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From lines to epipoles through planes in two views�
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Abstract

This paper addresses the computation of the fundamental matrix between two views, when camera motion and 3D structure are unknown,
but planar surfaces can be assumed. We use line features which are automatically matched in two steps. Firstly, with image based parameters,
a set of matches are obtained to secondly compute homographies, which allows to reject wrong ones, and to grow good matches in a
final stage. The inclusion of projective transformations gives much better results to match features with short computing overload. When
two or more planes are observed, different homographies can be computed, segmenting simultaneously the corresponding planar surfaces.
These can be used to obtain the fundamental matrix, which gives constraints for the whole scene. The results show that the global process
is robust enough, turning out stable and useful to obtain matches and epipolar geometry from lines in man made environments.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The fundamental matrix encapsulates the geometric infor-
mation which relates two different views regardless of the
observed scene. The non-metric basis of this matrix makes
possible to use uncalibrated cameras. It has been normally
computed using points [1] which fails when all the points
lie in a plane or with small baseline images. Besides, it can-
not be computed directly from lines. It can be obtained from
lines, however, if they are in different planes through the
corresponding homographies [2]. The use of lines instead of
points has advantages, mainly in man made environments,
because the lines can be accurately extracted in noisy im-
ages, they capture more information than points and they
may be matched where partial occlusions occur [3].

In this context the matching problem is crucial to make
the process work automatically. The matching of features
based on image parameters has many drawbacks, giv-
ing non-matched or wrong matched features. Projective
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transformations allow image dependent measures, as cross-
correlation, to be a view-point invariant which makes pos-
sible to afford wide baseline matching [4]. So, the epipolar
constraint imposed by the fundamental matrix can be used
for the matching of points, but it cannot be used for line
matching, because the end points of the extracted lines are
not reliable. If the features lie on a planar surface then a
plane projective transformation can be used.

Scenes with several planes are usual in man made envi-
ronments, and the model to work with multiple views of
them is well known. Points or lines in one image of the world
plane are mapped to points or lines in the other image by a
plane to plane homography, also known as a plane projec-
tive transformation [5]. This is an exact transformation for
planar scenes or for null baseline image pairs. We robustly
match lines between two images using the projective trans-
formations corresponding to the existing scene planes [6].
The robust line matching and the computation of the corre-
sponding homography is iteratively carried out until we have
no more available planes. If two planes have been computed
at least, the fundamental matrix can be computed, which
gives a general constraint for the whole scene. It has been
reported that the multi-plane algorithm is unstable, but when
only two planes are observed, which is quite usual in man

http://www.elsevier.com/locate/patcog
mailto:csagues@unizar.es


C. Sagüés et al. / Pattern Recognition 39 (2006) 384–393 385

made environments, the multi-plane algorithm gives better
results than the general method [7].

In this paper the automatic matching of lines computing
homographies and its use to obtain the epipoles in an im-
age pair is exposed and discussed. Some results related to
the accuracy of the computed fundamental matrix, the seg-
mentation of planes and the simultaneous matching of lines
are given. To get enough initial basic matches, scenes where
two planes take up most part of the images are required.

After this introduction, we present in Section 2 the match-
ing of lines based in the simultaneous estimation of homo-
graphies. After that, we present in Section 3 the equations
which relate the homographies and the fundamental matrix.
The conditioning of the motion and the scene for the fun-
damental matrix to be computed is exposed in Section 4.
Experimental results with real images and synthetic data are
presented in Section 5. Finally, Section 6 is devoted to ex-
pose the conclusions. The availability of both, homographies
and the fundamental matrix may be useful in other applica-
tions. For example, we have used it for robot homing [8].

2. Robust matching

We take straight lines as key features because, as said
before, they are plentiful in man made environments, they
have a simple mathematical representation, they can be ex-
tracted more accurately than points and they behave better
with partial occlusions.

2.1. Basic matches

In the first stage we match the lines using image informa-
tion. We take into account not only the geometric parameters
of the lines, but also the brightness attributes supplied by the
line extractor. So, average grey level (agl) and contrast (c),
are combined with geometric parameters of the segments,
such as midpoint coordinates (xm, ym), line orientation (� in
2� range with dark on the right and bright on the left) and
its length (l).

