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abstract
Kernel machines are widely considered to be powerful tools in various fields

of information science. By using a kernel, an unknown target is represented by
a function that belongs to a reproducing kernel Hilbert space (RKHS) corre-
sponding to the kernel. The application area is widened by enlarging the RKHS
such that it includes a wide class of functions. In this study, we demonstrate a
method to perform this by using parameter integration of a parameterized ker-
nel. Some numerical experiments show that the unresolved problem of finding
a good parameter can be neglected.

keyword
kernel, reproducing kernel Hilbert space, projection learning, parameter in-
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1 Introduction

Learning based on kernel machines [1, 2, 3] has been widely considered to be a
powerful tool in various fields of information science such as pattern recognition,
regression estimation, density estimation, etc. In several existing approaches,
the adequacy of kernel machines is measured by the difference between the
predictive output of an assumed model with the training input data set and
a training output data set (e.g., class labels in a pattern recognition problem,
function values in a density or regression estimation problem, etc.). In these
approaches, a kernel, whose mathematical properties are described in detail in
[4], is recognized as a useful tool for calculating the inner product in a certain
feature space.

On the other hand, Ogawa formulated a learning problem as an estimation
of the unknown function in a certain function space. In this approach, the
adequacy of learning is measured by the difference between the unknown true
function and the estimated one in the function space determined by a kernel.
Therefore, a kernel plays a crucial role in the determination of a function space
to which the unknown target function belongs. This scheme is referred to as
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(parametric) projection learning [5, 6, 7, 8] and it has been yielding several
interesting results, primarily in the field of neural networks (see [9] for instance).
This approach seems reasonable since it is widely known that the mathematical
essence of using a kernel is that the unknown target (a classifier in a pattern
recognition problem, function in a density or regression estimation problem,
etc.) can be represented by a function that belongs to a reproducing kernel
Hilbert space (RKHS) [4] that corresponds to an adopted kernel.

In the real world, however, targets to be learned are not always functions
as one found in a pattern recognition problem in which some classes essentially
overlap. The application of kernel machines to such problems requires meth-
ods such as the “soft margin” technique in a support vector machine (SVM)
[10]. On the other hand, it is also important to analyze the performance and
properties of a kernel machine when the unknown target can be represented by
a function. In such a case, the use of kernel is theoretically validated. Here,
one of the primary topics that requires theoretical clarification is the question:
What constitutes a good kernel? As already mentioned, the condition that
the unknown true function belongs to the RKHS corresponding to an adopted
kernel imparts theoretical consistency to kernel machines. This understanding
provides a suggestion for designing a kernel. In general, information about the
unknown true function is limited. Therefore, we have to construct the RKHS to
be as large as possible. This imparts consistency to kernel machines for a wide
class of functions. In this study, we show that a kernel corresponding to such a
large RKHS is realized by the parameter integration of a parameterized kernel.
Further, some numerical examples are given in order to validate our theory.

2 Mathematical Preliminaries for the RKHS The-
ory

In this section, we prepare some mathematical tools to deal with the RKHS
theory.

Definition 1 [4] Let Rn be an n-dimensional real vector space and let H be
a class of functions defined on D ⊂ Rn, forming a Hilbert space of real-valued
functions. The function K(x, y) (x, y ∈ D) is referred to as a reproducing
kernel of H, if

1. for every y ∈ D, K(x, y) is a function of x belonging to H and

2. for every y ∈ D and every f ∈ H,

f(y) = 〈f(x), K(x,y)〉, (1)

where 〈·, ·〉 denotes the inner product of the Hilbert space H.

The Hilbert space H is referred to as an RKHS when it has a reproducing
kernel. The reproducing property, Eq.(1), enables the realization of the value
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of the function at a point in D. Note that the reproducing kernels are positive
definite [4]:

N∑
i,j=1

cicjK(xi,xj) ≥ 0, (2)

for any N , c1, . . . , cN ∈ R, and x1, . . . , xN ∈ D. In addition, K(x, y) =
K(y,x) for any x, y ∈ D follows [4]. If a reproducing kernel K(x, y) exists, it
is unique [4]. Conversely, every positive definite function K(x, y) has a unique
corresponding RKHS [4]. Therefore, it is guaranteed that any positive definite
function K(x, y) is always a reproducing kernel.

