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Abstract

This paper present a principled SVM based speaker verification system. We propose
a new framework and a new sequence kernel that can make use of any Mercer kernel
at the frame level. An extension of the sequence kernel based on the Max operator
is also proposed. The new system is compared to state-of-the-art GMM and other
SVM based systems found in the literature on the Banca and Polyvar databases.
The new system outperforms, most of the time, the other systems, statistically
significantly. Finally, the new proposed framework clarifies previous SVM based
systems and suggests interesting future research directions.

Key words: support vector machines, Gaussian mixture models, sequence kernel,
text-independent speaker verification

1 Introduction

Speaker verification systems are increasingly often used to secure personal
information, particularly for mobile phone based applications. Furthermore,
text-independent versions of speaker verification systems are the most used
for their simplicity, as they do not require complex speech recognition mod-
ules. The most common approach using machine learning algorithms are based
on Gaussian Mixture Models (GMMs) (Reynolds et al., 2000), which do not
take into account any temporal information. They have been intensively used
thanks to their good performance, especially with the use of the Maximum
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A Posteriori (MAP) (Gauvain and Lee, 1994) adaptation algorithm. This ap-
proach is based on the density estimation of an impostor data distribution,
followed by its adaptation to a specific client data set. As the estimation of
these densities is not the true goal of speaker verification systems, but rather
to discriminate the client and impostor classes, discriminative models seem
more appropriate.

As a matter of fact, Support Vector Machine (SVM) based systems have
been the subject of several recent publications in which they obtain similar
or even better performance than GMMs on several text-independent speaker
verification tasks. One of these systems, based on an explicit polynomial ex-
pansion (Campbell, 2002) has obtained good results during the NIST 2003
evaluation (Campbell et al., 2006), but suffers from a lack of theoretical in-
terpretation and justification. Moreover the approach precludes the use of the
so-called kernel trick, which is at the heart of the flexibility of SVM based ap-
proaches. We thus propose in this paper a more principled SVM based speaker
verification system that can make use of the kernel trick.

The outline of this paper goes as follows. In Section 2, we present the prob-
lem of text-independent speaker verification, including a description of the
framework, the measures and the databases used in the experimental part. In
Section 3, we provide a brief introduction to SVMs. The new proposed ap-
proach is then presented in Section 4, and is compared to similar approaches
found in the literature. Some improvements are also proposed at the end of
this section. Results on two speaker verification tasks are then presented in
Section 5, while conclusion and future work are proposed in Section 6.

2 Text-Independent Speaker Verification

Person authentication systems are in general designed in order to let genuine
clients access a given service while forbidding it to impostors. In this paper,
we consider the problem from a machine learning point of view and we treat it
independently for each speaker. The problem can thus be seen as a two class
classification task and is defined as follows. Given a sentence X pronounced by
a speaker Si, we are searching for a parametric function fΘSi

() and a decision
threshold ∆Si

such that

fΘSi
(X) > ∆Si

≈ ∆ (1)

for all accesses X coming from Si and only for them. Alternatively, it is often
more convenient (because of a lack of data available for each client) to search
for a unique threshold ∆ that would be client independent. To select the best
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function, we need to define a set of functions fΘ() parameterized by Θ and
make use of a set of sentence examples called the “training set”:

Tr =

{
(Xl, yl)|Xl ∈ Rd×Tl , yl ∈ {−1, 1}

}
l=1..L

where Xl is an input sequence of Tl frames of d dimensions with a correspond-
ing target yl equal to 1 for a true client sequence and −1 otherwise, L is the
total number of sequences in the training set. We are searching for parameters
Θ of a parametric function fΘ : Rd×Tl 7→ R that minimize a loss function Q()
which returns low values when fΘ(Xl) is near yl and high values otherwise:

Θ∗ = arg min
Θ

∑
(Xl,yl)∈Tr

Q(fΘ(Xl), yl).

The loss function usually accounts for the training errors as well as some
constraints that are known to yield better generalization performance (for
example maximizing the margin, as is the case for SVMs). Note that the
overall goal is not to obtain zero error on Tr but rather on unseen examples
drawn from the same probability distribution as those of Tr.

