addition, the following parameter values were used: slack variables pn1+1 = 1

n1

∑n1

i=1 pi and

p′

n2+1 = 1
n2

∑n2

j=1 p′

j , d̄ = 1
n1n2

∑n1

i=1

∑n2

j=1 ||p
′

j−pi||
2, α = 0.03, β0 = 0.1/d̄, βr = 1.1, βf = 4000/d̄,

I0 = 30, I1 = 10, ρ = 0.001, and M̂ convergence threshold γ = 0.05.

The parameters of interest in this paper are the number k of closest points for matching, the
relative calibration error in percentage of rotation axis as eh = ||ĥ− h||, the relative calibration
error in percentage of rotation angle as eθ = (θ̂ − θ)/θ, and the relative calibration error in
percentage of translation vector as et = ||̂t−t||/||t|| for the synthetic points data, the average eµ

and standard deviation eσ in millimetres of matching errors ei based on the finally established N
reciprocal correspondences [5, 31] (ri, r

′

i)(i = 1, 2, · · · , N): ei = ||r′i − R̂ri − t̂||, eµ = 1
N

∑N
i=1 ei,

and eσ =
√

1
N

∑N
i=1(ei − eµ)2, the calibrated rotation angle θ̂ in degrees: θ̂ = 180

π
acos r11+r22+r33−1

2
,
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ĥ = ( r23−r32

2 sin(θ̂)
, r31−r13

2 sin(θ̂)
, r12−r21

2 sin(θ̂)
)T , R̂ =







r11 r12 r13

r21 r22 r23

r31 r32 r33





, and the matching time in seconds for real

images. Since the rotation angle θ around an unknown rotation axis of the camera motion can
be derived from the name encoding of real image files, the calibrated rotation angle θ̂ is thus in
this paper one of the parameters of interest. All the experiments were carried out on a Pentium
III, 866MHz, 256M RAM computer.

4.1 Synthetic data with sparse points

First n points P = {p1,p2, · · · ,pn} were randomly generated with uniform distribution within
the 3D space [10, 20]× [10, 20]× [10, 20]. These points were then subjected to a rotation angle
θ around a fixed rotation axis h randomly generated with uniform distribution within the 3D
space [1, 3] × [1, 3] × [1, 3] followed by a constant translation vector t randomly generated with
uniform distribution within the 3D space [10, 20]× [10, 20]× [10, 20]. Let the transformed points
be P′ = {p′

1,p
′

2, · · · ,p
′

n}. Once the data were generated we thus, have precise knowledge of the
selected points and their correspondences (pi,p

′

i)(i = 1, 2, · · · , n) and motion parameters rotation
matrix R and translation vector t to serve as reference for error estimation and validation of the
algorithms.

In order to simulate real world noise contaminated data, Gaussian random noise was added to
the coordinates of each point with mean equal to 0 and standard deviation σ1 = 0.1 in one series
of experiments and σ2 = 0.2 in another. In order to simulate occlusion and appearance and
disappearance of points, we removed the last 20% points in P and the first 20% points in P′.
Finally we obtained two new sets of points P and P′ for matching with 60% overlapping in 3D
space.

4.1.1 The number k of closest points

In this section, we report the experimental results about how to determine the optimal number
k (1 ≤ k ≤ n2) of closest points for matching. Unless stated elsewhere, the synthetic data points
used for experiments are always corrupted by the low level σ1 of noise as described above. The
experimental results are presented in Table 3.

From Table 3, it can be seen that as pointed out in [20], the GA algorithm does sometimes con-
verge to a local minimum, leading to poor matching results. Unfortunately, the k-GA algorithm
also cannot guarantee to always converge to the global minimum. If the number k of closest
points is too small, then a limited number of candidate points in the second view are chosen. In
this case, the k-GA algorithm does not make full use of information in the shape for matching.
In addition, the smaller the parameter k is, the more heavily the order of images biases the
final matching results. If the number k of closest points is too large, then too many candidate
points in the second view chosen for matching not only will require more time for matching, but
also may confuse which is the best match. This is especially the case when the 3D shapes are
represented as sparse points. This observation is justified by psychological studies as follows: the
probability for a stimulus to confuse another decreases exponentially with the distance between
these two stimuli [32]. This explains that the points farther from the closest points in the second
image are unlikely to ambiguate the 3D free form shape matching and thus, a limited number
k of closest points maybe enough for accurate 3D free form shape matching. Moreover, when
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human brain responds to a stimulus, it inhibits the response to other stimuli [33]. This shows
that the response from the human brain to the closest points may inhibit the response to those
farther away from the closest points. Thus, considering k closest points in the second view for
matching, instead of all points, is both practically and theoretically feasible. An overall analysis
of the experimental results reveals that k=4 is a good compromise for matching, achieving both
accuracy and stability. Thus, unless stated elsewhere, k=4 is always used for matching in the
rest of this paper.