Next, we introduce the Schatten product [11] that distinctly reveals the
reproducing property of kernels.

Definition 2 [11] Let H1 and H2 be Hilbert spaces. The Schatten product of
g ∈ H2 and h ∈ H1 is defined as

(g ⊗ h)f := 〈f, h〉g, f ∈ H1. (3)

Note that (g ⊗ h) is a linear operator from H1 onto H2. It can be easily
shown that the following relations hold for h, v ∈ H1 and g, u ∈ H2:

(h ⊗ g)∗ = (g ⊗ h), (h ⊗ g)(u ⊗ v) = 〈u, g〉(h ⊗ v), (4)

where X∗ denotes the adjoint operator of X.

3 Interpretation of Learning as a Linear Inverse
Problem

Let (yi, xi), (yi ∈ R, xi ∈ Rn, i = 1, . . . , `) be a given training data set of `
samples that satisfies

yi = f(xi) + ni, (5)

where f and ni ∈ R denote a real-valued function and additive noise, respec-
tively. In regression estimation or density estimation problems, yi takes a real
value, whereas yi takes a class label in pattern recognition problems. In this
study, the aim of the machine learning is assumed to be the estimation of the
unknown function f using a training data set, a priori knowledge about the
function space, and statistical properties of additive noise. In this study, we
assume that f belongs to HK , the RKHS corresponding to a certain kernel K.
Based on the reproducing property of kernels, the value of a function f ∈ HK

at a point xi is written as

f(xi) = 〈f(x),K(x, xi)〉. (6)

Therefore, Eq.(5) is rewritten as

yi = 〈f(x),K(x,xi)〉 + ni. (7)
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Let y := [y1, . . . , y`]′ and n := [n1, . . . , n`]′, where X ′ denotes the transposed
matrix (or vector) of X. By applying the Schatten product to Eq.(7), we have

y =

(∑̀
k=1

[e(`)
k ⊗ K(x,xk)]

)
f(x) + n, (8)

where e
(`)
k denotes the k-th vector of the canonical basis of R`. For simplicity,

we use

A :=

(∑̀
k=1

[e(`)
k ⊗ K(x, xk)]

)
. (9)

It is important to note that operator A is linear, irrespective of whether f(x)s
are linear or non-linear. Now, the simplest form of Eq.(8) can be expressed as

y = Af(x) + n. (10)

This equation represents the relation between the unknown target function f(x)
and output y. All the information about the input vectors is integrated in
operator A. Therefore, a machine learning problem can be interpreted as an
inverse problem of Eq.(10) [5, 6].

Based on the model described by Eq.(10), Ogawa proposed a novel learn-
ing framework referred to as (parametric) projection learning [5, 6]. Projection
learning yields a minimum variance unbiased estimator of the orthogonal pro-
jection of the unknown function f(x) onto R(A∗), the range of A∗; on the other
hand, parametric projection learning results in an improvement in the unknown
function by incorporating the relaxation of the unbiasedness of projection learn-
ing to suppress the influence of noise. Parametric projection learning includes
projection learning as a special case. In the framework of (parametric) projec-
tion learning, the solution is the learning operator B; by using it, the estimated
function is expressed as

f̂(x) = By. (11)

Parametric projection learning is defined as follows:

Definition 3 [7, 8] The learning operator BPPL of parametric projection learn-
ing is given as

BPPL(γ) := argminB [tr[(BA − PR(A∗))(BA − PR(A∗))∗]
+ γEn||Bn||2], (12)

where PR(A∗) denotes the orthogonal projector onto R(A∗) and γ denotes a real
positive parameter that controls the trade-off between the two terms.