Depending on whether the underlying fΘ() is based on probabilities or not,
two frameworks can be considered and are presented in this section.

2.1 Statistical Framework

Most state-of-the-art speaker verification systems are based on statistical mod-
els. In that framework, the system has to decide whether a sentence X was
pronounced by a speaker Si or by any other person S̄i. It accepts a claimed
speaker as a client only if:

P (Si|X) > P (S̄i|X). (2)

Using Bayes theorem, we can rewrite (2) as follows:

p(X|Si)

p(X|S̄i)
>

P (S̄i)

P (Si)
= ∆Si

≈ ∆ (3)

where ∆Si
represents the ratio of the prior probabilities of being or not being

the client. In this paper this threshold will be replaced by a client independent
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decision threshold ∆. The left part of equation (3) is the parametric function
fΘ() in (1), but as we use two probability estimators, fΘ() is decomposed as
follows:

fΘ(X) =
fΘ+(X)

fΘ−(X)
=

p(X|Si)

p(X|S̄i)

where fΘ+() is a function estimated with the positive examples and fΘ−() is
a function estimated with the negative examples. The loss function used to
train fΘ−() is the negative log likelihood and can be express as:

Θ∗
− = arg min

Θ−

∑
(Xl)∈Tr−

− log p(Xl|Θ−)

where Tr− is the subset of examples of Tr where yl = −1. As generally few
positive examples are available, the loss function used to train fΘ+() is based on
a Maximum A Posteriori (MAP) (Gauvain and Lee, 1994) adaptation scheme
and can be written as follows:

Θ∗
+ = arg min

Θ+

∑
(Xl)∈Tr+

− log

(
P (Xl|Θ+)P (Θ+)

)

where Tr+ is the subset of examples of Tr where yl = 1. This MAP approach
puts some prior about the distribution of Θ+ in order to constrain them to
some reasonable values.

We thus need to create an impostor model of p(X|S̄i), called world or back-
ground model if it is common for all speakers Si, as well as a client model
p(X|Si) for every potential speaker. The two generative models are often es-
timated by Gaussian Mixture Models, which transforms (3) as follows:

1

T

∑
t

log

∑N
n=1 wn · N (xt; µn, σn)∑N̄
n=1 w̄n · N (xt; µ̄n, σ̄n)

> log ∆

where T is the number of frames for a given sentence X, xt is the tth frame
of X, N is the number of Gaussians of the client model, N̄ is the number of
Gaussians of the world model, N (x; µ, σ) is the density of x according to a
Normal distribution of mean µ and standard deviation σ, Θ+ = {µn, σn, wn}
are the GMM parameters for the client model and Θ− = {µ̄n, σ̄n, w̄n} are the
GMM parameters for the world model. Note that 1

T
does not follow from (3)

and is an empirical normalization factor added to be independent of the length
of the sentence.
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In the context of GMM based speaker verification systems, MAP adaptation
broadly translates into forcing Θ+ to be near Θ− as the latter are assumed to
be better estimated than the former. See for instance (Reynolds et al., 2000)
for a practical implementation.

2.2 A Score Based Framework

If instead of relying on models generating probabilities, we want to use dis-
criminative models such as SVMs, as described in the remainder of this paper,
the framework described at the beginning of this section can be applied di-
rectly and no probabilistic interpretation need be given to fΘ(). Section 3
describes in detail the parametric form of function fΘ() and the lost function
Q() used by SVMs.

2.3 Measures

Instead of the usual classification error rate often found in the machine learning
literature, the speaker verification community uses a weighted version of it, as
follows.

One can consider two kinds of errors. Rejecting a genuine client (False Re-
jection, FR) or accepting an impostor (False Acceptance, FA). All measures
used in this paper are based on the corresponding error rates: the False Ac-
ceptance Rate (FAR), which is the number of FAs divided by the number of
client accesses and the False Rejection Rate (FRR) which is the number of
FRs divided by the number of impostor accesses.