The lines are stated as compatible when they have ge-
ometric and brightness similarity. The match between two
lines is made to the weighted nearest neighbor. So, naming
rg the difference of geometric parameters between both im-

ages (1, 2), rg = [
xm1 − xm2, ym1 − ym2, �1 − �2, l1 − l2

]T
and rb the variation of the brightness parameters between
both images, rb = [

agl1 − agl2, c1 − c2
]T, we can compute

two Mahalanobis distances, one for the geometric parame-
ters dg = rT

g S−1rg and other for the brightness parameters,

db = rT
b B−1rb. Here, S is a matrix that expresses the un-

certainty due to extraction noise and the uncertainty due to
camera motion and unknown scene structure, and B is a ma-
trix that expresses the uncertainty due to measurement noise
and changes of illumination. From these distances, the sim-
ilarity is measured by the simultaneous compliance of geo-
metric and brightness compatibility tests,

• Geometric compatibility. Assuming that the noise is Gaus-
sian distributed, the similarity distance for the geometric
parameters is distributed as a �2 with 4 d.o.f. Establish-
ing a significance level of 5%, the compatible lines must
fulfill, dg ��2

4(95%).
• Brightness compatibility. Similarly, referring to the

brightness parameters, the compatible lines must fulfill,
db ��2

2(95%).

2.2. Matches and homographies

From matched lines (n1, n2) belonging to the same plane,
a projective transformation H21 exits, in such a way that
n2=[H−1

21 ]Tn1, being H21 the 3×3 projective transformation
of points x2 = H21x1.

We obtain the projective transformation of points, but
using matched lines. To deduce it, we suppose the start
(s) and end (e) tips of a couple of matched lines to be
xs1, xe1, xs2, xe2, which usually will not be corresponding
points. As the tips belong to the line, we have that xT

s2n2 =0;
xT
e2n2 = 0. Besides, the tips of line in the first image, once

transformed, also belong to the corresponding line in the
second image, and therefore, we can write, xT

s1HT
21n2 = 0;

xT
e1HT

21n2 = 0. Combining both equations, we have

xT
s1HT

21[xs2]×xe2 = 0; xT
e1HT

21[xs2]×xe2 = 0, (1)

where [xs2]× is the skew-symmetric matrix obtained from
the vector xs2.

Therefore, each couple of corresponding lines gives two
homogeneous equations to compute the projective transfor-
mation, which can be determined up to a non-zero scale fac-
tor. To compute the homography, we have chosen the ransac
algorithm [9], which is a robust method to consider the exis-
tence of outliers. It makes a search in the space of solutions
obtained from subsets of four matches. Each subset provides
a 8×9 system of equations whose solution is obtained from
singular value decomposition.

From here on, we introduce the geometrical constraint in-
troduced by the estimated homography to get a bigger set of
matches. Our objective is to obtain at the end of the process
more good matches, and to discard the wrong ones obtained
in the first stage, which was based on image properties. Thus,
final matches are composed by two sets. The first one is ob-
tained from the matches selected after the robust computa-
tion of the homography that passes additionally an overlap-
ping test compatible with the transformation of the segment
tips. The second set of matches is obtained taking all the
segments not matched initially and those being rejected pre-
viously. With these lines, a matching process similar to the
basic matching is carried out. However, now the matching is
made to the nearest neighbor segment transformed with the
homography. The transformation is applied to the end tips
of the image segments using the homography H21 to find,
not only compatible lines, but also compatible segments in
the same line. In the first stage of the matching process there
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Fig. 1. House: Image pair used to compute the homographies and the epipole. (a), (b) Basic matches. (c), (d) Matches corresponding to the first
homography. (e), (f) Matches corresponding to the second one. (Original images from KTH, Stockholm).

was no previous knowing of camera motion. However, in
this second step, the computed homography provides infor-
mation about expected disparity due to motion and therefore
the uncertainty of geometric variations can be reduced.

Details of this method of matching and the experiments
introducing the goodness of the projective transformation to
obtain better matches have been presented previously [6].

3. From homographies to the fundamental matrix

The fundamental matrix has been stated as a crucial tool
when using uncalibrated images. As known, it is a 3 × 3
matrix of rank 2 which encapsulates the epipolar geometry,
and it only depends on internal parameters of the camera
and on the relative motion.