As shown in [7, 8], one of the solutions of the parametric projection learning
is given as

BPPL(γ) = A∗(AA∗ + γQ)+, (13)
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where X+ denotes the Moore-Penrose generalized inverse [12] of X, and Q
denotes the noise correlation operator defined by

Q := En[nn∗]. (14)

Finally, the solution of the parametric projection learning is written as

f̂(x) = BPPLy, (15)

or specifically

f̂(x) =

(∑̀
i=1

[
K(x, xi) ⊗ e

(`)
i

])
(G + γQ)+y

=
∑̀
i=1

y′(G + γQ)+e
(`)
i K(x, xi), (16)

where G = AA∗ is the Gram’s matrix of K expressed as G = (gij), gij =
K(xi, xj), which is easily confirmed by the properties of the Schatten product
(Eq.(4)). The appropriate parameter γ can be selected by using a criterion such
as the subspace information criterion [13]. Note that the assumption Q = O
(zero matrix) yields the solution based on the Moore-Penrose generalized inverse
of A, while the assumption Q = I` yields a solution identical to the kernel ridge
regression [2, 3] and the Gaussian process [3].

4 Integrated Kernel and its Properties

Considering the learning problems in terms of Eq.(10), the only assumed con-
dition is f(x) ∈ HK , which is crucial for the theoretical consistency of the
learning; further, it yields an important suggestion for kernel design or kernel
selection. If a priori knowledge about the function space to which the unknown
target function belongs is available, it is sufficient to adopt the corresponding
kernel as long as such a kernel exists. However, in general, this knowledge is
unavailable. Therefore, the second best method is adopting a kernel whose cor-
responding RKHS is as large as possible; this guarantees theoretical consistency
for a wide class of functions. One resolution for this is to adopt the sum of a
number of kernels since it is shown in [4] that the corresponding RKHS includes
the RKHSs of the summed kernels. However, some difficulties such as the se-
lection of kernels to be summed up and the cost of calculations still remain.
To overcome these difficulties, we introduce an integrated kernel that actually
resolves these difficulties.

The inner product 〈·, ·〉, as introduced in Section 2, is defined by integration
on the Lebesgue measurable space. Similarly, the following integrations are on
the Lebesgue measurable space.

Definition 4 Let Q ⊂ R be a Borel set and let Kθ(x, y) be a kernel with
parameter θ ∈ Q. We assume that Kθ(x, y) is an integrable function with
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respect to the Lebesgue measure for any x, y ∈ D, that is,∫
Q
|Kθ(x,y)|dθ < ∞. (17)

The integrated kernel is defined as

KQ(x, y) :=
∫
Q

Kθ(x, y)dθ. (18)

Note that Kθ(x, y) is also integrable on an arbitrary Borel set Ξ ⊆ Q since∫
Ξ

|Kθ(x,y)|dθ ≤
∫
Q
|Kθ(x, y)|dθ < ∞ (19)

holds.

Theorem 1 KΞ(x,y) is a kernel for an arbitrary Borel set Ξ ⊆ Q.

Proof It is trivial that
N∑

i,j=1

cicjKΞ(xi, xj) (20)

is finite for any N , c1, . . . , cN ∈ R, and x1, . . . , xN ∈ D since KΞ(xi, xj) is
finite for any xi, xj ∈ D. Therefore, it is sufficient to confirm that

N∑
i,j=1

cicjKΞ(xi, xj) ≥ 0. (21)

On the basis of the facts that

1.
∑N

i,j=1 cicjKθ(xi, xj) is a measurable function for any N , c1, . . . , cN ∈ R,
and x1, . . . , xN ∈ D since Kθ(xi,xj) is measurable for any xi, xj ∈ D,

2. the integral of the sum of a finite number of measurable functions is iden-
tical to the sum of the integral of those measurable functions, and

3.
∑N

i,j=1 cicjKθ(xi, xj) ≥ 0 holds for any θ ∈ Ξ ⊆ Q,

it immediately follows that
N∑

i,j=1

cicjKΞ(xi, xj)

=
N∑

i,j=1

cicj

(∫
Ξ

Kθ(xi, xj)dθ

)

=
∫

Ξ

 N∑
i,j=1

cicjKθ(xi,xj)

 dθ ≥ 0, (22)

which concludes the proof. 2

Next, we investigate the relationships between KQ(x, y) and Kθ(x,y). The
following theorem is useful for investigating the inclusion relation of two RKHSs.
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Theorem 2 [14] Let the kernels be K1(x, y) and K2(x,y).