Unfortunately, in the literature, most of the results are reported through “a
posteriori” measures in the sense that the decision threshold ∆ is selected to
optimize a given criterion on the test set. In order to obtain unbiased results,
one should rely instead on “a priori” measures, where the decision threshold
∆ is first selected on a separate development set, and then applied to the test
set.

Often used a posteriori measures include Equal Error Rates (where the thresh-
old ∆ is chosen such that (FAR=FRR) and DET curves (Martin et al., 1997)
which present FRR as a function of FAR by varying ∆. They are normally used
to tune and analyze systems. A priori measures, on the other hand, include
Half Total Error Rate (HTER) (FAR∆+FRR∆)

2
and the Expected Performance

Curves (EPC) (Bengio et al., 2005) which show HTER on the test set as a
function of some trade-off parameter α of a convex combination of FAR and
FRR used to select ∆ on a separate development set:
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∆∗ = arg min
∆

(
αFAR∆ + (1− α)FRR∆

)
. (4)

Finally, in this paper, we have also added for both curves and values a con-
fidence interval of 95% using a modified version of the standard proportion
test (Bengio and Mariéthoz, 2004).

2.4 Experimental Setup and Databases

In order to compare the systems presented here, two databases were used. The
Polyvar telephone database (Chollet et al., 1996), contains two sets (called
hereafter development and test sets) of 19 clients (12 men and 7 women) as
well as another population of 56 speakers (28 men and 28 women) used to train
the world model. For each client, a training set contains 5 repetitions of 17
words (composed of 3 to 12 phonemes each), while a separate test set contains
on average 18 repetitions of the same 17 words, for a total of 6000 utterances,
as well as on average 12000 impostor utterances. Each client has 17 models,
one for each word, and only 5 sequences are available to train each model.
As in the original protocol, we kept only the impostor accesses containing the
same word as the one chosen by the true client. The development set of this
database is used to analyze the systems presented in this paper.

The English part of the Banca database (Bailly-Baillière et al., 2003) contains
a development and a test set of 26 clients each (13 men and 13 women) as well
as another population of 60 speakers (30 females and 30 males) used to train
the world model. This database contains three recording conditions defined as
controlled, degraded and adverse and is provided with 7 different protocols. We
have chosen to use the protocol which we consider the most realistic 1 : only
one controlled session is available to train the client model and 546 balanced
test accesses in controlled, degraded and adverse conditions were used per
population. In this paper, Banca is only used in the final comparison.

Table 1 shows a summary of the two Banca and Polyvar databases.

For both databases, each sentence was parameterized using 24 Linear Filter
Cepstral Coefficients (LFCC) (Rabiner and Juang, 1993) of order 16, com-
plemented by their first derivative (delta) and delta-energy, for a total of 33
coefficients. All frames were normalized in order to have zero mean and unit
standard deviation per sequence. A simple silence detector based on an unsu-
pervised bi-Gaussian model was also used to remove all silence frames (Magrin-
Chagnolleau et al., 2001).

1 This corresponds to protocol P as defined in the Banca protocol
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Table 1
Some statistics for the two Banca and Polyvar databases.

Banca Polyvar

# of client models on the dev set 26 323

# of client models on the test set 26 323

# of training impostor examples 60 592

# training client examples per model to train 1 5

# testing client examples for each set 234 6000

# testing impostor examples for each set 312 12000

# frames per example on average 1000 80

A state-of-the-art GMM based text-independent speaker verification system
was used as a baseline to assess the various proposed systems. Two gender
dependent world models were trained using Expectation Maximization with a
Maximum Likelihood criterion. A lower bound of the variances of the Gaus-
sians was used to control the capacity and was fixed to a certain percentage
of the total variance of the data. The final world model was then obtained by
merging the two gender dependent models. For each client, a model was then
created by adapting the final world model using a MAP algorithm (Reynolds
et al., 2000). Only the mean parameters of the client model were adapted
using the following update rule:

µn = αµML
n + (1− α)µ̄n

where n is the Gaussian index, µML
n the mean parameter vector estimated

using the Maximum Likelihood criterion over the client data, µ̄n the mean
parameter vector of the world model and α the MAP adaptation factor that
represents the faith we have in the client data.

