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Abstract

The main goal of this work is to compare pyramidal structures proposed to solve segmentation tasks. Segmentation algorithms based
on regular and irregular pyramids are described, together with the data structures and decimation procedures which encode and manage
the information in the pyramid. In order to compare the different segmentation algorithms, we have employed three types of quality
measurements: the shift variance measure, the F function and the Q function.
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1. Introduction

Segmentation is an important task in image processing
that plays a chief role in understanding images. It can be
defined as the process of decomposing an image into re-
gions which are homogeneous according to some criteria.
In this process, the internal properties of the region help
to identify it, while its external properties (inclusion, adja-
cency, . . .) are used to group regions having a “particular
consistent meaning” [1]. The segmentation algorithm must
adapt the resulting regions to the contents of the image. It
is also interesting for the majority of applications that the
segmentation algorithm assures the spatial consistency or
intra-connectivity of these regions. Pyramids are hierarchi-
cal structures which have been widely used in segmentation
tasks [2,3]. Instead of performing image segmentation based
on a single representation of the input image, a pyramid seg-
mentation algorithm describes the contents of the image us-
ing multiple representations with decreasing resolution. In
this hierarchy, each representation or level is built by com-
puting a set of local operations over the level below, being
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the original image the level 0 or base level of the hierarchy.
Pyramid segmentation algorithms exhibit interesting prop-
erties with respect to segmentation algorithms based on a
single representation. Thus, local operations can adapt the
pyramidal hierarchy to the topology of the image, allowing
the detection of global features of interest and representing
them at low resolution levels [4–6]. Bister et al. [4] empha-
size the reduction of noise and the processing of local and
global features within the same framework. Finally, the hier-
archical nature of the pyramid algorithm allows a reduction
in the complexity of the image segmentation task [4,6].

The general principle of the pyramidal approach was
briefly described by Jolion and Montanvert [7]: “a global in-
terpretation is obtained by a local evidence accumulation”.
In order to accumulate this local evidence, a pyramid repre-
sents the contents of an image at multiple levels of abstrac-
tion. Each level of this hierarchy is at least defined by a set
of vertices Vl connected by a set of edges El . These edges
define the horizontal relationships of the pyramid and rep-
resent the neighbourhood of each vertex at the same level
(intra-level edges). Another set of edges define the verti-
cal relationships by connecting vertices between adjacent
pyramid levels (inter-level edges). These inter-level edges
establish a dependency relationship between each vertex
of level l+1 and a set of vertices at level l (reduction win-
dow). The vertices belonging to one reduction window are
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the sons of the vertex which defines it. The value of each
parent is computed from the set of values of its sons using
a reduction function. The ratio between the number of ver-
tices at level l and the number of vertices at level l+1 is the
reduction factor. Using this general framework, the local ev-
idence accumulation is achieved by the successive building
of level Gl+1 = (Vl+1, El+1) from level Gl = (Vl, El). This
procedure consists of three steps:

(1) Selection of the vertices of Gl+1 among Vl : This selection
step is a decimation procedure and selected vertices Vl+1
are called the surviving vertices.

(2) Inter-level edges definition: Each vertex of Gl is linked
to its parent vertex in Gl+1. This step defines a partition
of Vl .

(3) Intra-level edges definition: The set of edges El+1 is
obtained by defining the adjacency relationships between
the vertices Vl+1.

The parent–son relationship defined by the reduction win-
dow may be extended by transitivity down to the base level.
The set of sons of one vertex in the base level is named its
receptive field. The receptive field defines the embedding of
this vertex in the original image. Global properties of a re-
ceptive field with a diameter d can be computed in O(log(d))

parallel processing steps using this parent–son relationship.
In a general view of the pyramid hierarchy, the vertices of
the bottom pyramidal level (level 0, also called base level)
can be anything from an original image pixel via some gen-
eral numeric property to symbolic information, e.g. a vertex
can represent an image pixel grey level or an image edge.
Corresponding to the generalization of the vertex contents,
the intra-level and inter-level relations of the vertices are
also generalized.

After building the pyramidal structure, the segmentation
of the input image can be achieved either by selecting a set
of vertices from the whole hierarchy as region roots, or by
choosing as roots all the vertices which constitute a level of
this hierarchy. In any case, this selection process depends on
the final application and it must be performed by a higher
level task. The efficiency of a pyramid to solve segmenta-
tion tasks is strongly influenced by two related features that
define the intra-level and inter-level relationships. These fea-
tures are the data structure used within the pyramid and the
decimation scheme used to build one graph from the graph
below [8]. The choice of a data structure determines the in-
formation that may be encoded at each level of the pyramid.
It defines the way in which edges El+1 are obtained. Thus,
it roughly corresponds to setting the horizontal properties of
the pyramid. On the other hand, the reduction scheme used
to build the pyramid determines the dynamics of the pyra-
mid (height, preservation of details, etc.). It determines the
surviving vertices of a level and the inter-level edges be-
tween levels. It corresponds to the vertical properties of the
pyramid. Taking into account these features, pyramids have
been roughly classified as regular and irregular pyramids. A
regular pyramid has a rigid structure where the intra-level

relationships are fixed and the reduction factor are constant.
In these pyramids, the inter-level edges are the only rela-
tionships that can be changed to adapt the pyramid to the
image layout. The inflexibility of these structures has the
advantage that the size and the layout of the structure are
always fixed and well-known. However, regular pyramids
can suffer several problems [4,9]: non-connectivity of the
obtained receptive fields, shift variance, or incapability to
segment elongated objects. In order to avoid these problems,
irregular pyramids were introduced. In the irregular pyramid
framework, the spatial relationships and the reduction fac-
tor are not constant. Original irregular pyramids presented
a serious drawback with respect to computational efficiency
because they gave up the well-defined neighbourhood struc-
ture of regular pyramids. Thus, the pyramid size cannot be
bounded and hence neither can the time to execute local op-
erations at each level [10]. This problem has been resolved
by recently proposed strategies [8,11–14].

The main goal of this paper is to explain and compare
pyramid structures proposed to solve segmentation tasks. It
must be stressed that our aim is not to evaluate the perfor-
mance of these segmentation algorithms. The ill-defined na-
ture of the segmentation problem prevents us from making
such evaluation. As several authors have previously pointed
out, it is not possible to assure that an algorithm provides a
final “good” segmentation of the image. In general, “it is not
clear what a “good” segmentation is” [6]. Fortunately, al-
though segmentation evaluation and comparison are closely
related, they are in fact different matters. In this paper, our
goal is to rank the performance of several pyramid segmen-
tation algorithms using different measures. Specifically, the
chosen measurements are the shift variance (SV ) proposed
by Prewer and Kitchen in Ref. [15], the F function proposed
in Ref. [16] and the Q function proposed in Ref. [17]. The
first descriptor was introduced to evaluate the stability of a
segmentation algorithm when minor shifts occur [15]. The
F and Q functions were defined to take into account some
of the criteria suggested by Haralick and Shapiro [18]: (i)
segmentation regions must be homogeneous and without too
many small holes in their interiors and (ii) adjacent regions
must present significantly different values for homogeneous
properties.

The rest of the paper is organized as follows: Sections
2 and 3 describe segmentation algorithms based on regular
and irregular pyramids, respectively. These sections intro-
duce data structures and decimation procedures proposed to
encode and manage the information at the pyramid. Pyramid
segmentation algorithms are compared in Section 4. Finally,
Section 5 summarizes the main conclusions obtained from
the experimental results.

2. Regular pyramids

Regular pyramids can be explained as a graph hierarchy.
However, it is more usual to represent them as a hierarchy of
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Fig. 1. Regular pyramids: (a) A 4 × 4/4 regular pyramid; (b) different levels of a 2 × 2/4 pyramid.

image arrays due to their rigid structure (see Fig. 1). Thus,
a node of a regular pyramid can be defined by its position
(i, j, l) in the hierarchy, being l the level of the pyramid
and (i, j) its (x, y) coordinates within the level. In each of
these arrays two nodes are neighbours if they are placed in
adjacent positions of the array. The possibility to express the
regular pyramids as a hierarchy of image arrays with well-
defined neighbourhood relationships is the main advantage
of these kind of pyramids, because it allows to build and
traverse them with a low computational cost.

2.1. Regular pyramid data structure

The usefulness of pyramidal structures in image process-
ing was firstly pointed out in Refs. [19,20]. In these pyra-
mids, inter- and intra-level relationships are fixed, so the
structure only reduces the resolution of the image in succes-
sive levels. On the base level of the pyramid, the vertices
represent single pixels and the neighbourhood of the vertices
is defined by the 4- or 8-connectivity of the pixels (Fig. 1a).
Each pyramid level is recursively obtained by processing its
underlying level. Fig. 1b shows that these pyramids gener-
ate a set of bandpass-filtered versions of an image, and they
do not exploit their intrinsic capability to reliable delineate
the significant features in an image [21,22]. The son–parent
relationships are fixed and for each vertex in level l+1, there
is a N × N reduction window of sons at level l. A regular
pyramid is thus defined by the ratio N ×N/q, where N ×N

is the size of the reduction window and q the reduction fac-
tor or fixed ratio between the sizes of two consecutive lev-
els of the pyramid [23]. When the ratio N × N/q is greater
than one, reduction windows are overlapped, and the parent
selection scheme can be easily modified: each vertex vi at
level l could now be linked to any of its potential parents,
which are the set of vertices at level l+1 whose reduction
window includes vi . Therefore, in a regular pyramidal struc-
ture, inter-level relationships could adapt itself to the image
layout. Since the inter-level edges determine the partition of
the set of vertices Vl , image segmentation is implemented
as the process that selects a single legitimate parent for each
vertex from the vertex’s candidate parents. This legitimate

parent could be the candidate with the most similar value to
that of the vertex itself.