Let us suppose the images are obtained with the same
camera whose projection matrixes in a common reference
system are P1 = K[I|0], P2 = K[R|t] (being R the cam-
era rotation, t the translation and K the internal calibration
matrix). Then, the fundamental matrix can be expressed as
F21 = K−T

([t]×R
)

K−1. Normally, it has been computed
from corresponding points [1,10,11], using the epipolar con-
straint, which can be expressed as xT

2 F21x1 = 0. However,
the fundamental matrix is unstable when points lie close to
planes [7].

Lines cannot be used to compute the fundamental matrix
directly, but they can be used to compute it through homo-
graphies, in such a way that: F21 = [e2]× H�

21, where e2 is
the epipole of the second image and H�

21 is the homogra-
phy between first and second image through plane �. If at
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Fig. 2. College: Image pair used to compute the homographies and the epipole. (a), (b) Basic matches. (c), (d) Matches corresponding to the first
homography. (e), (f) Matches corresponding to the second one. (Original images from VGG, Oxford).

least two homographies
(
H�1

21, H�2
21

)
can be computed be-

tween both images corresponding to two planes, a homol-
ogy H = H�1

21 · (H�2
21)−1, that is a mapping from one image

into itself, exists. Under this mapping the epipole is a fixed
point e2 =H e2, so it may be determined from the eigenvec-
tor of H corresponding to non-unary eigenvalue [5]. Thus,
the fundamental matrix can be computed with either of the
following as,

F21 = [e2]×H�1
21 , (2)

F21 = [e2]×H�2
21 , (3)

being [e2]× the skew matrix corresponding to e2 vector.
Alternatively, the fundamental matrix can be computed

from homographies using directly the epipolar constraint
xT

2 F21x1=0. We have two homographies obtained for planes

Table 1
Matches of scenes in Fig. 1 (House) and Fig. 2 (College)

Basic matches Good Final matches Good

House 148 75% 114.6 (8.91) 99% (1%)
College 196 82% 156.7 (11.09) 96% (1%)

Only the lines on the two main planes are considered. We have repeated
the experiments one hundred times using the same Basic matches and
we show as Final matches the mean values and, in brackets, the standard
deviation.

(�1 and �2) which relate the coordinates of the points of the
planes in both images, in such a way that

xT
2 F21x1 = (

H�1
21x1

)TF21x1 = xT
1 H�1

21
TF21x1 = 0,

xT
2 F21x1 = (

H�2
21x1

)TF21x1 = xT
1 H�2

21
TF21 x1 = 0. (4)
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Fig. 3. Intersection lines of two planes through the eigenvalues of the homology. The lines corresponding to 100 runs are represented without the
homology filter (a) and with it (b).

Fig. 4. Intersection lines of two planes through the eigenvalues of the homology. The lines corresponding to 100 runs are represented without the
homology filter (a) and with it (b).

As this relation is satisfied by any point x1, we can write the
following relations [7]:

H�1
21

TF21 + FT
21H�1

21 = 0,

H�2
21

TF21 + FT
21H�2

21 = 0. (5)

From here, a system of twelve linear equations with the
elements of the fundamental matrix is available and it can
be solved using singular value decomposition.

4. Conditioning of scene and motion on the
fundamental matrix

As known, the goodness of the fundamental matrix de-
pends on motion, in such a way that if the two camera cen-
ters are coincident, then the epipolar geometry is not de-
fined. Similarly, when points or lines of the images are in a
single scene plane, the fundamental matrix cannot be com-
puted. As we propose to compute the fundamental matrix
from homographies, a check on the homology conditioning

may help to determine if the fundamental matrix may or
may not be computed.

As said, H = (H�1
21)−1 · H�2

21 and taking into account that
for a plane H21 = K

(
R − (

tnT
�/d�

))
K−1, it turns out that

H =
(

K

(
R − tnT

�1

d�1

)
K−1

)−1 (
K

(
R − tnT

�2

d�2

)
K−1

)
,

(6)

being n�1 , n�2 the normals and d�1 , d�2 the distances to the
planes.