All hyper-parameters of the baseline system, such as number of Gaussians,
variance flooring factor and MAP adaptation factor, were selected on the
development set of each corresponding database and are given in Table 2.

Table 2
Summary of the hyper-parameters for GMM based systems.

Database
Number of

Gaussians (N)
MAP

Factor (α)
Variance Flooring

Factor in [%]

Polyvar 100 0.2 0.1

Banca 200 0.5 0.6
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3 Support Vector Machines

Support Vector Machines (SVMs), as proposed by Vapnik (1995), are more
and more often used in machine learning applications such as text classification
and vision (Joachims, 2002; Pontil and Verri, 1998). They have also been used
successfully for regression and multi-class classification problem (Kwok, 1998).
In the context of two-class classification problems, the underlying decision
function is:

fΘ(x) = b + w · Φ(x) (5)

where x is the current example, Θ = {b,w} are the model parameters and
Φ() is an “a priori” chosen function that maps the input data into some high
dimensional space.

Solving the SVM problem is equivalent to minimizing the following criterion:

(w∗, b∗) = arg min
(w,b)

‖ w ‖2

2
+ C

L∑
l=1

ξl (6)

under the constraints:

yl(wxl + b) ≥ 1− ξl ∀l

ξl ≥ 0 ∀l

where L is the number of training examples, yl is the target class label in
{−1, 1} corresponding to xl, C is a parameter that trades off the minimization
of classification errors (represented by ξl) and the maximization of the margin,
known to possess very good generalization properties. Maximizing the margin
is very important in the context of speaker verification, since in most cases very
few positive examples are available, and the problem is often easily separable.

It can be shown that solving (6) enables the decision function to be expressed
as a hyper-plane defined by a linear combination of training examples in the
feature space Φ(). We can thus express (5) as follows:

fΘ(x) = b +
L∑

l=1

αlylΦ(xl) · Φ(x).
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We call support vector a training example for which αl 6= 0. As Φ() only
appears in dot products, we can replace them by a kernel function as follows:

fΘ(x) = b +
L∑

l=1

αlylk(xl,x).

This so-called “kernel trick” helps to reduce the computational time and also
permits to project xl into potentially infinite dimensional feature spaces with-
out the need to compute anything in that space. The two most well known
kernels are the Radial Basis Function (RBF) kernel,

k(xi,xj) = exp

(
−||xi − xj||2

2σ2

)
(7)

where σ is a hyper-parameter than can be used to tune the capacity (which
represents the size of the set of possible functions fΘ(x), as explained by Vap-
nik, 1995) of the model, and the polynomial kernel,

k(xi,xj) = (axi · xj + b)p (8)

where p, b, a are hyper-parameters that control the capacity.

Several SVM based approaches have been proposed recently to tackle the
speaker verification problem (Wan and Renals, 2005; Campbell et al., 2006).
While this task is mainly a two-class classification problem for each client,
it differs from the classical problem by the nature of the examples, which
are variable length sequences. Since classical SVMs can only deal with fixed
size vectors as input, two approaches can be considered. Either work at the
frame level and merge the frame scores in order to obtain only one score for
each sequence; or try to convert the sequence into a fixed size vector. The first
approach is probably not ideal, because we try to solve a problem which is more
difficult than the original one: indeed, each frame contains little discriminant
information and some even contain no information (like silence frames). Most
solutions are thus based on the second approach, such as the so-called Fisher
scores or the explicit polynomial expansion.

Fisher score based systems (Jaakkola and Haussler, 1998) compute the deriva-
tive of the log likelihood of a generative model with respect to its parameters
and use it as input to an SVM. This provides a nice theoretical framework, but
is very costly for GMM based generative models with large observation space
(which yield more than 10 000 parameters in general for speaker verification)
and furthermore still needs to train generative models.
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The explicit polynomial expansion approach (Campbell et al., 2006; Wan and
Renals, 2003) expands each frame of a sequence using a polynomial function
and averages them over the whole sequence in the feature space. The resulting
fixed size vector is used as input to a linear SVM (Φ(x) = x). The method
is quite fast and robust, but is a bit tricky to tune. In this paper we propose
a new approach with a better framework from a machine learning point of
view that generalizes the polynomial approach and extends it to any kernel
function.

