
Pattern Recognition 40 (2007) 3358–3378
www.elsevier.com/locate/pr

Cost-sensitive boosting for classification of imbalanced data

Yanmin Suna,∗, Mohamed S. Kamela, Andrew K.C. Wongb, Yang Wangc

aElectrical and Computer Engineering Department, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
bSystems Design Engineering Department, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

cPattern Discovery Technologies Inc., Waterloo, Ontario, Canada, N2L 5Z4

Received 3 September 2006; received in revised form 10 February 2007; accepted 17 April 2007

Abstract

Classification of data with imbalanced class distribution has posed a significant drawback of the performance attainable by most standard
classifier learning algorithms, which assume a relatively balanced class distribution and equal misclassification costs. The significant difficulty
and frequent occurrence of the class imbalance problem indicate the need for extra research efforts. The objective of this paper is to investigate
meta-techniques applicable to most classifier learning algorithms, with the aim to advance the classification of imbalanced data. The AdaBoost
algorithm is reported as a successful meta-technique for improving classification accuracy. The insight gained from a comprehensive analysis
of the AdaBoost algorithm in terms of its advantages and shortcomings in tacking the class imbalance problem leads to the exploration of three
cost-sensitive boosting algorithms, which are developed by introducing cost items into the learning framework of AdaBoost. Further analysis
shows that one of the proposed algorithms tallies with the stagewise additive modelling in statistics to minimize the cost exponential loss.
These boosting algorithms are also studied with respect to their weighting strategies towards different types of samples, and their effectiveness
in identifying rare cases through experiments on several real world medical data sets, where the class imbalance problem prevails.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords: Classification; Class imbalance problem; AdaBoost; Cost-sensitive learning

1. Introduction

Classification is an important task of knowledge discovery
in databases (KDD) and data mining. Classification modelling
is to learn a function from training data, which makes as few
errors as possible when being applied to data previously un-
seen. A range of classification modelling algorithms, such as
decision tree, neural network, Bayesian network, nearest neigh-
bor, support vector machines, and the newly reported associa-
tive classification, have been well developed and successfully
applied to many application domains. However, reports from
both academia and industry indicate that imbalanced class dis-
tribution of a data set has posed a serious difficulty to most
classifier learning algorithms, which assume a relatively bal-
anced distribution [1–4].

The imbalanced class distribution is characterized as having
many more instances of some classes than others. Particularly
for a bi-class application, the imbalanced problem is one in

∗ Corresponding author. Tel.: +1 519 8884567x33746.
E-mail address: y8sun@engmail.uwaterloo.ca (Y. Sun).

0031-3203/$30.00 � 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2007.04.009

which one class is represented by a large of samples, while the
other one is represented by only a few. Standard classifiers gen-
erally perform poorly on imbalanced data sets because they are
designed to generalize from training data and output the sim-
plest hypothesis that best fits the data. The simplest hypothesis,
however, pays less attention to rare cases in an imbalanced data
set. Therefore, classification rules that predict the small class
tend to be fewer and weaker than those that predict the preva-
lent class. Consequently, test samples belonging to the small
class are misclassified more often than those belonging to the
prevalent class. In most applications, even though the degree of
imbalance varies from one application to another, the correct
classification of samples in the rare class often has a greater
value than the contrary case. For example, in a disease diag-
nostic problem where the disease cases are usually quit rare as
compared with normal populations, the recognition goal is to
detect people with diseases. A favorable classification model
is one that provides a higher identification rate on the disease
category. Imbalanced or skewed class distribution problem is
therefore also referred to as small or rare class problem.

http://www.elsevier.com/locate/pr
mailto:y8sun@engmail.uwaterloo.ca

Y. Sun et al. / Pattern Recognition 40 (2007) 3358–3378 3359

Research on the class imbalance problem is critical in data
mining and machine learning. Two observations account for
this point: (1) the class imbalance problem is pervasive in a
large number of domains of great importance in data mining
community. In addition to the example of the rare medical di-
agnosis [5], other reported applications include detection of
oil spills in satellite radar images [3], the detection of fraud-
ulent calls [2], risk management [6], modern manufacturing
plants [4], text classification [7], and etc.; and (2) most popular
classification modelling systems are reported to be inadequate
when encountering the class imbalance problem. These classi-
fication systems involve decision trees [1,8–10], support vec-
tor machines [9,11–13], neural networks [9], Bayesian network
[6], nearest neighbor [8,14] and the newly reported associative
classification approaches [15,16].

The significant difficulty of the class imbalance problem and
its frequent occurrence in practical applications of machine
learning and data mining have attracted a lot of research inter-
ests. Two workshops on this problem were held in 2000 [17]
and 2003 [18] at the AAAI and ICML conferences, respec-
tively. A number of research papers dedicated to this problem
can be found in Ref. [19] and other publications. Research
efforts address on three aspects of the class imbalance problem:
(1) the nature of the class imbalance problem (i.e., “in what
domains do class imbalances most hinder the performance of a
standard classifier?” [9]); (2) the possible solutions in tackling
the class imbalance problem; and (3) the proper measures for
evaluating classification performance in the presence of the
class imbalance problem. Within these reported works, most
efforts concentrate on the second issue. Published solutions
to the class imbalance problem can be categorized as data
level and algorithm level approaches [1]. At the data level, the
objective is to re-balance the class distribution by resampling
the data space, including oversampling instances of the small
class and undersampling instances of the prevalent class. Some-
times this can involve a combination of the two techniques
[20–22]. At the algorithm level, solutions try to adapt existing
classifier learning algorithms to bias towards the small class,
such as cost-sensitive learning [23] and recognition-based
learning [24]. Obvious shortcomings with the resampling (data
level) approaches are: (1) the optimal class distribution of a
training data is usually unknown; (2) an ineffective resampling
strategy may risk losing information of the prevalent class when
being undersampled and overfitting the small class when being
oversampled; and (3) extra learning cost for analyzing and
processing data is unavoidable in most cases. Solutions at the
algorithm level being either classifier learning algorithm-
dependent or application-dependent are shown to be effective
if applied in a certain context. These factors indicate the need
for additional research efforts to advance the classification of
imbalanced data.