2.2. Segmentation algorithms based on regular pyramids

Chen and Pavlidis [24] proposed the first pyramidal
segmentation algorithm. In this approach, they define
son–parent edges, which constitute vertical relationships in
the pyramid, and brother–brother edges (horizontal rela-
tionships). The rigidity of this pyramid structure may give
rise to artefacts [25,26]. Specially, the difficulty of handling
long-shaped features in an image was closely related to
the limitations of image pyramids [27]. To compensate for
these artefacts, different regular pyramids were proposed.
Thus, Shneier [28] focused his research on extraction of
linear features from an image. However, Shneier only uses
multi-resolution images to define local thresholds in a clas-
sical local thresholding method, which is not really a pure
pyramid segmentation technique. Other approaches control
the resolution reduction by the local image content [29,30].
These approaches recalculate the son–parent relationships in
order to achieve the adaptation of the pyramidal structure to
the image layout. Particularly, the son–parent relationships
are refined over several iterations, so these approaches are
named global iterative approaches [31]. A typical iteration
may consist of a bottom-up linking process, a bottom-up re-
computation of vertex values and a top-down reassignment
of vertex values. After several iterations, the inter-level
edges will normally have stabilized and the segmented im-
age is obtained from the base level vertex values. Although
these global iterative approaches to pyramidal segmentation
exhibit superior performance over the classical top-down
approaches, this performance advantage must be consid-
ered against the greater computational requirements of the
iterative algorithms [31]. Still, global iterative approaches
can be considered as the main type of regular pyramidal
structures and are explained below.

In other pyramidal approaches, the pyramid is built using
several types of Gaussian filters. Ping et al. [32] use a Gaus-
sian filter function with changeable filter scales. By mod-
ifying the filter scale, this algorithm changes the window
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Fig. 2. Linked pyramid: (a) overlapped at the linked pyramid; (b) the sixteen grey vertices in level l are the candidate sons for the grey vertex in level
l + 1; and (c) the four grey vertices in level l + 1 are the candidate parents for the grey vertex in level l.

size between pyramidal levels. When applied to segmenta-
tion, this algorithm searches for vertices in the structure that
can be regarded as roots of segmented regions at the base
level. Regular pyramids normally employ a square window
but there are regular structures with triangular and hexago-
nal windows [33,34]. Another possible modification consists
in reducing the size only by half between pyramidal levels
[35].

2.2.1. Pyramid linking approach (PLA)
Burt et al. [29] originally proposed the Linked Pyramid in

1981. In this pyramid, during the first iteration, each 4 × 4
set of vertices within a level generates a new vertex in the
upper level by averaging the local image property values
of the vertices in the reduction window (4 × 4/4 pyramid).
Each level has a size four times smaller than the level be-
low, because the 4×4 windows are 50% overlapped, as it is
shown in Fig. 2a. For each vertex at level l there is a 4 × 4
subarray of “candidate son” vertices at level l − 1 (Fig. 2b).
The vertex itself is a member of four such subarrays for level
l + 1 vertex. On each iteration, the whole of the structure is
covered and every vertex is linked to the most similar can-
didate parent from the higher level (Fig. 2c). After linking,
each vertex will have between 0 and 16 legitimate sons. The
local image property value of each parent is recalculated by
averaging the local image property of its sons. This process
continues until the son–parent edges do not vary. Finally, in
order to perform the image segmentation, a level of the pyra-
mid (called working level) is selected as the level in charge
to generate the segmentation. Each working level vertex is
linked to a set of vertices at the base of the structure. These
vertices represent its receptive field and define a segmented
region. The local image property values from the working
level vertices are propagated to their corresponding regions
at the base. These regions constitute the segmented image.
The selection of the working level is very important because
it sets the number of resulting segmented regions, which is
approximately equal to the number of vertices at the work-
ing level (there could exist vertices at the working level
with null receptive field). It must be noted that the correct
working level depends on the content of the image to seg-
ment, being unknown at the beginning of the process. The

accuracy of the final segmentation depends on the correct
selection of the working level. Because of its apparent flex-
ibility, this adaptive hierarchical structure has been investi-
gated by other researchers [36,37].

The linked pyramid, as originally proposed in Ref. [29]
presents four main problems. The first is the aforementioned
need of choosing the working level. The other three are
related to the inflexibility of the structure [4]:

• The region connectivity is not preserved: In the son–parent
relinking process, this structure does not take into account
adjacency criteria in the original image; hence, adjacent
nodes in a level do not necessarily originate from adjacent
segmented regions at the base level. When these vertices
are grouped into a new vertex in the upper level, the new
vertex is associated to a disjoint region at the base.

• Non-adaptability to the image layout: Due to the use of
a fixed size rectangular reduction window, the shape of
elongated regions cannot be represented in the segmented
image.

• The structure is variant to small shifts, rotations or scale
modifications in the original image. This problem is com-
monly named the SV problem.

On the other hand, this pyramid does not need any threshold
to compute similarity between nodes. This is probably its
main advantage.

It must be noted that the notion of working level is not
mandatory. In Ref. [29], the final segmentation is defined by
pre-selecting the final level in the linking process (the work-
ing level). The working level has to be defined manually
and determines the approximate number of final segmented
regions obtained. Large regions with similar homogeneous
local image property values usually persist through the
linking process up to the highest levels, whereas smaller ho-
mogeneous regions may merge with their surroundings in a
lower level. The need for pre-selecting the final level can be
removed by introducing unforced linking [9] which allows
the exclusion of some vertices from the linking scheme.
Thus, region roots can be selected in the pyramid at different
levels if the set of receptive fields forms a partition of
the initial image. This exclusion procedure, referred as
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seeding, allows the number of segmented regions to auto-
matically adapt to the image content, which results in ex-
traction of small homogeneous regions as well as large ones.
Seeding rules determine whether a vertex is excluded and,
therefore, they have a great influence on the result of the
segmentation.

2.2.2. Modified pyramid linking approach (MPLA)
Ziliani and Jensen [38] modified the classic pyramid link-

ing approach to avoid the generation of disjoint segmented
regions and the selection of a working level. The goal of
the modified pyramidal linking approach (MPLA) was to
achieve spatial consistency and to obtain a parameter-free
algorithm. Another difference with previous works [39,40]
is that the redefinition of the son–parent relationships is car-
ried out consecutively between two levels before computing
the initial values of the consecutive level. This modification
increases the processing speed. In order to achieve spatial
consistency, the vertex linking process is restricted to ver-
tices that represent adjacent regions at the base level. To
do that, Ziliani and Jensen [38] define a neighbourhood for
each vertex. This neighbourhood specifies which vertices in
the same level cover neighbouring areas in the base level.
The algorithm presents a problem in the first iteration be-
cause it has not neighbourhood information yet. To avoid the
selection of a working level, the algorithm uses two seed-
ing rules. The island seeding rule assumes that a vertex that
covers an entire region is surrounded by vertices with arti-
ficial features due to the overlapping of windows. Based on
the neighbourhood information defined previously, the al-
gorithm assumes a vertex to be an island if it has only one
neighbour. In addition to this exclusion rule, the “parent-
seeding” rule excludes all vertices for which an adjacent
parent to link to cannot be found, because this indicates that
no similar vertex is available.

Although the modified linking approach avoids the selec-
tion of the working level and achieves spatial consistency
in the segmentation, it kept the other important problems of
the linked pyramid: SV and non-adaptability to the image
layout.

2.2.3. Weighted linked pyramidal segmentation approaches
Hong et al. [30] developed this type of regular pyramid.

The structure is similar to the Linked Pyramid but each ver-
tex retains all the edges with its parents, so every vertex has
four parent-edges, one for each parent. Every edge carries a
weight value that depends on the son–parent similarity. The
value of a parent vertex is calculated as the average of its
16 sons, weighting each son value with its corresponding
edge weight. Edge weights are recalculated at each iteration
based on the new values of the vertices. Once the pyramid
has converged, the final segmentation is achieved by using
the edge with the highest weight for each vertex. The use of
weights and the retention of all edges avoid forced choice in
the edge modification process. This structure obtains slightly

better results than the Linked one, as shown in Ref. [15].
However, it also shares its rigidity problems.

Depending on the type of weights used, there are two
different kinds of Weighted Linked pyramids [15]: Fuzzy
Linked Pyramid and Possibilistic Linked Pyramid. In the
Fuzzy Linked Pyramid [30,41] weights are always positive
and the parent edges of a vertex sum to one. In these algo-
rithms, each vertex has only a parent edge with a value close
to one after each iteration, while the rest of parent edges
have a value close to zero. In these structures, it is fairly nat-
ural to use only the parent edge with the largest weight to
define the preferred region for each vertex and thus perform
the final segmentation of the image.

The Possibilistic Linked Pyramid [26] uses a non-
normalized set of weights. Thus, some vertices link strongly
with multiple parents, some link moderately with multiple
parents, while some link only feebly to all their parents.
Hong and Rosenfeld [26] continue to use the parent edges
with the largest weight to define the final segmentation.
However, this structure can be used to perform a differ-
ent type of segmentation: the soft segmentation [15]. In
contrast with classical segmentation, called crisp segmen-
tation, in the soft segmentation each pixel can belong to
more than one region. This segmentation avoids mistakes
in region boundaries. Pixels near region boundaries usually
are intermediate in value between the regions, and they
can be placed in either of them during the crisp segmenta-
tion. In the soft segmentation these pixels belong to both
regions. Prewer and Kitchen [15] perform the soft segmen-
tation looking at the tree of possibilistic edge weights as
a fuzzy decision tree. They determine a membership value
for each of the vertices below the root by using a minimax
approach, where each path to the root vertex has assigned
the minimum value of the weights on that path, and each
vertex takes the maximum value of its paths to the root as
its degree of membership of that root. After this, each of
the base level vertices has a membership value for each of
the regions to which it links.