From Table 3, it can also be seen that sometimes, the final matching results are not dependent
on the number k of closest points. This can be explained as follows: for any point pi in P, we
establish k possible point matches (pi,p

′

cij
) (j = 1, 2, · · · , k) and at most one of them is real. If pi

is in the overlapping area, then one of them must be somewhat feasible at different evolutionary
stages of matching. If pi is a disappearing point, then none of them will be feasible. Whether
the real point correspondences can be finally established or not is largely determined by the
configuration of points, the characteristics of the shapes to be matched, and the motion that the
camera underwent. This phenomenon is not dependent on the number k of closest points and is
reflected as a fact that different numbers k of closest points are likely to lead the k-GA algorithm
to converge to the same local minimum, yielding the same final matching results. For accurate
matching, the k-GA algorithm has to converge to the global minimum, independent of the size
of k. However, in practice, various numbers k of closest points may result in paths with different
efficiencies and/or probabilities for successfully evolving the matching process of establishing real
point correspondences between P and P′ to be matched.

When k=1, the k-GA algorithm degenerates to the traditional ICP algorithm. In this case, we
call the k-GA algorithm the SoftICP algorithm. The main difference between the SoftICP and
ICP algorithms lies in that the former imposes the two-way constraint embedded into a stochastic
optimisation scheme in the form of deterministic annealing, while the latter does not.

4.1.2 Different motions

In this section, we do a comparative study of performance among the GA, k-GA, and GICP
algorithms. The experimental results are presented in Figure 2 and Table 4 (n=90). In the
figure, the solid lines correspond to the low level σ1 of noise, the dash lines correspond to the
high level σ2 of noise, lines with pluses correspond to the k-GA algorithm, lines with crosses
correspond to the GICP algorithm, and lines without any signs correspond to the GA algorithm.

From Figure 2, it can be seen that while both the GA and k-GA algorithms are significantly more
accurate than the GICP algorithm, the GICP algorithm is not stable. This is because the GICP
algorithm applied the Monte Carlo resampling technique to estimate some motion parameters of
interest necessary for the elimination of false matches and differently resampled data may lead
to different motion estimation results. With the rotation angle increasing, both the GA and k-
GA algorithms become more and more accurate for the calibration of the parameters of interest
rotation axis, rotation angle, and translation vector. This shows that small motions are relatively
difficult to calibrate. When data points were corrupted by heavier noise, the performance of both
the GA and k-GA algorithms is poorer. This however is expected, since heavier noise makes data
points more unreliable.

Even though all points in the second view are used for matching, the GA algorithm still yielded
very similar results to those by the k-GA algorithm for the calibration of the parameters of
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interest rotation axis, rotation angle and translation vector. This shows that it is not necessary
to use all points in P′ for matching. However, the k-GA algorithm is about 20 times faster and
thus in this case is significantly more computationally efficient than the GA algorithm. This
conclusion is confirmed by Table 4. This justifies our motivation to look at k closest points in
the second view for matching, instead of all points.

4.1.3 Different numbers of points

In this section, we report the experimental results about the relationship between the number
of points on the 3D free form shapes to be matched and the time required for matching. The
rotation angle of the camera motion was fixed: θ = 25◦. The experimental results are presented
in Figure 3 and Table 5.

From Figure 3, it can be seen that all algorithms fluctuate with respect to the calibration of the
parameters of interest rotation axis, rotation angle and translation vector. This may be because
the same level (σ1) of noise has different effects in corrupting different numbers of randomly
generated points with uniform distribution on the 3D free form shapes to be matched, leading to
different accuracies for the calibration of the parameters of interest. But a careful analysis still
reveals that both the GA and k-GA algorithms are more stable than the GICP algorithm.