Using the Sherman–Morrison formula [12], in a similar
way than in Ref. [13], it turns out that

(
R − tnT

�1

d�1

)−1

= R−1 +
(
R−1t

) ((
nT

�1
/d�1

)
R−1

)
I + nT

�1
R−1t

. (7)

Substituting in Eq. (6) and operating, we obtain

H = I + vpT, (8)
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Fig. 5. Mean Sampson distance for 20 test points manually matched in the images of the House, the College and Synthetic. Median (a) and mean (b),
in 100 executions. Mean of the angle with the three image pairs, in 100 executions, between the theoretical epipole and the computed one (c). These
results are shown for the three ways of computing F: FH using Eq. (5), eH1 using Eq. (2), eH2 using Eq. (3).

where v is a view dependent vector

v = K
R−1t

1 + nT
�1

/d�1 R−1t
(9)

and p is a plane dependent vector. It corresponds with the
difference of the two normals and it is the image of the
intersection between both planes

p =
(

nT
�1

d�1

− nT
�2

d�2

)
K−1. (10)

If we name v=(v1, v2, v3)
T and p=(p1, p2, p3)

T it turns
out that the eigenvalues of the H homology are (1, 1, 1 +
v1p1 + v2p2 + v3p3).

So, the homology has two equal eigenvalues and the third
one is related to the motion and to the structure of the
scene. These eigenvalues are used to test when two differ-
ent planes have been computed, and then the epipole and
the intersection of the planes can be also computed. The

epipole is the eigenvector corresponding to the non-unary
eigenvalue and the other two eigenvectors define the inter-
section line of the planes [5]. In case of small baseline or if
there exist only one plane in the scene, epipolar geometry
is not defined and only one homography can be computed,
so the possible homology H will be close to identity, up to
scale.

In practice, a homology filter is proposed using these
ideas. Firstly, we normalize the homology dividing by the
median eigenvalue. If there are no two unary eigenvalues,
up to a threshold, then the computation is rejected. When
the three eigenvalues are similar, we search if the homology
is close to identity to avoid the case where two similar ho-
mographies explain the scene or the motion. In other case,
the homology is accepted.

As said, when two planes are available, the correspond-
ing homographies can be used to obtain the fundamen-
tal matrix. The steps carried out to automatically compute
the fundamental matrix from lines is summarized in the
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Fig. 6. Mean Sampson distance for 20 test points manually matched in the images of the House, the College and Synthetic. Median (a) and mean (b),
in 100 executions. Mean of the angle with the three image pairs, in 100 executions, between the theoretical epipole and the computed one (c). These
results are shown for a fundamental matrix computed with homographies (FH), and for a fundamental matrix computed with cross-points (FP).

Algorithm 1.

Algorithm 1 Line matching, homographies and the funda-
mental matrix

Matches := Compute Basic Matches from Images
repeat

Compute Homography (Matches)
MatchesH := Grow Matches from Homography
Matches = Matches-MatchesH

until Two Homographies
if Homology Filter then

Compute Fundamental Matrix
end if

5. Experimental results

Many experiments have been carried out with synthetic
and real images. The homology filter just commented has
been used to determine when a second plane has been ob-

tained. In this case the fundamental matrix can be computed
and several criteria can be used to measure its accuracy. So,
with synthetic images, where the motion and the epipoles are
known, we measure the angle between the direction of the
computed epipole and the theoretical one. With real images
the theoretical epipole is not given and we show the angle of
the epipole with respect to the epipole obtained with more
than 300 points using the “image-matching” solution [1].
On the other hand, we also measure the first order geomet-
ric error computed as the Sampson distance (dS) for a set of
corresponding test points manually extracted and matched,

dS =
(
xT

2 F21x1
)2

(F21x1)
2
f + (F21x1)

2
s + (

FT
21x2

)2
f

+ (
FT

21x2
)2
s

(11)

being ()f and ()s the first and second components of vectors.
In case of real images, the matches are automatically

obtained for the planes in each scene (Figs. 1 and 2). In
Table 1 we show the number of matches and the ratio of good
matches. In this case, once a homography has been com-
puted, the robust homography computation and the grow-
ing matches process has been iteratively repeated twice. The
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Fig. 7. Intersection lines of two planes through the eigenvalues of the homology. The original images (a)–(d) have been obtained from Ref. [14].

Fig. 8. Computation of matches in image pair of nearly null baseline. The features all over the image are explained with only one homgraphy.

number and quality of final matches can be seen in Figs. 1
and 2.