Finally, the Principal Component Pyramid (PCA pyramid)
proposed by Bischof et al. [45,46] must also be mentioned
here. In the PCA Pyramid, principal components analysis
is used within a regular pyramid to obtain the reduction
function used to compute the value of each parent from the
set of values of its sons. Thus, known learning algorithms
can be translated from neural networks to the pyramidal
framework [47]. The PCA-pyramid has the same parent–son
relationships as a regular pyramid and all the possible sons
of each parent can be weighted to obtain the corresponding
parent value.

3. Irregular pyramids

Irregular pyramids were introduced in order to solve
the problems of the regular pyramids derived from their
lack of flexibility. In contrast to regular pyramids, irregular
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ones have variable data structures and decimation processes
which dynamically adapt to the image layout. Thus, the
reduction factor between adjacent levels is not fixed; the
size of each level and the height of the structure are un-
known. Consequently, the well-defined and easy to compute
neighbourhood relationships among nodes of the regular
structures are lost in the irregular ones.

Initial attempts to develop adaptive hierarchical structures
were done in the eighties (i.e. custom-made pyramids [42]
and Voronoi tesselation-based approaches [43,44]). The first
irregular pyramid to be applied in image analysis was pro-
posed by Montanvert et al. [48]. They employed a stochas-
tic decimation algorithm [27] to construct irregular tessella-
tions and generate a hierarchical representation of the input
image. This representation was built bottom-up and adapted
to the content of the input image.

Irregular pyramids allow coarse-to-fine strategies by en-
coding a hierarchy of successively reduced graphs. Level l
is represented by a graph Gl = (Vl, El) consisting of ver-
tices v ∈ Vl and edges e ∈ El . In this hierarchy, each graph
Gl+1 is built from Gl by selecting a subset of Vl . The se-
lected vertices are called surviving vertices. Non-surviving
vertices of Vl are linked to surviving ones. Thus, each vertex
v of Gl+1 has associated a set of vertices of Gl , the reduc-
tion window of v, which includes itself and all non-surviving
vertices linked to it [48]. This is a decimation process which
requires rules for:

• The selection of the vertices Vl+1 among Vl . These ver-
tices are the surviving vertices of the decimation process.

• The allocation of each non-surviving vertex of level l to
a survivor, which generates the son–parent edges.

• The creation of edges El+1 by defining the adjacency
relationships among the surviving vertices of level l.

The receptive field of one surviving vertex is defined by the
transitive closure of the parent–son relationship and must be
a connected set of vertices in the base level. Rules for the
definition of the set of surviving vertices and the set of edges
connecting each non-surviving vertex to its parent vary ac-
cording to the considered decimation algorithm used within
the irregular pyramid [49]. Therefore, the reduction proce-
dure used to build one graph from the one below strongly
influences the efficiency of the pyramid. On the other hand,
each level of the hierarchy is encoded by a graph and, since
many graph algorithms suffer from a high computational
complexity, the efficiency of the irregular pyramid is also
influenced by the selected graph encoding. Next subsections
present different graph encodings and decimation algorithms
used within the irregular pyramid framework.

3.1. Irregular pyramid data structures

Irregular pyramid data structures can be classified as:

• Simple Graphs [48]: This is the simplest data structure
where the pyramid is defined as a stack of successively

reduced simple graphs. This type of structures have two
main drawbacks for image processing tasks: (i) they do
not permit to know if two adjacent receptive fields have
one or more common boundaries, and (ii) they do not
allow to differentiate an adjacency relationship between
two receptive fields from an inclusion relationship.

• Dual Graphs [10]: This structure solves the drawbacks of
the simple graph approach representing each level of the
pyramid as a dual pair of graphs and computing contrac-
tion and removal operations within them. The problem
of this structure is the high increase of memory require-
ments and execution times since two data structures need
to be stored and processed. In the results section of this
paper, the computational time necessary to segment an
image using this pyramid is compared with the time of
other structures.

• Combinatorial Maps [50]: The combinatorial map is an
efficient implementation of the dual graph approach which
solves its aforementioned drawbacks. To do that, the com-
binatorial map approach uses a planar graph to represent
each level of the pyramid, which encodes explicitly the
orientation of edges around the vertices instead of a pair
of dual graphs. In this planar graph it is possible to per-
form the contraction and removal operations using a set
of permutations within the graph. In the results section
of this paper, the reduction of computational time of this
structure compared with the dual graph one is shown.

These irregular pyramid data structures are explained in de-
tail in the following sections.

3.1.1. Simple graph
A simple graph is a non-weighted and undirected graph

containing no self-loops. In this hierarchy, a pyramidal level
l is defined by a graph Gl = (Vl, El), where the set of ver-
tices Vl represents a partition of the image into connected
subsets of pixels. The graph edges El represent adjacency
relationships among pyramidal vertices of the level l. Two
vertices are connected if there exists a connecting path in
level l − 1 that joins them. A path in Gl−1 is a connecting
path of two surviving vertices v, v′ ∈ Vl if it satisfies one of
the following conditions [49]:

• v and v′ are connected by an edge e ∈ El−1.
• v and v′ are connected by a path (e1, vi, e2), where vi

is a non-surviving vertex connected to v and v′ by edges
e1 ∈ El−1 and e2 ∈ El−1, respectively.

• v and v′ are connected by a path (e1, vi, ei, vj , e2), where
vi and vj are two non-surviving vertices connected to v

and v′, respectively.

Simple graphs encode the adjacency between two vertices
by only one edge, although their receptive fields may share
several boundary segments. Therefore, a graph edge may
thus encode a non-connected set of boundaries between the
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Fig. 3. Codification of connected components by several irregular pyramid data structures: (a) 8 × 8 image layout; (b) encoding by a simple graph
pyramid; and (c,d) encoding by a dual graph or combinatorial pyramids (reprinted from Ref. [23], with permission from Elsevier).

associated receptive fields. Moreover, the lack of self-loops
in simple graphs does not allow to differentiate an adjacency
relationship between two receptive fields from an inclusion
relationship. These facts are shown in Fig. 3b, which repre-
sents the top of a simple graph pyramid encoding the con-
nected components of Fig. 3a.

3.1.2. Dual graph
In a dual graph pyramid, a level consists of a dual pair

(Gl, Ḡl) of planar graphs Gl and Ḡl . If level l defines a
partition of the image into a connected subsets of pixels, then
the vertices of Gl are the representatives of these subsets and
the edges of Gl represent their neighbourhood relationships.
The edges of Ḡl represent the boundaries of these connected
subsets in level l and the vertices of Ḡl define meeting points
of boundary segments of Ḡl . Fig. 3c represents the top of a
dual graph pyramid encoding the connected components of
Fig. 3a. Fig. 3d shows the dual graph corresponding to 3c.

Within the dual graph pyramid framework, the set of edges
that define the adjacency relationships among pyramidal ver-
tices of the level l+1 is generated in two steps. First, the set
of edges that connects each non-surviving vertex to its par-
ent is contracted using a contraction kernel. A contraction
kernel of a level l is the set of surviving vertices of l and the
edges that connect each non-surviving vertex with its par-
ent. The edge contraction operation collapses two adjacent
vertices into one vertex, removing the edge between them.
This operation may create redundant edges such as empty
self-loops or double edges. The removal of these redundant
edges constitutes the second step of the creation of the set
of edges El+1. These redundant edges are characterized in
the dual of the graph and removed by a set of edge removal
kernels [51]. The key idea of the dual graphs is that a con-
traction in a graph implies a removal in its dual, and vice
versa, in order to maintain the duality between the newly
generated graphs. Thus, the generation of the edges in level
l + 1 can be resumed as follows:

(1) Contraction of edges in Gl which connect non-surviving
vertices with their parents. Removal of their correspond-
ing edges in Ḡl . Fig. 4b shows the reduction performed
by the contraction kernel in Fig. 4a.

(2) Contraction of redundant edges in Ḡl and removal of
their corresponding edges in Gl . In Fig. 4c, the dual
vertex a has a face defined by vertices A and B. The
boundary between the regions defined by these vertices
is artificially split by this dual vertex. Then, the two
dual edges incident to this dual vertex (e′

1 and e′
2) can

be contracted. The contraction of these dual edges has
to be followed by the removal of one associated edge
(e1 or e2) in order to maintain the duality between both
graphs. In the same way, the dual vertex b encodes an
adjacency relationship between two vertices contracted
in the same vertex. This relationship can be removed
by eliminating this direct self-loop and contracting the
associated dual edge.

Using such a reduction scheme each edge in the reduced
graph corresponds to one boundary between two regions.
Moreover, inclusion relationships may be differentiated from
adjacency ones in the dual graph.

3.1.3. Combinatorial map
A combinatorial map may be defined as a planar graph

encoding explicitly the orientation of edges around a given
vertex [23]. Fig. 5 illustrates the derivation of a combinato-
rial map from a plane graph. Firstly, edges are split where
their dual edges cross (see Fig. 5b). These half-edges are
called darts and have the origin at the vertex they are at-
tached to (Fig. 5c). A combinatorial pyramid is defined by
an initial combinatorial map successively reduced by a se-
quence of contraction or removal operations [8].