HK1 ⊂ HK2 (23)

holds, if and only if there exists a real positive number γ that makes

γK2(x, y) − K1(x, y) (24)

a kernel, that is, a positive definite function.

Definition 5 Let f(x) be a continuous function defined on a closed interval
[a, b], and let δ be a real positive constant satisfying

δ <
b − a

2
. (25)

A function f(x) is called a δ-monotone continuous function if f(x) is monotonously
increasing or decreasing on [ξ − δ, ξ + δ] for any ξ ∈ [a + δ, b − δ].

The concept of such functions is introduced in order to describe a continuous
function without any extremal points. Note that monotonously increasing and
decreasing continuous functions are δ-monotone continuous functions for any
0 < δ < (b − a)/2.

Lemma 1 Let δ be a real positive constant satisfying

0 < δ <
b − a

2
, (26)

and let f(x) be a δ-monotone continuous function defined on [a, b]; then, there
exists c ∈ [a + δ/2, b − δ/2] such that∫ c+δ/2

c−δ/2

f(x)dx = δf(ξ) (27)

for any ξ ∈ [a + δ, b − δ].

Proof Let

F (t) =
∫ t+δ/2

t−δ/2

f(x)dx. (28)

Note that F (t) is a continuous function and [t − δ/2, t + δ/2] ⊂ [a, b] for any
t ∈ [a + δ/2, b − δ/2]. It is trivial that

F (ξ − δ/2) ≤ δf(ξ) ≤ F (ξ + δ/2) (29)

holds when f(x) is monotonously increasing on [ξ−δ, ξ+δ]. On the other hand,
when f(x) is monotonously decreasing on [ξ − δ, ξ + δ],

F (ξ + δ/2) ≤ δf(ξ) ≤ F (ξ − δ/2) (30)

holds. By the mean value theorem, the existence of c ∈ [ξ − δ/2, ξ + δ/2] that
satisfies

F (c) = δf(ξ) (31)

is guaranteed. 2
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Theorem 3 Let Q and Qδ be closed intervals expressed as

Q := [θs, θe] (32)
Qδ := [θs + δ, θe − δ] (33)

with θs < θe, where δ denotes a real positive constant satisfying

δ <
θe − θs

2
; (34)

then, the RKHS corresponding to KQ(x, y) includes the RKHS corresponding
to Kθ(x, y) for any θ ∈ Qδ if Kθ(x, y) is a δ-monotone continuous function
with respect to θ for any x, y ∈ D.

Proof According to Lemma 1, for any ξ ∈ [θs + δ, θe − δ], there exists c ∈
[θs + δ/2, θe − δ/2] satisfying∫ c+δ/2

c−δ/2

Kθ(x, y)dθ = δKξ(x, y), (35)

if Kθ(x, y) is a δ-monotone continuous function with respect to θ for any x, y ∈
D. Note that Qc := [c − δ/2, c + δ/2] ⊂ Q holds. Therefore,

1
δ
KQ(x, y) − Kξ(x, y)

=
1
δ

∫
Q

Kθ(x,y)dθ − 1
δ

∫
Qc

Kθ(x, y)dθ

=
1
δ

∫
Q−Qc

Kθ(x, y)dθ (36)

is a kernel by Theorem 1 since Kθ(x,y) is a kernel for any θ ∈ Q − Qc, and
Q−Qc ⊂ Q is a Borel set. From Theorem 2 and the fact that 1/δ is a positive
real bounded constant, for any θ ∈ Qδ

HKθ
⊂ HKQ (37)

follows. 2

Note that a δ-monotone continuous function is also a δ′-monotone continuous
function for any δ′ ∈ (0, δ). Thus, if Kθ(x, y) is a δ-monotone continuous
function with a certain δ, then Theorem 3 holds for any δ′ ∈ (0, δ). On the
other hand, there exists δ′ ∈ (0, δ) that satisfies θ ∈ Qδ for any θ ∈ (θs, θe).
Thus,

HKθ
⊂ HKQ (38)

holds for any θ ∈ (θs, θe). This implies that, in practice, the RKHS corre-
sponding to the integrated kernel KQ(x,y) includes the RKHS corresponding
to Kθ(x, y) for any θ ∈ Q. Note that if a kernel has an extremal point at a
certain θm ∈ Q and thus the kernel is not a δ-monotone continuous function,
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then the RKHS corresponding to Kθm
(x,y) may not be included in the RKHS

corresponding to KQ(x, y).
The concept of integrated kernels can be easily extended to the cases in

which the dimension of the parameter space is greater than unity as long as the
conditions in Theorem 3 are satisfied for each parameter.