As we have seen in Section 4 one of the results of the
homology is the intersection line of the planes. We have
proposed to use a homology filter to avoid situations where
a sole homography can be computed or where the homo-

graphies do not give a right homology due to noise or bad
extraction. In these cases the epipole, the fundamental ma-
trix or the intersection line would be badly computed. In
Figs. 3 and 4 we can see the intersection lines for one hun-
dred executions with and without the homology filter for two
pairs of test images. As it can be seen the quality of the re-
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sults improves significantly applying the proposed homology
filter.

With respect to the fundamental matrix computation, we
show the mean of the Sampson distance for 20 test points
which are manually matched (Fig. 5(a),(b)). We consider the
images of the House, the College, and two Synthetic images.
The synthetic images have been created from straight seg-
ments in two planes. We have added white noise on the pro-
jected tips. This noise has half pixel standard deviation in
the segment direction and 10 times less in the perpendicular
direction. The experiment has been repeated 100 times and
we show mean and median values. In most cases the error is
similar to the one obtained with many points which are all
over the image (with the fundamental matrix computed with
more than 300 points using the “image-matching” software
[1], the Sampson distance is about 0.35 pixels). We show the
results using Eq. (5), using Eq. (2) and using Eq. (3). The
Sampson distance is similar for the three presented ways
of computing the fundamental matrix, although it is a bit
worse using Eq. (3). Probably the reason is that the first ho-
mography is computed more accurate than the second one,
because of the iterative method used to compute them. The
angle between the epipoles is also shown (Fig. 5(c)). The
epipole is a bit better computed using Eq. (2) than using Eq.
(5), but the difference is nearly null.

Additionally, we have tested the results when the fun-
damental matrix is directly computed from the intersec-
tion points of the automatically matched lines. We have
the matched lines corresponding to each homography.
Therefore, they are coplanar and we can get the cross-points
between them as corresponding points. We apply the eight-
point algorithm with ransac [5] to compute the fundamental
matrix (FP). Then, we compare the mean of the Sampson
distance when we use a fundamental matrix computed with
the homographies (FH) or with these intersection points of
the lines (FP) (Fig. 6(a),(b)). The results with this FP are
worse than the ones computed with the homographies. This
confirms that the general method to compute the fundamen-
tal matrix does not work better than the proposed multiplane
method when there are two planes. In addition, the noise is
concerning more to these cross-points than to the lines and
the homographies, as each of these points accumulate the
orientation errors from the two lines used to compute it. For
the angle between the epipoles, we find again worse perfor-
mance using cross-points than using the proposed method
with lines and homographies (Fig. 6(c)). Here, it is impor-
tant to notice that we have used an anisotropic noise model
for the tips of the segment (10 times bigger in the line direc-
tion than in the perpendicular direction), while an isotropic
noise model gives worse results using the cross-points (FP).

We also show results with more images from outdoor and
indoor scenes (Fig. 7). Here, we only show the image pair
with the intersection lines from 100 runs that passed the
homology filter. We can see that the homology filter works
even if both planes are not the same size (Fig. 7(a),(b)).
What happens in this case is that many times the two found

homographies are corresponding to the big plane, but the
homology filter discard them properly giving only the fun-
damental matrix, the epipoles and the intersection line of the
planes, as result, when the homology is well conditioned.

In the images of Fig. 8, we show the case where only
one homography can be obtained because the baseline is
nearly null, what is explained by one homography. So, in
100 iterations the algorithm has not found any correct pair
of homographies because the homology filter has detected
that in case of computing two homographies they were the
same one. At the same time, it can be seen that the number
of correct matches is very high (in this case more than 99%).

6. Conclusions

We have presented the computation of epipoles and the
intersection of the planes in two views from automatically
matched lines. This is carried out through homographies cor-
responding to planes, which are quite usual in man made
environments. The robust computation of matches based on
homographies works especially well to automatically elim-
inate outliers which may appear when there is no informa-
tion of scene structure or camera motion. The fundamental
matrix is properly obtained if the images correspond to mo-
tion and scenes which are geometrically well conditioned.
If that does not happen, what is detected with the homology
filter, a homography is given as result of the algorithm.

Many experiments have been carried out and a summary
of the most relevant are presented to show the goodness of
the ideas presented. The main contribution of the work is
that all is made automatically with only previous tuning of
some parameters for image based matching. It is a quite good
solution for man made scenes, because in many situations
no more than two good planes are available. We are actually
working with moment invariants to get a better basic set of
matches robust to wide baseline images.
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