A combinatorial map can be expressed as G = (D, �, �),
where D is the set of darts and � and � are two operations
defined on D. � allows to know which two darts stem from
the same edge and is called “reverse permutation”. � is used
to compute which darts are around a given vertex and it is
named “successor permutation”. Another important opera-
tion � is defined over the combinatorial map which allows
to know which darts are around a given face of G. This oper-
ation is the same permutation as � but calculated in the dual
graph Ḡ. The advantage of this representation of graphs us-
ing �, � and � is that � can be also computed over G as a
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Fig. 4. Contraction and removal kernels: (a) contraction kernel composed of three vertices (surviving vertices are marked in black); (b) reduction performed
by the equivalent contraction kernel in (a); (c) redundant edges characterisation; and (d) dual graph pair (G, Ḡ) after dual decimation step.

Fig. 5. Combinatorial map: (a) a plane graph; (b) edges splitting; (c) combinatorial map G; and (d) dual map of G.

combination of � and �: � = � ◦ �. Thus, the dual graph is
implicitly encoded in the combinatorial map G.

The advantage of the combinatorial map based pyramid
representation is that the contraction and removal operations
can be performed knowing only the combinatorial map G
and the permutation operations �, � and �. Ḡ is not needed.
So, the advantages of the dual graph representation are kept
without a high increase of the computational cost.

3.2. Irregular pyramid decimation schemes

Although original irregular pyramids overcome the draw-
backs of regular ones, their main drawback is that they only
grow to a reasonable height as long as the base level is
small. If the base level size gets larger, the reduction factor
cannot be bound because the progressive deviation from the
regular base favours configurations that slow down the con-
traction process [52]. This height increasing degrades the
efficiency of irregular pyramids. Recent work has resolved
this problem by new selection mechanisms which guarantee
logarithmic heights [53]. Next subsections deal with differ-
ent reduction schemes used to build the irregular pyramid.
These schemes determine the height of the pyramid and the
properties that arise from the decimation process.

3.2.1. Stochastic decimation process
If Gl = (Vl, El) represents the level l of the hierarchy,

where Vl defines the set of vertices of the graph and El the

set of edges, the stochastic decimation process introduced
by Meer [27] imposes two constraints on the set of surviving
vertices, Vl+1:

(1) Any non-surviving vertex v of level l has at least one
surviving vertex in its neighbourhood, v′.

(2) Two neighbour vertices v and v′ at level l cannot both
survive.

These rules define a maximal independent set (MIS). In or-
der to build this MIS the decimation algorithm uses three
variables for each vertex vi : two binary-state variables pi

and qi , and a random variable xi uniformly distributed be-
tween [0,1]. The surviving vertices are chosen by an itera-
tive local process. A vertex vi in Vl survives if, at the end
of the algorithm—iteration k—, its pi(k) state value is true.
In the first iteration:

• pl+1
i (1) of a vertex vi is set to 1 (true) if its xi value is the

maximum x value in its neighbourhood (local maximum).
It must be noted that the local maximum nodes are selected
as surviving vertices in the first iteration.

• ql+1
i (1) is set to 1 if vi is not a local maximum and there

is not a local maximum (node with pl+1(1) = 1) in its
vicinity.

In the rest of iterations the nodes with ql+1
i (n − 1) = 1

are studied. Thus, a node with ql+1
i (n − 1) = 1 is set to
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Fig. 6. Stochastic decimation procedure: (a) 8-connected valuated graph; (b) extraction of local maxima (dark grey vertices) and their neighbours (white
vertices); and (c) complete specification of the set of surviving vertices (grey vertices).

pl+1
i (n) = 1 and ql+1

i (n) = 0 if it is the local maximum
among its neighbours with ql+1

i (n − 1) = 1. This process
is iterated until ql+1

i (n) is false for all vertex vi . The set of
sons are defined in Gl only after the vertices of Gl+1 (their
parents) have been chosen.

In Fig. 6 the stochastic decimation process is shown. In
Fig. 6a the x value of each vertex is represented. The first
iteration of the stochastic decimation procedure is shown in
Fig. 6b. The dark vertices are the vertices with p(2)=1 (sur-
viving vertices) and the white vertices are their neighbours.
Grey vertices are the vertices with q(2) = 1. In Fig. 6c the
second iteration is presented. This iteration is the last one in
this case because all the vertices have a surviving vertex in
their neighbourhood.

3.2.2. Connectivity preserving relinking approach
Nacken [54] describes a decimation process that adapts

the classical relinking rules proposed by Burt et al. [29] for
an irregular data structure. In order to create Vl+1, the set of
vertices of the lower level in the hierarchy, Vl , is partitioned
into a number of connected reduction windows. Reduction
windows are computed by applying the following iterative
process:

(1) Every vertex vi which does not belong to any reduction
window is given a label �i .

(2) Every vertex whose label is larger than that of all of its
neighbours is selected as a surviving vertex (centre of a
new reduction window).

(3) For each newly selected surviving vertex v, a maximal
subset of the neighbours of v, containing no dissimilar
pairs, is added to complete the reduction window. Dis-
similarity of adjacent vertices must be defined using an
edge strength measure.

The label �i can be a random number, although some image-
dependent value can also be employed. The difference with
the stochastic decimation procedure is in the order of the
steps. In stochastic decimation, the computation of a MIS by
repeated selection of local maxima is completed before the
reduction windows are computed by assignments of neigh-

bours; in this approach, a number of reduction windows are
computed in each selection of local maxima.

The parent–son edges created in this step have the same
role as the regular structure in the classical relinking scheme
[29]: they serve as an initial configuration which is adapted
by relinking. Then, the algorithm performs an iterative re-
linking process that preserves the connectivity. This process
is applied vertex by vertex. For each vertex v, a set of al-
lowed candidate parents is computed, depending on the ac-
tual structure of the hierarchy. This set plays the same role
as the fixed set of candidate parents in the classical relink-
ing scheme, with the particularity that linking v to any of
this allowed parent assures that connectivity is preserved
[54]. Then, a new parent is chosen from the set of allowed
candidate parents. The vertex is relinked to the new parent
and the graph structure and attributes of vertices are updated
accordingly. This process is repeated until a stable config-
uration is reached. When the relinking process finishes, the
next level of the hierarchy can be built.

3.2.3. Dual graph contraction
In Ref. [49], the building of irregular pyramids by dual-

graph contraction is described. In this work, a contraction
kernel is defined on a graph Gl = (Vl, El) by a set of surviv-
ing vertices Vl+1 and a set of non-surviving edges Nl such
that:

• (Vl, Nl) is a spanning forest of Gl . A spanning forest of
Gl is a subgraph that contains all the vertices of Gl and
that contains no cycles. Fig. 4a shows a spanning forest
of a graph.

• Each tree of (Vl, Nl) is rooted by a vertex of Vl+1.

Therefore, the decimation of a graph by contraction kernels
differs from the stochastic decimation process in that two
surviving vertices may be adjacent in the contracted graph.
Also a non-surviving vertex may be connected to its parent
by a branch of a tree.

3.2.4. Specified rate and prioritized sampling approaches
In the stochastic pyramid framework, the ratio between

the number of surviving vertices and the total number of
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vertices (the sampling rate, which is the inverse of the reduc-
tion factor) may be different in different parts of the graph.
This is because different parts of the graph consist of ver-
tices having different numbers of neighbours. Hence, parts
of the graph where vertices have a smaller number of neigh-
bours on average can accommodate more surviving vertices
than other parts of the graph. The specified rate sampling
approach [55] replaces the iterative decimation process of
the stochastic approach by a single step process. The dec-
imation algorithm uses two variables for each vertex vi : a
binary-state variable pi and a random variable xi uniformly
distributed between [0,1]. Initially, the state variable pi of
all vertices is set to 0. Then,

pl+1
i ⇔ xi < �. (1)

That is, a vertex is selected as a surviving vertex based on
a fixed probability. The variable � determines the sampling
rate and can be specified by the user. The constraints imposed
by the stochastic decimation process [27] may be violated.
Thus, any non-surviving vertex can have no surviving vertex
in its neighbourhood, and two neighbouring vertices can be
selected as surviving vertices.

Another way to increase the reduction factor is to allow
some vertices to have a higher priority over others in being
selected as surviving vertices. If these prioritized vertices
have larger numbers of neighbours (the number of neigh-
bours of a node is called “degree” of the node), a larger num-
ber of vertices will become non-surviving vertices. Then, the
number of selected surviving vertices is reduced. To intro-
duce priority in the decimation scheme, a ranking approach
is proposed by Ip and Lam [55]. The range [0,1] is divided
into n sub-ranges. The value n is an estimated constant de-
noting the maximum degree of a vertex. A random variable
x′ is generated in the range [0, 1/n]. The random variable x
associated with a vertex is then set by

x = x′ + (r − 1)/n if r < n, (2)

x = x′ + (n − 1)/n if r �n, (3)

where r is the degree of the node. Thus, for any two neigh-
bouring vertices with different degree, the one which has a
larger degree will be usually assigned a higher priority in
being chosen as a surviving vertex.

3.2.5. Data driven decimation scheme
One of the disadvantages of the stochastic decimation

process is that vertices extracted as local maxima in the first
iteration must wait until the graph is complete in successive
iterations [56]. These iterations are used only to complete
the MIS. In the data driven decimation process (D3P), a
vertex vi of Gl survives if and only if it is a local maximum
(pl+1

i = true) or does not have yet any surviving vertex in its
neighbourhood (ql+1

i = true). Therefore, it is assumed that
being a local maximum is of importance and no correction
is performed in subsequent iterations. In areas where there

is no real maxima, the process still tries to extract sub-
maxima but without slowing down the decimation proce-
dure in other areas of the graph. The procedure is not
iteratively run.