5 Numerical Examples

In this section, we illustrate some numerical examples in a pattern recognition
problem and function estimation problem. As already mentioned, only the case
in which the target to be learned can be expressed as a function is considered.
Therefore, we do not consider the case in which misclassification is permitted for
training samples, even in a pattern recognition problem. We adopt the Gaussian
kernel

Kσ(x, y) = exp
(
−||x − y||2

2σ2

)
(39)

with various variances σ2 as the kernel. Then, its integrated version is given as

K[0,
√

2σ0](x, y)

=
∫ √

2σ0

0

exp
(
−||x − y||2

σ2

)
dσ

=
√

2σ0 exp
(
−||x − y||2

2σ2
0

)
−
√

π||x − y||erfc
(
||x − y||√

2σ0

)
, (40)

where erfc(x) denotes the complementary error function defined by

erfc(x) =
2√
π

∫ ∞

x

exp
(
−t2

)
dt. (41)

It is empirically known that a Gaussian kernel with an extremely small vari-
ance overfits the training data set, while Eq.(40) does not exist for σ0 = ∞.
Therefore, we consider the maximum eigenvalue of the covariance matrix of the
input vectors for σ2

0 as a sufficiently large value. Note that considering a value
greater than the value considered by us does not create any problem as long as
the integral in Eq.(40) exists. Further, note that the RKHS corresponding to
K[0,

√
2σ0](x, y) includes the RKHSs corresponding to Kσ(x, y), (σ ∈ (0, σ0))

since a Gaussian kernel is a monotonously increasing continuous function with
respect to the parameter σ > 0. Therefore, if the problem can be represented by
Kσ(x, y) with a certain σ ∈ (0, σ0), it is represented by K[0,

√
2σ0](x, y). Figure

1 shows a graph of the integrated kernel with σ2
0 = 1.

We assume Q = O for all the following examples. Therefore, we adopt the
Moore-Penrose generalized inverse of the operator A as the learning machine. It
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should be noted that the issue under consideration is not the learning machine
but the kernel itself.

5.1 Example of the Pattern Recognition Problem

First, we deal with a pattern recognition problem. Figure 2 shows the scat-
ter diagram of the training data set, referred to as “SPIRAL,” of two classes.
In the diagram, the samples belonging to class #1 are indicated by “+” and
those belonging to class #2, “◦.” Each class has one hundred samples. Here,
yi ∈ {−1, 1}. Figures 3 ∼ 5 show the estimated separating hyperplanes1 using
Gaussian kernels with σ2 = 0.0003, 0.02, 1000.0, respectively. Here, the pa-
rameter σ2 = 0.02 for a Gaussian kernel is chosen so that the misclassification
ratio in leave-one-out cross-validation is almost the smallest. The parameter
σ2 = 0.0003 (or 1000.0) is used as too small (or large) one which is an exam-
ple far from σ2 = 0.02. Figs. 6 and 7 show the estimated separating hyper-
planes based on the proposed integrated kernel using σ0 = 2.67 (the maximum
eigenvalue of the covariance matrix of the input vectors) as our suggestion and
σ0 = 2.67 × 104 as a possibly large value, respectively. Note that the range of
display is limited to [−8, 8] × [−8, 8]. Table 1 shows the misclassification ratio
in leave-one-out cross-validation of each condition.

It is confirmed that a Gaussian kernel with an extremely large (or small)
variance underfits (or overfits) the given data, while the proposed kernel yields
an appropriate separating hyperplane. Further, the proposed kernel with a
larger σ0(= 2.67 × 104) causes neither overfitting nor underfitting.