While both the GA and k-GA algorithms again produce similar matching results for the cali-
bration of the parameters of interest rotation axis, rotation angle, and translation vector, the
time required by the GA algorithm increases rapidly with the number of points on the 3D free
form shapes to be matched. A careful analysis confirms that the GA algorithm has a time
complexity of O(n1n2) and the relationship between the time required for matching and the
numbers n1 and n2 of points on the 3D free form shapes to be matched can be approximated
as: time(s)=4*n1/40* n2/40. Based on this approximation, we can predict that matching two
images, where each is composed of 8000 points, as is the case described in the next section, will
take about 4*8000/40*8000/40=160,000 seconds. This is really a long time for the matching of
two typical and relatively small, whole real images. This confirms the claim described in [27] and
in Section 2 of this paper and explains why the traditional GA algorithm has to employ various
techniques to reduce the number of points for feasible matching. However, the k-GA algorithm
increases time smoothly for matching. This is a desired characteristic for matching algorithms
to deal with 3D free form shapes with various sizes.

4.2 Real images with dense points

In this section, we report the experimental results based on real images. Since k closest points in
the second image, instead of all points, are used for matching by the k-GA algorithm, the concern
whether the order of images effects the k-GA algorithm on the final matching results arises. To
deal with this concern, we did experiments using both orders of real images. Since the GA
algorithm is intolerably slow in processing the whole images with dense points, we implemented
it with a uniform resampling of image points at a rate of 1/10 so that about 10% points were
selected. Of course, the experiments based on resampling are not objective and maybe unfair.
Our interest however is just to provide a rough idea about how the resampling scheme influences
the performance of the traditional GA algorithm. To avoid giving a wrong impression about
the performance of the GA algorithm, only two parameters are recorded: one is the calibrated
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rotation angle θ̂ of the camera motion, which should be relatively independent of resampling
with the assumption that the resampled points can approximate the 3D free form shapes to be
matched, the other is the time used for matching from which we can predict how much time
is needed for the matching of whole images. Note that while the GA algorithm was applied to
sampled points for matching, both the k-GA and GICP algorithms were applied to all image
points.

The range images depicted in Figures 4 and 6 and and Tables 6 and 9 used here were downloaded
from the range image database currently hosted at the Signal Analysis and Machine Perception
Laboratory at Ohio State University. All range images were captured using a Minolta Vivid 700
range camera and are of the same size of 200× 200 pixels.

For a better visualisation of 3D free form shape matching, 200 points were randomly selected
with uniform distribution from the first images and their matching results are presented below.
In the figures, pluses represent the transformed first image points, circles represent the second
image points closest to the transformed first image points.

4.2.1 Small motions

Since the GICP algorithm requires a good initialisation of motion parameters, in this section,
we report the experimental results for the automatic matching of 3D free form shapes subject
to relatively small motions. By doing this, we provide an ideal condition for all algorithms to
match 3D free form shapes. The images chosen are bird and tubby (Figure 4 and Table 6). The
experimental results are presented in Figure 5 and Tables 7 and 8.

From Figure 5, it can be seen that before matching, the two sets of points are significantly
different in 3D space. But after matching, the two sets of points are perfectly superimposed and
appearing and disappearing points have been correctly identified. This observation is clearly
confirmed by Table 7 where before matching, the average and standard deviation of matching
errors based on reciprocal correspondences are large. After matching these parameters of interest
have been significantly reduced. This visualisation clearly shows that the proposed algorithm is
accurate for 3D free form shape matching.

From Table 8, it can be seen that while the k-GA algorithm achieves a matching accuracy of
about 1/3 interpoint distance in images in Table 6, it is significantly more accurate than the
GICP algorithm in the sense of average matching error over reciprocal correspondences. The
GA algorithm performs really poorly especially for the matching of the tubby images. While the
k-GA algorithm calibrated a rotation angle of 19.70◦ of the camera motion for the matching of
the tubby2 and tubby1 images, the GA algorithm calibrated the corresponding rotation angle as
3.52◦, which is completely inaccurate and far from the expected 20◦.