The graph Gl+1 defined by the D3P is slightly differ-
ent to the one defined by the stochastic pyramid because
two neighbours in Vl can both survive in Vl+1. Thus, D3P
achieves faster convergence and better fits the distribution
of the values associated with the vertices of the initial graph
[56]. However, as for the stochastic decimation process, the
D3P cannot guarantee a constant reduction factor between
pyramid levels [52].

3.2.6. MIES and MIDES algorithms
Although stochastic pyramids overcome the drawbacks of

regular ones, they grow higher than the base diameter for
large input images. As a consequence of the greater height,
the efficiency of pyramids degrades. This problem has been
resolved in dual graph pyramids by selection mechanisms
which guarantee logarithmic heights by replacing the se-
lection method proposed in Ref. [27] by two new itera-
tively local methods: maximal independent edge set algo-
rithm (MIES) [52] and maximal independent directed edge
set (MIDES) [11].

The MIES algorithm has been developed to be applied
in the dual graph framework. Its goal is to find a set of
contraction kernels in a plane graph Gl such that each vertex
of Gl is contained in exactly one contraction kernel, and
each contraction kernel contains at least two vertices. Thus,
the number of vertices between consecutive graph levels is
reduced to half or less and a reduction factor of at least 2
can be guaranteed. The MIES algorithm consists of three
steps [52,53]:

(1) Find a maximal matching M from Gl . A matching is a
set of edges in which no pair of edges has a common
end vertex (Fig. 7a).

(2) Enlarge M to forest M+ by connecting isolated vertices
of Gl to the maximal matching M (Fig. 7b).

(3) M+ is reduced by breaking up trees of diameter three
into trees of depth one. A tree is a set of edges con-
nected at their ends containing no closed loops (cycles)
(Fig. 7c).

A maximal matching of Gl is equivalent to a maximal in-
dependent vertex set on the edge graph [52]. Therefore, the
maximal matching can be obtained by applying the MIS
algorithm in Ḡl . The second and third steps of the MIES
algorithm permit to obtain a set of contraction kernels
where each vertex belongs to a tree of depth one.

The MIES algorithm can be used either in a dual graph
framework or for connected component analysis [57]. How-
ever, its main disadvantage is that it is only applicable where
there are no constraints on direction of contraction [11,53].
As it is shown in Fig. 7d, there are certain contraction kernels
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Fig. 7. MIES algorithm: (a) maximal matching M (isolated vertices are black coloured); (b) enlarged matching M+; (c) reduced matching M+ and
contraction kernels; and (d) restriction to choose the surviving vertex and direction of contraction of a contraction kernel.

that impose the only possible surviving vertex and, there-
fore, the direction of contraction.

MIDES algorithm can be applied in oriented graphs, such
as the graph applied to line image analysis [58]. In an ori-
ented graph the relations between pairs of vertices are not
symmetric, so that each edge has a directional character.
Besides, this edge direction is unique (i.e., edges cannot be
bi-directed). In these graphs, an edge e with source se and
target te, e=(se, te), must be contracted from se to te, only if
the attributes of the edge e and of its source and target ver-
tices fulfil a certain rule. The set of edges that fulfils the rule
are called pre-selected edges [11]. Only these pre-selected
edges are considered as candidates for contraction and the
goal is to build contraction kernels with a high reduction
factor. In order to perform the contractions in parallel, a ver-
tex disjoint union of contraction kernels is needed [53]. The
MIDES algorithm defines such a union in terms of indepen-
dent directed edges. Two directed edges are independent if
they do not belong to the same neighbourhood. The neigh-
bourhood of a directed edge e, Ne, is defined by all directed
edges with the same source se, targeting the source se or
emanating from te [53]. Then, the contraction kernels can
be found as in MIS, but dealing with edges instead of ver-
tices. This algorithm shows better reduction factor than MIS
or MIES [11,53].

3.2.7. Union-find techniques
The union-find algorithm was proposed by Tarjan [59] as

a general method for keeping track of disjoint sets. Basically,
it allows performing of set-union operations on sets which
are in some way equivalent, while ensuring that the end
product of such a union is disjoint from any other set.

Brun and Kropatsch [8] propose to use the union-find al-
gorithm to design a contraction kernel in the combinatorial
pyramid framework. Union-find algorithms use tree struc-
tures to represent sets. Each non-root vertex in the tree points
to its parent, while the root is flagged in some way. There-
fore, each tree of a contraction kernel is encoded by storing
in each vertex a reference to its parent. Initially, the par-
ent of each vertex v is itself. Then, the union-find algorithm

performs the following operations over any dart d in Dl :

• A find operation is applied on the origin vertices of �(d)

defined over the same edge. These operations return the
roots, rd and r−d , of the trees containing these two ver-
tices.

• If rd and r−d are different and they must be merged, a
union operation merges the corresponding two trees into
one. This union is performed by setting one of the roots
to be the parent of the other root. The edge which contain
d and −d is included in the contraction kernel.

The union-find algorithm has proven to be very efficient,
especially when it is run on sequential machines.

3.3. Irregular pyramid-based segmentation approaches

In this work, we propose to evaluate and compare the
efficiency and performance of several pyramid-based seg-
mentation approaches. To do that, we have firstly presented
several data encodings and decimation processes. All deci-
mation processes described in Section 3.2 have been applied
to segmentation purposes. In this section, several segmenta-
tion approaches are reviewed.

3.3.1. Segmentation with a hierarchy of region adjacency
graphs (RAG) and the adaptive pyramid

The simple graph hierarchy and the stochastic decimation
procedure supposed a great novelty for hierarchical process-
ing. These tools permitted a hierarchical data structure to
adapt itself to the image layout, since the proposed hierarchy
was not restricted to a rigid sampling structure. The stochas-
tic decimation procedure was successfully applied to multi-
scale smoothing of chain-coded curves [60] and segmenta-
tion of grey level images [48]. In this last case, a hierarchy
of region adjacency graphs (RAG) is generated. The RAG
hierarchy performs the stochastic decimation within classes.
These classes or similarity subgraphs must be generated be-
fore graph contraction is made and they are derived from
the RAG by local decisions. Thus, contrary to the original
stochastic decimation idea, the resulting decimation proce-
dure is dependent on the image data.
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Fig. 8. Top-down segmentation based on the RAG hierarchy: (a) region adjacency graphs; (b) receptive fields pyramid; and (c) corresponding tree structure.

The algorithm works as follows:

(1) Graph G0 is defined by the 8-connected square sampling
grid on the level 0, where each vertex is a pixel of the
original image.

(2) Classes at level l are defined. To do that, each vertex
vi at level l has associated a value gi characterizing its
region of the image (e.g. average grey level). For each vi ,
which does not belong to any class yet, every neighbour
vj is examined and a decision is made on whether or
not it belongs to the same class of vi . This decision is
based on gi and gj values, which are compared using a
similarity function.

(3) Surviving vertices of every class are chosen applying
the stochastic decimation algorithm into the class.

In order to define the classes, several approaches have been
experimentally proven [48]. The simplest approach is to de-
fine class membership by thresholding the grey level differ-
ences between a vertex and their neighbours. This symmet-
ric class membership criterion does not achieve satisfactory
results because it strongly influences the structure of the hi-
erarchy and therefore the final segmentation of the image. To
overcome this problem, a non-symmetric class membership
criterion based on the maximum averaged contrast method
was also proposed. Finally, in order to deal with the problem
of root detection, a root measure can be defined [48]. Al-
though the results presented in Ref. [48] show that the RAG
hierarchy correctly reflects the structure of the image, the
stochastic concept inherent to the method causes changes in
the segmentation results when the algorithm is successively
applied to the same input image.

Then, the main drawback of the stochastic decimation
process is that different outcomes of the random variable
produce different structures and segmentations. Thus, the
segmentation of an image varies between executions with
the same input parameters. Besides, the decimation process
should be controlled in order to assure that there exists at

least a root for each interest region of the original image.
Jolion and Montanvert [7] propose to modify the decimation
process in order to bias toward vertices with high informa-
tion value. Instead of a random variable, the adaptive pyra-
mid uses an interest variable in the decimation process: the
grey level variance gvi from the receptive field of a pyramid
vertex vi . After survivor extraction, non-surviving vertices
are linked to the most similar surviving vertex of its neigh-
bourhood. In the adaptive pyramid the use of the interest
variable avoids the definition of classes before the decima-
tion process.

Jolion and Montanvert [7] introduce a root extraction pro-
cess into the algorithm. A vertex is the root of an original
image region if it satisfies the following conditions: (i) a
root vertex must be very different to the surviving vertices
of its neighbourhood; and (ii) the size of a region defined
by a root must be large enough to avoid local variations due
to noise; a small region must compensate its low size with
a high contrast with all its neighbours.

Using the classical RAG pyramid, Bertolino and Mon-
tanvert [61] propose to generate distinct segmentations of
an image at different resolutions by using the tree structure
represented by the graph hierarchy. Thus, a region of any
level can be recursively split into subregions at the level be-
low. Fig. 8 shows a graph hierarchy and its corresponding
tree structure. Starting at the highest structure level, a ho-
mogeneity criterion is evaluated for each region: the stan-
dard deviation of every region is compared with a threshold
�M to decide if the region must be split or not. Depending
on �M the segmentation preserves more or less detail. Each
region of the original image is extracted in the level where
its representation is optimum. Since the standard deviation
could be only suitable for certain kinds of images, other
scale parameters may be used [61].