4 A Principled Approach to Sequence Kernels for Speaker Verifi-
cation

One particularity of the speaker verification problem is that inputs are se-
quences. This requires, for SVM based approaches, a kernel that can deal with
variable size sequences. A simple solution, which does not take into account
any temporal information, as in the case of GMMs, is the following:

K(Xi,Xj) =
1

TiTj

Ti∑
ti=1

Tj∑
tj=1

k(xti ,xtj) (9)

where Xi is a sequence of size Ti and xti is a frame of Xi. We thus apply a
kernel k() to all possible pairs of frames coming from the two input sequences
Xi and Xj. This will be referred to in the following as the Mean operator
approach (as we are averaging all possible kernelized dot products of frames).

This kind of kernel has already been applied successfully in other domains
such as object recognition (Boughorbel et al., 2004). It has the advantage
that all forms of kernels can be used for k() and the resulting kernel K()
respects all Mercer conditions (Burges, 1998) which make sure that for all
possible training sets the resulting Hessian is semi-positive; these conditions
make the problem convex. Two forms of kernels k() are used in this paper: an
RBF kernel (7) and a polynomial kernel (8). For the latter, we fixed a and b

to p!−
1
2 which makes the maximum value of the polynomial coefficients equal

to one in order to avoid numerical problems for large values of p. The degree
p of the polynomial kernel and the standard deviation σ of the RBF kernel
are thus the only hyper-parameters tuned over the development set.

4.1 Comparison with Campbell’s Polynomial Approach

Campbell (2002) recently proposed a new approach using SVMs for speaker
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verification based on an explicit polynomial expansion. He proposed a new
kernel called GLDS (Generalized Linear Discriminant Sequence) of the form:

K(Xi,Xj) = Φ(Xi)Γ
−1Φ(Xj) (10)

where Γ is a matrix derived by the metric of the feature space induced by Φ().
This matrix is usually a diagonal approximation γ of the covariance matrix
computed over all the training data. He furthermore defines:

Φ(X) =
1

T

T∑
t=1

φ(xt)

and

φ′(xt) =
φ(xt)√

γ

where φ′() is the normalized version of φ(), and can thus rewrite (10) as:

K(Xi,Xj) =
1

Ti

Ti∑
ti=1

φ′(xti) ·
1

Tj

Tj∑
tj=1

φ′(xtj)

where φ′() maps the example xt ∈ Rd → RK , K = (d+p−1)!
(d−1)!p!

is the dimension
of the feature space, d is the dimension of each frame augmented by a new
coefficient equal to 1, p is the degree of the polynomial expansion and each
value k ∈ {1, ..., K} of the expanded vector corresponds to a combination of
r1, r2, ..., rd as follows:

φ′k(r1,r2,...,rd)(xt) =
1
√

γk

xr1
1 xr2

2 ...xrd
d (11)

for all possible combinations of r1, r2, ..., rd such that
∑d

i=1 ri = p and ri ≥ 0.

Campbell proposed a method to normalize each expanded coefficient using
γ computed over all concatenated impostor sequences. Once all vectors are
computed and normalized, they can be used as input to a linear SVM.

While this approach yielded good performance on NIST 2003, it has some
drawbacks. First no kernel trick can be applied: it seems not possible to include
the normalization 1√

γk
into it. And since we need to project explicitly the data
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into the feature space, only finite space kernels are applicable (an RBF kernel
could not be used for instance).