While the order of images used for matching imposes a great effect on the GICP algorithm
with respect to the final matching results, it does not really bother the k-GA algorithm for the
automatic 3D free form shape matching. For example, while different orders of two tubby im-
ages lead the GICP algorithm to yield a relative average matching error variation of 2|0.38 −
0.26|/(0.38+0.26)*100%=37.50%, they do not really lead the k-GA algorithm to yield a signif-
icant difference between the corresponding average matching errors. This is because the k-GA
algorithm applies the two-way constraint, reducing the effect of the order of images on the final
matching results. When the first image is larger than the second image as is the case for the
matching of the bird2 and bird1 images, more false matches were introduced, leading the GICP
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algorithm to converge to a local minimum with a relatively larger matching error of 0.39mm.

From the time complexity of the GA algorithm, we can speculate again that it will take about
19* 9234/112 *10502/128 = 128,524 seconds for the matching of the whole bird images and 4*
4354/55 * 4361/57 = 24,226 seconds for the matching of the whole tubby images. The time
predicted here is less than that in the last section. This is because the GA algorithm converges
prematurely here for the matching of the bird and tubby images with resampling, yielding poor
matching results. In this case, even though the time is tolerable, the space demand is still too
high, since we can hardly open an array of 9234 by 10502 on a PC. The k-GA algorithm is less
computationally efficient than the GICP algorithm. This is because the latter did not completely
eliminate false matches, accelerating the matching process [16].

4.2.2 Large motions

In this section, we report the experimental results for the automatic matching of 3D free form
shapes subject to relatively large motions with a large number of occluded and appearing and
disappearing points. Since large motions violate the assumption of the GICP algorithm, it is
expected that the GICP algorithm will perform poorly. However, our interest is to test how
the k-GA algorithm behaves in dealing with large motions. The images chosen are bunny and
dinosaur (Figure 6 and Table 9). The experimental results are presented in Figure 5 and Tables 7
and 10.

From Figure 5 and Table 7, it can be seen that even for images with relatively large motions, the
proposed algorithm can still accurately match them despite the fact that only 4 closest points in
the second image were used for matching. This shows that the proposed algorithm is powerful
for automatically matching images with a large range of motions without loss of accuracy.

From Table 10, it can be seen that while both the GA and GICP algorithms perform reasonably
well with all relative calibration errors of rotation angle less than 37.58%, the k-GA algorithm is
again significantly more accurate than the GICP algorithm. Also, the order of images imposes
a subtle effect for matching on the GICP algorithm with respect to the final matching results,
depending on the specific 3D free form shapes to be matched. However, the k-GA algorithm yields
relatively stable results, similar to those for small motions. This shows that the k-GA algorithm
is powerful in dealing with the automatic matching of 3D free form shapes with various motions.
Comparing Table 8 with Table 10, it can be clearly seen that resampling makes the GA algorithm
unstable for matching. This confirms our analysis in the introduction.

5 Conclusions

In this paper, we have proposed using k closest points for matching with the point match probabil-
ities estimated using the graduated assignment algorithm, leading the camera motion parameters
to be estimated using the quaternion algorithm in the weighted least squares sense. Since out-
liers almost always occur in the process of 3D free form shape matching, slack variables were
employed to explicitly model them. In enforcing the two-way constraint using the Sinkhorn pro-
cedure, while the row normalisation is relatively easy to implement, the column normalisation
needs special attention: even though a row has just k columns, we have to process them as n2

columns, corresponding to each point in the second view. Comparing the k-GA algorithm with
the GA algorithm, we can draw the following conclusions:
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• While the latter uses all points in the second view for matching and thus, has high time
and space demands, the former uses k closest points. Since k is generally considerably
smaller than the number of points in the second view, it dramatically reduces both the
time and space complexities of the latter. However, the experimental results based on
both synthetic data and real images have shown that the former does not significantly
sacrifice the accuracy of the latter for matching and the resulting order of images does not
significantly bias the proposed k-GA algorithm on the final matching results;

• Both the time and space efficiency enable the former to successfully operate without any
pre-processing directly on whole images with thousands of points, while the latter has
difficulty, if does not find it impossible, due to the high time and space demands [27];

• While resampling [28], feature point extraction and resampling [21], or feature point ex-
traction and fusion [22] is often used to reduce the number of points for the latter to match
3D free form shapes with both the time and space feasibility, the optimised k-D tree [29]
can be employed to accelerate the former; and finally,

• While feature extraction [14, 21, 22] itself is also a challenging problem in both the ma-
chine vision and pattern recognition literatures, the former does not require to extract any
features and thus, has an advantage of easy implementation.