3.3.2. Segmentation with the localized pyramid
The graph pyramid is usually initialized with as many

vertices as the number of pixels in the original input image.
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In the localized pyramid [12], only a subset of the image
pixels are segmented (undefined zones), while the rest of
image pixels is associated to one or several vertices called
roots. During the segmentation process, each pixel of the
undefined zones is a vertex which can be merged with other
vertices associated to undefined zones or with a root. To ini-
tialize the local pyramid and to determine which pixels of
the original image belong to the undefined zones and which
not, a local homogeneity analysis can be performed. Thus,
Huart and Bertolino [12] propose to compute a homogene-
ity image (H-image) from the CIE L*a*b* colour space.
This H-image is a grey-scale image whose pixel values are
the H-values representing the image discontinuities accord-
ing to a homogeneous feature. Low values correspond to
homogeneous regions (roots) and high values correspond to
possible discontinuities (undefined zones). The pixels of the
undefined zones are segmented using a simple graph data
structure and a modified stochastic decimation process. This
pyramid allows that, during the segmentation process, the
pixels of the undefined zones merge together and/or with a
neighbouring root according to a similarity criterion.

When the segmentation has been locally performed,
segmented regions are grouped using Gestalt criteria
(perception-based image segmentation). In this region
grouping process the local pyramid is extended with addi-
tional levels. The final result is a stack of partitions with
very few objects [12].

3.3.3. Consensus image segmentation
Cho and Meer [5] propose a new approach for unsuper-

vised segmentation based on RAG. This approach is derived
from the consensus of a set of different segmentation out-
puts on one input image. The probabilistic component of the
RAG pyramid-based segmentation implies that each time
the algorithm is run the obtained result is slightly differ-
ent. Differences are more important in the neighbourhoods
where the piecewise constancy is less valid. In order to ex-
tract this information, local homogeneity is determined by
collecting statistics for every pair of adjacency pixels, in-
stead of statistics characterizing the spatial structure of the
local neighbourhood of a pixel. The proposed segmentation
algorithm works as follows:

• Given the input image, N different segmentations are
obtained by exploiting the probabilistic component of
the hierarchical RAG pyramid-based technique [48]. An
example of the variation in the structure of hierarchy is
illustrated in Fig. 9. Figs. 9a and d show that different
surviving vertices were obtained because of the different
random number assignation.

• The N segmented images are registered on the 8-connected
mesh of the input image. Therefore, every pixel has N
values associated. For every adjacent pixel pair a co-
occurrence probability, i.e. the probability of belonging
to the same delineated region, is derived. The set of all

co-occurrence probabilities defines the co-occurrence field
of the input image studied under the homogeneity crite-
rion which defines the class distribution.

• Since the co-occurrence probabilities are derived from the
initial image segmentations, they capture global informa-
tion about the image at the local (pixel pair) level. The final
segmentation of the input image is obtained by processing
the co-occurrence probability field with a weighted RAG
pyramid technique. This new graph is needed because
each edge of the 8-connected mesh of the co-occurrence
probability field has now a co-occurrence probability as-
sociated to it. Then, pixel pairs with high co-occurrence
probability are grouped together based on the consensus
about local homogeneity.

3.3.4. Image segmentation by connectivity preserving
relinking

Segmentation by relinking [29] is performed by iteratively
updating the class membership of pyramid vertices, i.e. by
adapting parent–son edges. This technique, originally pro-
posed for regular pyramids (see Section 2.2.1), presented
serious drawbacks, the main of which is that classes repre-
sented by a vertex need not correspond to connected regions.
Nacken [54] modifies the original relinking procedure and
applies it to a RAG pyramid. The decimation algorithm pro-
posed by Nacken [54] is briefly described in Section 3.2.2.
In this section, we deal with its application to segmentation
purposes.

In this pyramid, to create the vertices of level l + 1, the
vertices of level l are partitioned in a number of connected
regions, as explained in Section 3.2.2. In order to apply this
scheme to segmentation purposes [54], used as �i-value of
a vertex vi the area of the receptive field of this vertex. He
defined two dissimilarity measures S1 and S2 between nodes:

S1(v, w) = |g(v) − g(w)| − 1
2 (�(v) + �(w)), (4)

S2(v, w) = |g(v) − g(w)|
1 + 1

2 (�(v) + �(w))
, (5)

being g(v) the average grey value within the receptive field
of a vertex v and �(v) the standard deviation of the grey
value.

Once the vertices of Gl+1 have been selected from Gl ,
and the son–parent edges between each non-surviving vertex
and the survivor in its vicinity have been established, the
connectivity-preserving relinking procedure is performed.
For each vertex of level l in turn, a new parent is chosen
from a set of candidate parents which preserve structure
connectivity. The selected new parent could be the parent
which minimizes the grey level difference. Another way to
select the most suitable parent is to minimize the following
energy function in each level:

Eregion[l] =
∑
v∈Vl

n(v)[g(v) − g(�(v))]2, (6)
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Fig. 9. Influence of the random component on the structure of the RAG pyramid: (a) The RAG at level l. Arrows show the decomposition of RAG into
classes using a non-symmetric class membership. Surviving vertices into each class are marked in black; (b) non-surviving vertices allocation; (c) the
RAG at level l + 1 from (a,b); (d) the RAG at level l with different random numbers assigned to the vertices; and (e) the RAG at level l + 1 from (d).

Vl being the set of vertices at level l, n(v) the receptive field
of v, g(v) its grey level value and �(v) its parent.

Finally, Nacken [54] proposes to combine region and
boundary information in the segmentation process (edges
of the RAG correspond to the boundaries between recep-
tive fields in the input image). The proposed boundary-
based relinking criterion is based on the minimization of the
energy:

Eboundary[l] =
∑

v∈Vl−1

�(R(v)), (7)

where �(R(v)) is the average response of an edge detec-
tion filter along the receptive field of a vertex v. New edge
strength measures are defined based on boundary informa-
tion. The combination of boundary and region information is
then performed in a combined edge strength measure, which
takes into account the previously defined measures.

3.3.5. Region growing stopping based on spatial
autocorrelation

The application of the decimation process to a graph hi-
erarchy to obtain segmentation requires defining a criterion
to stop this reduction procedure when the best segmentation
is obtained. In Ref. [13], a statistical test to control the re-
gion growing process is proposed. This test is applied to the
adaptive pyramid [7]. Let Fl,l+1 be the decimation graph

defined by

Fl,l+1 = (Vl, El,l+1) ⊂ Gl , (8)

where El,l+1 are the inter-level edges between the levels l
and l + 1.

Thus, an edge in the decimation graph stands for the merg-
ing of two regions. If it is assumed that Gl is the best seg-
mentation, then any edge in Fl,l+1 must be inappropriate.
Therefore, it can be seen as an edge of a random graph that
does not correctly correlate the associated vertices [13]. On
the contrary, if Gl does not define the best segmentation,
it must have an edge with a significant correlation between
the associated vertices. Then, spatial autocorrelation can be
used to control the decimation procedure, e.g. the region
growing. Therefore, Lallich et al. [13] uses one of the most
popular indicators to measure global spatial autocorrelation:
the Moran’s test [62].

3.3.6. Segmentation with the bounded irregular pyramid
The bounded irregular pyramid (BIP) [14] is a hierarchi-

cal structure that merges characteristics from regular and ir-
regular pyramids. Its data structure is a combination of the
simplest regular and irregular structures: the 2 × 2/4 regu-
lar one and the simple graph irregular representation. The
algorithm firstly tries to work in a regular way by generat-
ing, from level l, a 2 × 2/4 new level l + 1. However, only
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Fig. 10. BIP level generation: (a) regular step (non-orphan vertices of level l have been marked); (b) parent search; (c) intra-level twining at level l; and
(d) intra-level edge definition at level l + 1 (marked in black).

the 2 × 2 homogeneous arrays of Vl generate a new ver-
tex of Vl+1. Therefore, this step creates an incomplete reg-
ular level l + 1 which only presents vertices associated to
homogeneous regions at the level below. Vertices of level l
which generate a new vertex in Vl+1 are linked to this ver-
tex (son–parent edges). Fig. 10a shows this step (only the
son–parent edges associated to three parents are presented).

Then, all vertices without parent (orphan vertices) of level
l search for a neighbour vertex with a parent in level l + 1
whose colour will be similar to the orphan vertex’s colour
(parent search step). If there are several candidate parents,
the orphan vertex is linked to the most similar parent (Fig.
10b). Finally, the irregular part of the BIP is built. In this
step, orphan vertices, of level l, search for all neighbour or-
phan vertices at the same level. Among the set of candidates,
they are linked with the most similar. When two orphan ver-
tices are twined, a new parent is generated at level l + 1
(intra-level twining step). This parent is a node of the irregu-
lar part of the BIP (Fig. 10c). The algorithm performs these
two steps simultaneously. Thus, if an orphan vertex does not
find a parent in the parent search stage, it will search for

an orphan neighbour to link to it (intra-level twining). In
the parent search stage an orphan vertex can be linked with
the irregular parent of a neighbour. Once this is completed,
intra-level edges are generated at level l + 1 (Fig. 10d).
Fig. 11 shows the generation of a new level from level l + 1
of Fig. 10d. The decimation process stops when it is no
longer possible to generate new vertices in the regular part
of the BIP. When all the levels are generated, homogeneous
vertices without parent are regarded as roots and their cor-
responding receptive fields constitute the segmented image.

3.3.7. Hierarchy of partitions by internal and external
contrast measures

The aim of the hierarchy of partitions defined by Hax-
himusa and Kropatsch [1] is to build a minimum weight
spanning tree (MST) of the input image [63]. This MST will
allow to find the region borders in a bottom-up way and,
thus, to perform the image segmentation. Although the used
data structure is the dual graph and the employed decima-
tion process is the MIES proposed by Haxhimusa et al. [52],
in Ref. [1] the construction of the dual graph is formulated
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Fig. 11. BIP level generation.

as the building of a MST of the input image (level 0 of the
graph hierarchy). Thus, an algorithm based on Boru̇vka’s
proposal [64] is used to build in a hierarchical way a MST
preserving the image topology. The method is based on a
previous work of Felzenszwalb and Huttenlocher [63].