5.2 Example of Function Estimation

Next, we consider a function estimation problem. In Fig. 8, the solid line de-
notes the unknown target function (sinc(x)) and “×” denotes the sample points
(training data set). Figures 9 ∼ 11 show the estimated functions using Gaus-
sian kernels with σ2 = 0.001, 10.0, 5000.0, respectively. Here, the parameter
σ2 = 10.0 for a Gaussian kernel is chosen so as to attain almost the minimum
squared-error between the unknown target function and the estimated one. The
parameter σ2 = 0.001 (or 5000.0) is used as too small (or large) one which is an
example far from σ2 = 10.0. Figures 12 and 13 show the estimated functions
based on the proposed kernel using σ0 = 5.99 (the variance of the input values)
as our suggestion and σ0 = 5.99 × 104 as a possibly large value, respectively.
Table 2 shows the squared-error between the unknown target function and the
estimated one in each condition.

Similar to the pattern recognition problem, a Gaussian kernel with an ex-
tremely large (or small) variance does not represent the target function, while
the proposed kernel can; further, adopting a larger σ0 for the proposed kernel
causes neither overfitting nor underfitting.

1The boundary of the two regions is given by {x|f̂(x) = 0}.
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5.3 Remarks

It is often considered that complex models tend to overfit a training data set.
However, this is not always true. The above numerical examples illustrate the
counterexamples. Indeed, the RKHS corresponding to the integrated kernel is
larger than those corresponding to the integrand and the complexity of the larger
RKHS is higher than that of the smaller RKHS on the basis of the Rademacher
averages (see [2] for instance).

In this paper, we assumed that what to be estimated is a function, which
means that our framework is only applicable to the classification problem in
which the misclassification is not allowed for the given training data set. More-
over, our discussion is only on the kernel (model) selection, and does not reach
to the learning machine construction. Thus, in order to apply our kernel to
real-world problems, we have to resolve these problems theoretically.

6 Conclusion

In this study, on the basis of the framework of projection learning, we have
proposed a new method of constructing a kernel that incorporates the param-
eter integration of parameterized kernels. The RKHS that corresponds to the
proposed integrated kernel includes almost all the RKHSs that correspond to
the integrand with the parameters belonging to the intervals of integration. The
kernel used in this study does not require an optimization of parameter value,
although a parameterized kernel often requires this optimization. The validity
of the proposed kernel is confirmed by some artificial numerical examples.
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Figure 1: The graph of the integrated kernel K[0,
√

2σ0] with σ2
0 = 1. The

horizontal axis denotes ||x − y||.

Figure 2: The scatter diagram of the training data set SPIRAL.
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Figure 3: The result based on a Gaussian kernel with σ2 = 0.0003 for SPIRAL.

Figure 4: The result based on a Gaussian kernel with σ2 = 0.02 for SPIRAL.
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Figure 5: The result based on a Gaussian kernel with σ2 = 1000 for SPIRAL.

Figure 6: The result based on the proposed integrated kernel for SPIRAL with
σ0 = 2.67.
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Table 1: Misclassification ratio in leave-one-out cross-validation.
Condition Misclassification ratio

Gaussian kernel with σ2 = 0.0003 9.5%
Gaussian kernel with σ2 = 0.02 0.5%
Gaussian kernel with σ2 = 1000 35.0%
Integrated kernel with σ0 = 2.67 0.0%

Integrated kernel with σ0 = 2.67 × 104 1.5%

Figure 7: The result based on the proposed integrated kernel for SPIRAL with
σ0 = 2.67 × 104.
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Figure 8: Target function and training samples.
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Figure 9: The result based on a Gaussian kernel with σ2 = 0.001.
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Figure 10: The result based on a Gaussian kernel with σ2 = 10.0.
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Figure 11: The result based on a Gaussian kernel with σ2 = 5000.0.
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Figure 12: The result based on the proposed kernel with σ0 = 5.99.
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Figure 13: The result based on the proposed kernel with σ0 = 5.99 × 104.
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Table 2: The squared-error between the unknown true function and the esti-
mated one.

Condition Squared-error
Gaussian kernel with σ2 = 0.001 2.41
Gaussian kernel with σ2 = 10.0 5.39 × 10−13

Gaussian kernel with σ2 = 5000 1.34
Integrated kernel with σ0 = 5.99 2.74 × 10−4

Integrated kernel with σ0 = 5.99 × 104 2.70 × 10−4
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