Comparing the k-GA algorithm with the GICP algorithm, we can draw the following conclusions:

• The former is often significantly more accurate and stable than the latter, while the latter
is significantly more computationally efficient than the former, as the latter does not always
completely succeed in eliminating false matches, speeding up the matching process [16];

• The order of images imposes a significantly heavier impact on the latter for matching than
on the former.

Thus, the k-GA algorithm combines the advantages of accuracy of the traditional GA algorithm
and both the time and space efficiency of the traditional ICP algorithm and thus, it is powerful
and of general use for the automatic matching of 3D free form shapes with either sparse or dense
points. The experimental results based on both synthetic data and real images have shown that
the proposed k-GA algorithm yields very stable results for the automatic matching of 3D free
form shapes despite the fact that it was just initialised by a pure translational motion derived
from the centroid difference of the two shapes to be matched.

One of the most important findings described in this paper is that when the 3D free form shapes
to be matched are represented as either sparse or dense unorganised points and subjected to
a relatively small motion with a rotation angle smaller than 30◦, for instance, it is the two-
way constraint embedded into a stochastic optimisation scheme in the form of deterministic
annealing, not a large number of closest points, that plays a vital role for accurate 3D free form
shape matching, more closest points used for matching do not necessarily yield significantly better
matching results, but often require significantly more time. Further research is to investigate how
to further improve the computational efficiency of the k-GA algorithm. Research is under way
and the results will be reported in the future.

15



6 Summary

The GA algorithm is an elegant algorithm for the automatic matching of 3D shapes. However,
its high time and space complexities make it difficult, if not impossible, to operate on whole
images with dense points representing 3D shapes to be matched. Thus, feature point extraction
or resampling becomes the only feasible choice in this case so that both the time and space
complexities of the GA algorithm are tolerable for the matching of 3D shapes with thousands of
points. Unfortunately, feature point extraction and resampling have two shortcomings: firstly, it
is difficult to replicate the results since different resampling schemes may lead to different results;
secondly, when feature points are extracted and resampled, the difficulty in feature extraction is
then introduced.

In this paper, we have investigated whether it is necessary for a point in one image to match all
points in another as is the case for the traditional GA algorithm. If not, then both the time and
space efficiency can be obtained and thus, promote the application of the GA algorithm. This
motivated us to propose using k closest points in the second view for matching, instead of all
points. In order to improve the computational efficiency of the proposed improved algorithm,
the optimised k-D tree is employed. To deal with occlusion and appearance and disappearance
of points, slack variables are employed. The probability of each point match is then estimated
using the GA algorithm, resulting in the motion parameters to be estimated using the quaternion
method in the weighted least squares sense. In applying the Sinkhorn procedure for enforcing
the two-way constraint [25], the row normalisation is relatively easy to implement. However, the
column normalisation needs special attention. Even though a row has just k columns, we have
to treat them as n2 columns, corresponding to each point in the second view.

The experimental results based on both synthetic data and real images have shown that the
proposed improved k-GA algorithm does not significantly sacrifice the accuracy of the traditional
GA algorithm and the order of images does not significantly bias the proposed k-GA algorithm
on the final matching results, but it gains without any pre-processing both the time and space
efficiency for the automatic matching of 3D free form shapes with thousands of points. While it
may not be necessary to use all points in the second view as candidates for matching, it is vital
to enforce the two-way constraint embedded into a stochastic optimisation scheme in the form
of deterministic annealing.
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Table 1: The final correspondence matrix M estimated by the GA algorithm using synthetic points
data (n=6) with θ = 25◦ to be described in Section 4.