This MST is built as follows:
In a hierarchy of graphs, where Gl defines the graph on

level l of the hierarchy, every vertex ui of Gl has a receptive
field in the base level CC(ui). In each level l the union of the
receptive fields of the vertices in the level defines a partition
Pl = {CC(ui)}i=1...n. Then, to build the level l + 1 from
the level l, the goal is to find a partition Pl+1 by merging
members of Pl . Haxhimusa and Kropatsch [1] define the
following pairwise merge criterion:

Comp(CC(ui), CC(uj ))⎧⎪⎨
⎪⎩

1 if Ext(CC(ui), CC(uj ))

�P Int(CC(ui), CC(uj )),

0 otherwise,

(9)

where P Int(·, ·) and Ext(·, ·) are the minimum internal con-
trast difference and the external contrast between two re-
ceptive fields, respectively [63]. Ext(CC(ui), CC(uj )) is the
smallest dissimilarity between CC(ui) in Pl and CC(uj ) in
Pl . P Int(·, ·) is defined as

P Int(CC(ui), CC(uj )) = min(Int(CC(ui)) + �(CC(ui)),

Int(CC(uj )) + �(CC(uj ))).

(10)

Int(CC(ui)) being the internal contrast of the CC(ui) in Pl .
This contrast measure is defined as the largest dissimilarity
of component CC(ui). The threshold function � controls the
degree to which the external variation can actually be larger
than the internal variations and still have the receptive fields
be considered similar [63].

This hierarchical partitioning algorithm has been applied
to the combinatorial pyramid framework by Haxhimusa et
al. [65]. Results show that the algorithm can handle large
variations and gradient intensity in images.

3.3.8. Segmentation based on combinatorial pyramids and
union-find algorithm

In Ref. [8], a segmentation application based on the com-
binatorial pyramid and the union-find-based decimation al-
gorithm is proposed. The segmentation algorithm works on
grey level images and can be briefly summarized as follows:

(1) The original image is quantized into K grey levels. Each
vertex in level 0 of the graph hierarchy encodes a con-
nected component of the pixels whose grey level values
are mapped onto a same interval. The background of the
image is determined by selecting the largest region ad-
jacent to the exterior of the image.

(2) All regions included in the background whose size is less
than a given threshold T are merged with the background
(level 1).

(3) In order to perform the union-find process and to build a
level l+1 from l the mean grey level of each vertex of l is
used to initialize a grey-level histogram. The frequency
h(i) of one entry i of the histogram is set to the number
of vertices whose mean grey level is equal to i. This
histogram is then quantized into K values. The algorithm
merges any couple of adjacent vertices whose mean grey
values are mapped into the same interval. The vertices
which are merged together generate a new vertex of the
level l + 1.

The last step is iterated until no more merge occurs. It
must be noted that the quantization process only provides a
partition of the range of grey values. The encoding of the
partition and the merge operations are performed using the
combinatorial pyramid model [8].

4. Evaluation of segmentation results

4.1. Introduction

Until a few years ago, most of the segmentation methods
worked with grey level images due to the large amount of
data necessary to process colour images. Nowadays, colour
image segmentation approaches are arising, thanks to the in-
crease of the computational capability. The evaluation of seg-
mentation results described in this paper deals with colour
images. It must be noted that “colour cue image segmenta-
tion in a bottom-up way cannot and should not produce com-
plete final image decomposition into meaningful objects, but
it can provide a hierarchical partitioning of the image into
homogeneous coloured regions” [1].

There are two main types of evaluation methods to mea-
sure the quality of a given segmentation algorithm: qualita-
tive methods and quantitative ones. Qualitative methods are
based on the opinion of a human expert who decides the
accuracy of the studied algorithm. Although this measure
depends on the human intuition and could be different for
distinct observers, it could be very useful to evaluate some
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characteristics of the algorithms. On the other hand, quan-
titative methods are based on numerical data. According to
the previous work of Zhang [66], quantitative segmentation
evaluation methods can be classified into two categories: an-
alytical and empirical methods. Analytical methods directly
examine and assess the segmentation algorithms by analyz-
ing their principles and properties. Some properties to be
evaluated are the processing strategy, the processing com-
plexity and efficiency and the segmentation resolution. These
properties could be useful for selecting suitable algorithms in
particular applications. But usually, the segmentation results
are used in more complex image processing or computer vi-
sion tasks, where the accuracy of the results is usually more
important than the performance of the algorithm, which can
be improved later. Hence, the empirical methods are to be
preferred. These methods indirectly judge the segmentation
algorithms by applying them to test images and measuring
the quality of segmentation results. Empirical methods can
be classified into two types: goodness methods and discrep-
ancy methods. Goodness methods measure some desirable
properties of segmented images by “goodness” parameters.
These methods have the problem that these parameters de-
pend on the human intuition. Discrepancy methods compute
the ideal segmentation first and then the segmentation ob-
tained with the algorithm is compared with the ideal one by
counting their differences. These methods present the prob-
lem that having a previous ideal segmentation is necessary,
which depends on the human intuition too.

4.2. Selected evaluation measurements

Two of the main drawbacks of the regular pyramids were
qualitatively evaluated by Bister et al. [4]. Region connec-
tivity is not preserved in regular pyramids because the struc-
ture does not take into account adjacency information when
the pyramid is built. Figs. 12b and c represent the differ-
ent classes resulting from the segmentation of the image in
Fig. 12a. False colour has been used to distinguish each class
from the rest. The linked pyramid divides up the background
region into different classes (Fig. 12b). Besides, it fuses dif-
ferent regions into the same class, creating non-connected
segmented regions. On the other hand, the bounded irregu-
lar pyramid correctly segment the original image into five
classes: four rectangles and the background (Fig. 12c). The
second drawback is related with the presence of elongated
objects. The inflexibility of the structure of regular pyramids
makes the adaptation of such a structure to this type of ob-
jects difficult. Fig. 12d includes a set of elongated objects
presenting different aspect ratios. It is easy to note that the
linked pyramid (Fig. 12e) cannot handle elongated shapes.
Fig. 12f shows that the bounded irregular pyramid is capa-
ble to adapt its structure to correctly segment this type of
objects.

Quantitative evaluation methods are also useful when
subjective contribution is not desired or permitted. We have

Fig. 12. Qualitative evaluation of regular pyramid drawbacks: (a) Input
image #1; (b) linked pyramid segmentation result of (a); (c) BIP segmen-
tation result of (a); (d) input image #2; (e) linked pyramid segmentation
result of (d); and (f) BIP segmentation result of (d).

selected three empirical methods: the SV proposed by
Prewer and Kitchen [15], the F function proposed in Ref.
[16] and the Q function proposed in Ref. [17]. These meth-
ods can be regarded as goodness methods, but they do not
require any user-set parameter for the evaluation of the per-
formance of the segmentation. The F function takes into
account the following guidelines:

• Regions must be uniform and homogeneous.
• The interior of the regions must be simple, without too

many small holes.
• Adjacent regions must present significantly different val-

ues for uniform characteristics.

The F function is computed as follows:

F(I) = 1

1000(N · M)

√
R

R∑
i=1

e2
i√
Ai

, (11)

I being the segmented image, N × M the image size and R
the number of segmented regions. Ai and ei are the area of
the region i and its average colour error, respectively.

The Q function takes into account the same guidelines,
but penalizes the existence of small regions in a more rigid
way

Q(I) = 1

1000(N · M)
√

R
∑R

i=1

[
e2
i

1+log Ai
+

(
R(Ai)

Ai

)2
] ,

(12)

R(Ai) being the number of segmented regions with area
equal to Ai .

SV means that the segmentation produced by pyramidal
segmentation algorithms varies when the base of the pyra-
mid is shifted slightly. This is an undesirable effect for a
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segmentation method. Thus, the SV can be taken as a mea-
surement of an algorithm quality. The previous methods
compare an original image with its segmented image. In
contrast, this method compares the segmentation of an im-
age by a given algorithm with the segmentation produced by
the same algorithm on slightly shifted versions of the same
image. To do that, we have taken a 128 × 128 pixel window
in the center of the original image. We have compared the
segmentation of this subimage with each segmented image
obtained by shifting the window a maximum shift of 11 pix-
els to the right and 11 pixels down. Thus, there is a total of
120 images to compare with the original one. In order to do
each comparison between a segmented shifted image j and
the segmented original one, the root mean square difference
is calculated:

RMSDj =
√ ∑

d2
i

128 · 128
, SV = 1

120

120∑
j=1

RMSDj , (13)

di being the pixel-to-pixel colour difference between the
segmented images. It must be noted that the smaller the
value of these parameters (F , Q and SV ), the better the
segmentation result should be.