The second main problem of this approach is related to the capacity (Vapnik,
1995). Empirically, we have seen that for various databases the optimal value
for C in equation (6) becomes ∞. This is in general due to the use of an incor-
rect cost function. As often in speaker verification, only few positive examples
(even only one) are available. Furthermore, the ratio between the number of
positive and negative examples is very different between the training and the
test accesses. As C cannot be used to tune the capacity of the system (since
it always end up being ∞), we can rely only on the hyper-parameters of the
chosen kernel. For a polynomial kernel “a la Campbell” the only available
parameter is the degree p of the polynomial, but this parameter is hardly tun-
able: for respectively p =1, 2, 3 and 4 the resulting feature space dimensions
are 33, 595, 7 140 and 66 045. It is then difficult to correctly set the capacity.
Moreover, as the best value is p = 3 for the considered databases, the dimen-
sion seems quite huge if we consider that a few hundred examples only are
used for training.

In the following, we will try to answer questions such as: why is a normalization
step required? Does taking the average of the φ() values over all frames make
any sense?

We will first show that our proposed approach solves almost all drawbacks of
the explicit polynomial approach and still includes the solution proposed by
Campbell. Let us start by rewriting (9) as follows:

K(Xi,Xj) =
1

TiTj

Ti∑
ti=1

Tj∑
tj=1

φ(xti) · φ(xtj) =
1

Ti

Ti∑
ti=1

φ(xti) ·
1

Tj

Ttj∑
tj=1

φ(xtj).

Let us define k(xi,xj) of (9) as a polynomial kernel of the form (xi ·xj)
p, where

p is the degree of the polynomial. In order to perform an explicit expansion
with the standard polynomial kernel we need to express the corresponding φ()
function (Burges, 1998) in a similar way to (11). Each value of the extended
vector is thus given by:

φk(r1,r2,...,rd)(xt) =
√

ckx
r1
1 xr2

2 ...xrd
d ,

d∑
i=1

ri = p, ri ≥ 0 (12)

where ck =
p!

r1!r2!...rd+1!
, k ∈ {1, ..., K}
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and each input frame is augmented by a new coefficient equal to 1.

When we compare equations (12) and (11) the difference only lies in the
polynomial coefficients: each term is multiplied by a coefficient

√
ck in the

proposed approach while the explicit expansion needs a normalization factor
1√
γk

that disables the kernel trick. We compared in Figure 1 the coefficient

values for each term in the proposed approach with the normalization vector
obtained by the explicit method as estimated on Banca and Polyvar using a
polynomial expansion of degree 3. As can be seen, they look very similar: all of
them show high (resp. low) values at the same time. In fact, the performance
obtained on the development set of Polyvar are very similar, as shown by the
DET curves given in Figure 2 and Equal Error Rates provided in Table 3.
Figure 2 and Table 3 also provide results using an RBF kernel to show that
it now becomes possible to change the kernel, even if, in that case, the best
kernel was still polynomial.
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Fig. 1. Coefficient values of polynomial terms, as computed on Banca and Polyvar,
compared to the ck polynomial coefficients.

The drawback of our method, however, is the computational complexity for
long sequences. If S is the number of speakers, N+ the number of positive
examples per speaker, N− the number of negative examples, and M the average
number of frames of an example, then the training time complexity is given
by:

O(S(N2
+M2) + N−M2).
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Fig. 2. DET curves on the development set of the Polyvar database comparing
the explicit polynomial expansion (noted as “Campbell p = 3 in the legend), the
principled polynomial kernel (noted “Mean p = 3”) and an RBF kernel using the
Mean operator (noted “Mean σ = 6”).

Table 3
Comparison of EERs (the lower the better) on the development set of the Polyvar
database between the explicit polynomial expansion (noted “Campbell”) and two
principled kernels (polynomial and RBF) applying the mean operator over all pairs
of frames (noted respectively “Mean p = 3” and “Mean σ = 3”). The second line
provides a 95% confidence interval of the EERs while the third line provides the
resulting average number of support vectors for each client model.

Campbell
p = 3

Mean
p = 3

Mean
σ = 3

EER [%] 3.38 3.46 4.08

95% Confidence ±0.27 ±0.28 ±0.3

# Support Vectors 68 87 62

Long sequences are thus very costly. This is not a problem for databases such
as Polyvar and Banca, especially, because N+ << N− and negative examples
are shared between all clients and can thus be cached in memory. It is still
unfortunately intractable for other databases such as NIST, in its present
form. The test complexity for each access is:

O(X2
l M2)
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where Xl is the number of support vectors. Even for the test, computing scores
for long sequences can take too long. This problem can certainly be addressed
using clustering techniques and will be in a future work.