p′

1 p′

2 p′

3 p′

4 p′

5 p′

6

p1 0.000 0.000 0.000 0.000 0.000 1.000
p2 0.407 0.000 0.000 0.000 0.000 0.593
p3 0.000 0.410 0.000 0.000 0.000 0.590
p4 0.000 0.000 0.413 0.000 0.000 0.587
p5 0.000 0.000 0.000 0.412 0.000 0.588
p6 0.593 0.590 0.587 0.588 1.000

Table 2: The final ragged matching array M estimated by the proposed improved GA algorithm using
synthetic points data (n=6 and k=4) with θ = 25◦ to be described in Section 4.

p1 p′

3 p′

2 p′

4 p′

1 p′

6

0.000 0.000 0.000 0.000 1.000
p2 p′

1 p′

5 p′

4 p′

2

0.376 0.000 0.000 0.000 0.624
p3 p′

3 p′

2 p′

1 p′

4

0.000 0.379 0.000 0.000 0.621
p4 p′

3 p′

2 p′

5 p′

1

0.382 0.000 0.000 0.000 0.618
p5 p′

4 p′

5 p′

1 p′

3

0.381 0.000 0.000 0.000 0.619
p6 p′

1 p′

2 p′

3 p′

4 p′

5

0.624 0.621 0.618 0.619 1.000
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Table 3: The mean µ and standard deviation σ of relative calibration errors (%) of rotation axis ĥ,
rotation angle θ̂, and translation vector t̂ using synthetic points data with different motions.

n θ(◦) k Algo. eh(%) eθ(%) et(%)
GA 3.61 -1.99 2.06

1 k-GA 184.84 -44.78 9.26
50 2 k-GA 5.13 -2.95 2.88

4 k-GA 5.13 -2.95 2.88
10 6 k-GA 5.13 -2.95 2.88

GA 2.84 -1.29 2.18
1 k-GA 140.81 -72.28 9.31

70 2 k-GA 152.70 -64.91 15.55
4 k-GA 3.75 -1.91 2.79
6 k-GA 3.75 -1.91 2.79

GA 193.48 894.25 76.59
12 10 2 k-GA 3.61 21.88 0.68

4 k-GA 3.61 21.88 0.68
6 k-GA 193.48 894.25 76.59

GA 0.72 -1.94 0.78
45 1 k-GA 181.89 -72.93 12.22

2 k-GA 1.50 -2.15 1.26
15 GA 0.54 -1.58 0.81

60 1 k-GA 86.74 -80.85 11.98
2 k-GA 86.74 -80.85 11.98
4 k-GA 1.06 -1.58 1.24
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Table 4: The mean µ and standard deviation σ of relative calibration errors (%) of rotation axis
ĥ, rotation angle θ̂, and translation vector t̂, and calibration time in seconds using synthetic
points data (n=90) with different motions and different levels of noise.

Noise Meas. Algo. eh(%) eθ(%) et(%) time (s)
GA 1.34 -1.17 0.19 12.70

µ k-GA 1.34 -1.16 0.19 0.53
σ1 GICP 6.31 2.47 0.85 0.94

GA 1.09 0.79 0.02 0.57
σ k-GA 1.09 0.78 0.02 0.50

GICP 4.82 3.37 0.25 0.54
GA 2.11 -1.39 0.28 12.76

µ k-GA 2.18 -1.41 0.30 0.65
σ2 GICP 8.20 1.20 0.97 1.35

GA 1.99 0.88 0.04 0.48
σ k-GA 2.05 0.89 0.04 0.48

GICP 9.47 5.43 0.36 0.90

Table 5: The mean µ and standard deviation σ of relative calibration errors (%) of rotation axis ĥ,
rotation angle θ̂, and translation vector t̂ and calibration time in seconds using synthetic points data
with different numbers of points on the 3D free form shapes to be matched.

Meas. Algo. eh(%) eθ(%) et(%) time (s)
GA 1.25 -0.14 0.38 34.83

µ k-GA 1.26 -0.14 0.38 0.86
GICP 2.13 1.04 0.60 0.97
GA 0.68 0.58 0.21 23.81

σ k-GA 0.68 0.58 0.21 0.53
GICP 1.53 4.60 0.45 0.44

Table 6: The number n of valid points and the average lµ and standard deviation lδ of the
interpoint distances in millimetres in different range images.