4.3. A comparative study

In order to perform the comparisons we have implemented
two segmentation algorithms based on regular pyramids.
One is an implementation of the linked pyramid proposed by
Burt et al. [29] (LinRPyr), and the other one is a weighted
linked pyramid with possibilistic linking (WeiRPyr). The
weighted linked pyramid has been slightly modified by in-
cluding a root extraction process that avoids the need for
choosing a working level. Vertices that link only weakly to
all their parents have been selected as root vertices. Un-
forced linking [9] has been used in the linked pyramid to se-
lect region roots at different pyramid levels. We also include
comparisons with six segmentation algorithms based on ir-
regular pyramids: the classical RAG hierarchy employed by
Bertolino and Montanvert [61] (ClaIPyr), the localized pyra-
mid [12] (LocIPyr); the segmentation algorithm proposed
by Lallich et al. [13] (MorIPyr), the bounded irregular pyra-
mid [14] (BouIPyr), the hierarchy of image partitions by
dual graph contraction [1,6] (HieIPyr) and the hierarchical
segmentation algorithm based on combinatorial pyramids
proposed by Brun and Kropatsch [8] (ComIPyr). The two
regular pyramid-based algorithms and the bounded irregu-
lar pyramid employ the HSI colour distance to perform the
segmentation. The algorithm proposed by Lallich et al. [13]
has been modified by the authors to deal with HSI colour
images.

Several experiments have been conducted in order to com-
pare the efficiency of the different segmentation algorithms.
Particularly, 30 colour images from Waterloo and Coil 100
databases have been chosen. All these images have been re-
sized to 256×256 pixels. In these experiments, we have em-

ployed a 766 MHz Pentium PC, i.e. a sequential processor.
Algorithms proposed by Lallich et al. [13] and Haxhimusa
and Kropatsch [1] are based on decimation procedures that
have been mainly designed for parallel computing. There-
fore, they do not efficiently run in this sequential computer.
However, the algorithms proposed by Marfil et al. [14] and
Brun and Kropatsch [8] are based on decimation techniques
more suited to sequential computing. Specially, the union-
find process has proven to be very efficient when run on
sequential machines. Although it employs a decimation ker-
nel designed for parallel computing, another fast algorithm
is the LocIPyr which only processes a part of the image.
In this case, the computational time associated to the local
homogeneity analysis has been taken into account. The pro-
cessing times are shown in Table 1. It can be noted that the
fastest algorithms are based on regular pyramids. In these
experiments, iterative relinking has been bounded to a max-
imum value of 10 iterations per level (LinRPyr). BouIPyr is
also very fast because a large part of the image is processed
following a classical regular pyramid approach. Table 1 also
presents the maximum height associated to the hierarchical
representation employed to perform the segmentation. The
vertices of the pyramid level associated to this height define
the segmentation in the ClaIPyr, LocIPyr, HieIPyr, MorIPyr
and ComIPyr algorithms. In the rest of algorithms, roots
can be defined in different levels of the hierarchy. In any
case, it must be noted that this height does not correspond
to the apex of the hierarchical representation, i.e. the pyra-
mid level that only contains one vertex. According to the
obtained data (Table 1), it can be appreciated that the two
regular representations and the BouIPyr and HieIPyr irregu-
lar pyramids present the minimum heights. On the contrary,
the ComIPyr, the ClaIPyr and the MorIPyr irregular pyra-
mids present the maximum height values. Finally, Table 1
also shows the number of regions obtained by the different
segmentation algorithms. It can be noted that the different
values are very similar.

Fig. 13 shows two image tests used in our experiments,
and the results obtained from all compared segmentation
algorithms. Table 2 presents the comparison measurements
among methods. The selection of the parameters of all
algorithms has been conducted to obtain the best results ac-
cording to the Q function. This table shows that all irregular
pyramids obtain better segmentation results than regular
ones. Only connected regions have been considered. For
the regular pyramids, unconnected regions have been split
into several smaller regions. It can be also noted that the
MorIPyr and the ComIPyr present the best global results. In
this last algorithm, the background region growing has been
limited because this produce worse results. It must be also
noted that the implicit partitioning of the initial graph using
union-find-based process allows the execution times re-
quired by this algorithm to be greatly reduced. In MorIPyr,
the test based on Moran’s spatial autocorrelation coefficient
allows the control of the decimation process both globally
and locally at the same time. At a global level, it determines
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Table 1
Processing times, height of the hierarchy employed by the segmentation algorithm and number of obtained regions. Average values have been obtained
from 30 different images

Processing times (s) Hierarchy height Number of regions

tmin tave tmax hmin have hmax NRmin NRave NRmax

LinRPyr 0.94 1.37 1.81 9 9 9 17 81.6 203
WeiRPyr 0.31 0.40 0.58 9 9 9 19 79.7 148
ClaIPyr 2.51 3.96 7.68 17 36.7 72 9 84.1 210
LocIPyr 1.71 2.78 6.13 8 25.4 51 12 73.8 210
MorIPyr 2.43 3.47 4.47 13 33.3 62 45 107.7 201
BouIPyr 0.65 0.76 0.84 5 6.1 7 4 72.2 198
HieIPyr 4.07 4.29 4.91 10 11.6 18 23 76.2 149
ComIPyr 1.32 2.88 12.8 9 74.4 202 25 91.6 238

Fig. 13. (a) Input image #2; (b) segmentation images associated to (a) using different algorithms; (c) input image #3; and (d) segmentation images
associated to (c) using different algorithms.

if the merging process must stop and, at a local level, this
test extracts outliers in the distribution of regions merging
candidates. Assuming the normal distribution of the errors
[13], a vertex could be considered as an outlier if the dis-
tance between the tendency line of the Moran’s scatterplot

and the vertex is greater than a percentage tail of the distri-
bution of error. In our experiments, the F and Q functions
penalize the existence of small regions. However, outlier de-
tection results in a more detailed segmentation with more re-
gions. Therefore, a high threshold value has been employed
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Table 2
F, Q and shift variance values. Average values have been obtained from 30 different images

F Q SV

Fmin Fave Fmax Qmin Qave Qmax SVmin SVave SVmax

LinRPyr 765.8 1070.4 1515.5 1052.1 1524.9 2105.4 37.8 66.9 83.5
WeiRPyr 791.2 1072.8 1428.2 1133.7 1480.6 2034.2 49.6 69.9 98.5
ClaIPyr 329.3 840.2 1290.0 479.1 1062.7 1590.3 18.0 28.8 42.8
LocIPyr 213.6 746.1 1345.6 489.4 1002.5 1327.4 20.8 31.7 46.7
MorIPyr 290.4 646.6 1043.7 360.5 817.6 1292.5 19.3 30.1 42.4
BouIPyr 198.6 711.7 1556.1 339.4 1086.7 1919.8 26.4 44.1 84.5
HieIPyr 201.7 689.2 1201.6 458.3 957.8 1521.5 18.5 27.1 35.9
ComIPyr 234.3 618.8 934.9 415.5 878.5 1294.5 21.3 30.7 42.8

(the 20% tail of the distribution of error). Using this thresh-
old value, the behaviour of the MorIPyr is excellent, al-
though it is the method that provides the highest number of
obtained segmentation regions. On the contrary, the results
obtained with the BouIPyr and the LocIPyr present the low-
est number of regions. Compared to the results provided by
the ClaIPyr, the results obtained with the LocIPyr present
less regions but with better performance in terms of the
F and Q functions. The results obtained by the BouIPyr
are very similar to the ones obtained by the ClaIPyr or the
LocIPyr. In order to reduce the number of small regions,
several methods employ a threshold. In our experiments,
this threshold has been set to 20 pixels in all algorithms (in
the ComIPyr framework, this cleaning procedure implies
that the hierarchy presents additional levels). The result
associated to the HieIPyr is a hierarchy of partitions with
multiple resolutions that is performed until the pyramid
apex is reached. Although this hierarchy is suitable for fur-
ther analysis, a hierarchy level must be selected in order
to obtain an unique image segmentation. In this case, the
level that provides the better Q has been chosen. Fig. 13b
shows that this algorithm preserves details in low-variability
regions (in this case, the background of the image). Im-
age smoothing in low-variability regions would solve this
problem[1]. In any case, this method provides perceptually
important partitions in a bottom-up way based only on local
differences. The height of the hierarchy is one of the lowest
among the irregular approaches (in fact, only the BouIPyr
has a lower height), so it is specially suitable to describe
the image structure. Finally, it can be noted that the SV
measure is high in the regular pyramids and in the BouIPyr
approach, due to the regular-based reduction of great part
of the image. In the rest of irregular pyramids, SV measures
are very similar.

5. Conclusions

Previous work on evaluating the capability of pyramid ap-
proaches to segment an image conclude that classical pyra-
mids have to be rejected as general-purpose image segmen-

tation algorithms [4,15]. Specially, the work of Bister and
Prewer and Kitchen show that classical regular pyramids are
shift-, rotation- and scale-variant and hence that the results of
segmentation are very data-dependent and not reproducible.
In this work, these conclusions have been confirmed. In addi-
tion, Bister pointed out that some of the shortcomings of the
classical pyramid segmentation algorithms might be attenu-
ated or even avoided by the irregular pyramid segmentation
scheme. The search for accurate hierarchical representation
has lead in the last decade to the introduction of several new
pyramids that try to solve these shortcomings. However, a
comparison between these new structures and the regular
ones is needed. In Ref. [15], the authors show that fuzzy
regular pyramid approaches display less SV than the classi-
cal linked and weighted pyramids, but they do not develop
conclusions about the performance of irregular pyramids.
This paper has presented a review of pyramid structures em-
ployed in image segmentation that includes classical and re-
cently proposed irregular pyramid structures. In this work,
we have described several of these approaches. As expected,
irregular pyramids yield better results than the regular ones.
Besides, if the classical irregular pyramids achieves these
results in exchange for computational efficiency, the new ap-
proaches have increased their efficiency and performance.
Thus, the height reduction achieved by the hierarchy of par-
titions [1], the computational efficiency of the combinatorial
pyramid [8], the efficient region growing control achieved
with the Moran test [13] or the combination of different
procedures for uniform or non-uniform regions [12,14] are
several recently proposed strategies that have increased the
global performance of irregular pyramid-based segmenta-
tion approaches.
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