4.2 Max Approach

In equation (9), we can see that all frames of two sequences are compared with
each other. Does this make sense? Is it a good idea to compute a similarity
measure (which is what a kernel does) between frames coming from differ-
ent sub-acoustic units? The answer is probably “no”. Moreover, we expect a
similarity between two identical sequences to be maximum, which is not neces-
sarily the case with equation (9), since we take the average. To illustrate this,
let us create a sequence Xj contains exactly one frame taken from another
sequence Xi that gives the maximum value of k(xti ,xtj) in (9). In that case,
one can easily obtained K(Xi,Xj) ≥ K(Xi,Xi).

We thus propose here an alternative to taking the average over all frames. We
consider, for each frame of sequence Xi, the similarity measure of the closest
corresponding frame in sequence Xj. We thus propose to take a symmetric
Max operator of the form:

K(Xi,Xj) =
1

Ti

∑
ti

max
tj

k(xti ,xtj) +
1

Tj

∑
tj

max
ti

k(xti ,xtj).

The main idea is that, instead of comparing frames coming from different
acoustic events, we compare close frames only. Unfortunately, the resulting
function does not satisfy the Mercer’s conditions anymore. In practice however,
even if a function does no satisfy Mercer’s conditions, one might still find that
a given training set results in a positive semi-definite Hessian in which case
the training will converge perfectly well (Burges, 1998). The empirical results
provided here and in Section 5 show that the Max operator based kernel 2

gives good results on at least two speaker verification databases.

Figure 3 and Table 4 show that the Max approach outperforms the standard
one on the development set of Polyvar. The RBF kernel gives similar result
to the polynomial kernel when the Max operator is used. It is interesting to
note that now the optimal value is p = 1. This is probably because the Max
operator is more appropriate. And this value is reasonable because the input
space dimension of each sequence X is given by TiTjd which is already huge

2 Note that in the following we will continue to call such a function a kernel even if
it does not satisfy Mercer’s conditions, as it is often done in the literature (see for
instance (Burges, 1998))
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compared to the number of examples. Thus we need very small capacity, and
the plain dot product seems sufficient.

PSfrag replacements

0.5 1 2 5 10 20

False Acceptance Rate

0.5

1

2

5

10

20

F
a
ls
e

R
ej

ec
ti
o
n

R
a
te

Mean p = 3

Max p = 1

Max σ = 100

Fig. 3. DET curves on the development set of the Polyvar database for Mean and
Max operators for polynomial (noted “Max p = 1”) and RBF kernels (noted “Max
σ = 100”).

Table 4
Results on the development set of the Polyvar database for Mean and Max operators
for polynomial (noted “Max p = 1”) and RBF (noted “Max σ = 100”) kernels.

Mean
p = 3

Max
p = 1

Max
σ = 100

EER [%] 3.46 2.99 2.95

95% Confidence ±0.28 ±0.26 ±0.26

# Support Vectors 87 73 99

5 Experimental Results

We provide in this section performance results comparing the various speaker
verification systems over the test sets of both the Polyvar and the Banca
databases.
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5.1 Polyvar

Figure 4 presents the final performance on the test set of the Polyvar database.
Only the best systems (according to the development set) for Max and Mean
operator based kernels are presented. Complementary results are presented in
Table 5. The figure is composed of two graphs. The first one represents an EPC
providing the HTER as a function of the parameter α of a convex combination
of FAR and FRR, as given by equation (4), which was used to set the threshold
on a development set. Thus, the lower the curve, the better the performance.
The second part provides the confidence level for each value of α. The higher
the curve, the more confident we can be on the statistical significance of the
difference in performance between the two compared models.
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Fig. 4. EPC curves on the test set of the Polyvar database for GMM and best Mean
and Max operators for polynomial and RBF kernels.