Image bird1 bird2 tubby1 tubby2
n 9234 10502 4354 4361

lµ(mm) 0.90 0.91 0.89 0.80
lδ(mm) 0.34 0.34 0.66 0.39
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Table 7: The average eµ and standard deviation eσ of matching errors (mm), the number N of finally
established reciprocal correspondences by the k-GA algorithm for the matching of 200 randomly selected
points with uniform distribution from the bird1 and bunny1 images respectively.

Image Registration eµ(mm) eσ(mm) N
bird1-2 before 1.42 1.01 48

after 0.29 0.12 170
bunny1-2 before 0.90 0.65 29

after 0.23 0.11 114

Table 8: The average eµ and standard deviation eσ of matching errors (mm), calibrated rotation angle

θ̂(◦) (20◦ is expected), the matching time in seconds, the number N of finally established reciprocal
correspondences for different range images with small motions. The numbers in the parentheses are the
numbers of sampled points for the GA algorithm.

Images Alog. eµ(mm) eσ(mm) θ̂(◦) time(s) N
bird1-2 k-GA 0.28 0.12 19.82 176 7639

(112,128) GA 15.40 19
GICP 0.31 0.12 19.22 46 7675

bird2-1 k-GA 0.28 0.12 19.80 207 7650
GA 15.40 19

GICP 0.39 0.16 18.40 46 7432
tubby1-2 k-GA 0.25 0.14 19.67 69 2846
(55,57) GA 3.52 4

GICP 0.38 0.21 16.60 11 2723
tubby2-1 k-GA 0.25 0.14 19.70 65 2857

GA 3.52 4
GICP 0.26 0.14 19.45 9 2861

Table 9: The number n of valid points and the average lµ and standard deviation lδ of the
interpoint distances in millimetres in different range images.

Image bunny1 bunny2 dinosaur1 dinosaur2
n 6579 6460 8366 7107

lµ(mm) 0.65 0.68 1.63 1.63
lδ(mm) 0.24 0.32 1.40 1.93
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Table 10: The average eµ and standard deviation eσ of matching errors (mm), calibrated rotation angle

θ̂(◦), the matching time in seconds, the number N of finally established reciprocal correspondences for
different range images with large motions (Bunny and Dinosaur have an expected rotation angle of
40◦ and 36◦ around an unknown rotation axis respectively). The numbers in the parentheses are the
numbers of sampled points for the GA algorithm.

Images Alog. eµ(mm) eσ(mm) θ̂(◦) time(s) N
bunny1-2 k-GA 0.23 0.11 40.04 115 3748
(83,79) GA 36.59 9

GICP 0.25 0.12 39.07 22 3711
bunny2-1 k-GA 0.23 0.11 40.02 111 3750

GA 36.59 9
GICP 0.35 0.23 35.88 24 3416

dinosaur1-2 k-GA 0.62 0.87 35.24 159 4311
(102,89) GA 34.32 12

GICP 1.12 0.86 22.47 29 2905
dinosaur2-1 k-GA 0.62 0.87 35.20 137 4297

GA 34.32 12
GICP 1.32 0.96 25.30 52 2527
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Figure 1: Physical interpretation for the various terms within the objective function of the GA
algorithm. Left: first term is to minimize weighted matching errors; Middle: second term is to
equalise weights; Right: third term is to maximise overlapping area.
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Figure 2: The relative calibration errors of the parameters of interest and calibration time
as a function of the rotation angle. Top left: rotation axis; Top right: rotation angle;
Bottom left: translation vector; Bottom right: the time in seconds for matching in a trial.
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Figure 3: The relative calibration errors of the parameters of interest and calibration time
as a function of the number of points on the 3D free form shapes to be matched. Top left:
rotation axis; Top right: rotation angle; Bottom left: translation vector; Bottom right:
the time in seconds for matching in a trial.

Figure 4: The real range images used. Left two: bird; Right two: tubby.
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Figure 5: The results for the matching of 200 randomly selected points with uniform distribution
from the bird1 and bunny1 images respectively by the k-GA algorithm. Left column: Before
registration, Right column: after registration. Top row: bird1-2; bottom row: bunny1-2.

Figure 6: The real range images used. Left two: bunny; Right two: dinosaur.
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