The first conclusion is that the SVM based systems outperform the GMM
based system. Furthermore, the Max approach significantly outperforms GMMs
for all values of α with a confidence level greater than 99% most of the time.
The Max approach also outperforms most of the time the Mean based sys-
tem (equivalent to the “Campbell” approach for polynomial kernels) with a
confidence level greater than 95%. The solution is also sparser in terms of
number of support vectors. The Max RBF kernel gives similar results to the
Max polynomial kernel. It is also interesting to note that the optimal degree
for the Max polynomial kernel is equal to 1.
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Table 5
Results on the test set of the Polyvar database for GMM, Mean operator for poly-
nomial (noted “Mean p = 3”) and RBF (noted “Mean σ = 6) kernels and Max
operator for polynomial (noted “Max p = 1”) and RBF (noted “Max σ = 100”)
kernels.

GMM
N = 100

Mean
σ = 6

C = ∞

Mean
p = 3

C = ∞

Max
p = 1

C = ∞

Max
σ = 100
C = ∞

HTER [%] 4.9 4.59 4.47 3.9 4.21

95% Confidence ±0.34 ±0.33 ±0.32 ±0.31 ±0.32

# Support Vectors - 62 87 73 99

5.2 Banca

Figure 5 and Table 6 present the final performance of several systems on
the Banca database. Once again, only the best systems for Max and Mean
operators are presented.
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Fig. 5. EPC curves on test set of the Banca database for GMM and best Mean and
Max operator for polynomial and RBF kernels.

The first conclusion is that, for this database, the GMM based system out-
performs all the SVM based systems. The particularity of this database is
the unmatched conditions. Only one “controlled” training session per speaker
is available and all conditions are used during the test. SVMs might be less
robust than GMMs for unmatched conditions.
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Table 6
Results on test set of the Banca database for GMM, Mean operator polynomial
(noted “Mean p = 3”) and RBF (noted “Mean σ = 8”) kernels and Max operator
for polynomial (noted “Max p = 1”) and RBF (noted “Max σ = 200”) kernels.

GMM
N = 200

Mean
σ = 8

C = ∞

Mean
p = 3

C = ∞

Max
p = 1

C = ∞

Max
σ = 200
C = 100

HTER [%] 2.72 8.71 6.57 6.57 5.61

95% Confidence ±1.42 ±2.4 ±2.1 ±2.1 ±1.94

# Support Vectors - 18 27 42 9

The Max approach outperforms most of the time the Mean system but the
confidence level of the difference is low. This database is unfortunately too
small to gives statistically significant results. However, it is interesting to note
once again that the Max operator solution is sparser than the Mean operator
solution. The optimal C value is not ∞ for the Max RBF kernel so in some
cases it can still be interesting to tune this parameter. Empirically most of
the time, the optimal value of the C parameter remains ∞. It is probably
due to the SVM criterion: it has been designed to minimize the classification
error rate, which is not optimal in our case and should be modified in order to
deal with highly unbalanced data. This problem has already been investigated
recently by Grandvalet et al. (2005).

Note also that, contrary to the Polyvar database, the optimal kernel is now
the RBF kernel. This shows that it is important to provide an SVM approach
where the kernel can be chosen according to the database, which was not the
case in (Campbell, 2002).

6 Conclusions

We have proposed a new method to use SVMs for speaker verification. It allows
the use of all kinds of kernels, generalizes the explicit polynomial approach
and outperforms SVM based state-of-the-art approaches for the two tested
databases.

We have also proposed a new Max operator instead of averaging the kernel
values over all pairs of frames. It makes more sense and outperforms the stan-
dard approach. Unfortunately it does not satisfy the Mercer conditions but
still converges very well for the studied databases.

The main drawback of our proposed method is the large complexity for long

19



sequences. This can probably be alleviated using some clustering techniques.

We have also shown that the capacity parameter C influences the results
using the Max operator which was not the case with the approach proposed
by Campbell (2002). We still need to understand better how to modify the
SVM criterion for unbalanced data as often found in speaker verification tasks.
A big indicator of the problem is that using a polynomial kernel with a Max
operator, the optimal degree is equal to 1. Thus we hope to be able to reduce
the capacity by tuning the C value.
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