The objective of this paper is to investigate meta-techniques
applicable to most classifier learning algorithms to advance
the classification of imbalanced data. Some ensemble methods
have emerged as meta-techniques for improving the general-
ization performance of existing learning algorithms. Specially,
AdaBoost [25–28] is reported as the most successful boost-

ing algorithm with a promise of improving classification accu-
racies of a “weak” learning algorithm. However, the promise
of accuracy improvement is trivial in the context of the class
imbalance problem, where accuracy is less meaningful. Since
AdaBoost is an accuracy-oriented algorithm, its learning strat-
egy may bias towards the prevalent class as it contributes more
to the overall classification accuracy. Consequently, the identi-
fication performance on the small class is not always satisfac-
tory by applying AdaBoost.

In this paper, the AdaBoost algorithm is adapted for advanc-
ing the classification of imbalanced data. Three cost-sensitive
boosting algorithms are developed by introducing cost items
into the learning framework of AdaBoost. The cost items are
used to denote the uneven identification importance between
classes, such that the boosting strategies can intentionally bias
the learning towards the class associated with higher identi-
fication importance and eventually improve the performance
on it. For each proposed boosting algorithm, its weight up-
date parameter is deduced taking the cost items into consider-
ation. This step is necessary in maintaining good efficiency of
a boosting algorithm. From a statistician’s point of view, the
breakthrough of AdaBoost occurred in Ref. [29], where it has
been shown that AdaBoost is equivalent to forward stagewise
additive modelling using exponential loss function [30]. Our
study shows that one of our proposals tallies with the stage-
wise additive modelling to minimize the cost exponential loss.
These boosting algorithms are further investigated with respect
to their weighting strategies towards different types of samples,
and their effectiveness in identifying rare cases through exper-
iments on several real world medical data sets, where the class
imbalance problem prevails.

The rest of the paper is organized as follows. Following the
introduction, Section 2 presents a comprehensive study on the
class imbalance problem, including the nature of the problem,
reported solutions, and proper measures for evaluating classifi-
cation performance in the presence of the class imbalance prob-
lem. Section 3 provides a thorough discussion on the AdaBoost
algorithm to gain insight into advantages and challenges of
the boosting approach in tackling the class imbalance problem.
Section 4 describes our proposed cost-sensitive boosting algo-
rithms and illustrates the forward stagewise additive modelling
using exponential loss function. Section 5 analyzes and com-
pares their weighting strategies of these boosting algorithms.
Section 6 reports our experimental results. Section 7 highlights
the conclusions and states some points for future research.

2. Class imbalance problem

2.1. Nature of the problem

In a data set with the class imbalance problem, the most
obvious characteristic is the skewed data distribution between
classes. However, theoretical and experimental studies pre-
sented in Refs. [8–10,31–33] indicate that the skewed data
distribution is not the only parameter that influences the mod-
elling of a capable classifier in identifying rare events. Other
influential facts include small sample size, separability and the
existence of within-class sub-concepts.

3360 Y. Sun et al. / Pattern Recognition 40 (2007) 3358–3378

• Imbalanced class distribution: The imbalance degree of a
class distribution can be denoted by the ratio of the sam-
ple size of the small class to that of the prevalent class. In
practical applications, the ratio can be as drastic as 1:100,
1:1000, or even larger [1]. In Ref. [33], research was con-
ducted to explore the relationship between the class distribu-
tion of a training data set and the classification performances
of decision trees. Their study indicates that a relatively bal-
anced distribution usually attains a better result. However,
at what imbalance degree the class distribution deteriorates
the classification performance cannot be stated explicitly,
since other factors such as sample size and separability also
affect performance. In some applications, a ratio as low
as 1:35 can make some methods inadequate for building a
good model, but in some other cases, 1:10 is tough to deal
with [32].

• Small sample size: Given a fixed imbalance degree, the sam-
ple size plays a crucial role in determining the “goodness”
of a classification model. In the case that the sample size
is limited, uncovering regularities inherent in small class is
unreliable. Experimental observations reported in Ref. [9]
indicate that as the size of the training set increases, the
large error rate caused by the imbalanced class distribution
decreases. This observation is quite understandable. When
more data can be used, relatively more information about
the small class benefits the classification modelling, which
becomes able to distinguish rare samples from the majority.
Hence, the authors of Ref. [9] suggest that the imbalanced
class distribution may not be a hindrance to classification by
providing a large enough data set, assuming that the data set
is available and the learning time required for a sizeable data
set is acceptable.

• Separability: The difficulty in separating the small class from
the prevalent class is the key issue of the small class prob-
lem. Assuming that there exist highly discriminative pat-
terns among each class, then not very sophisticated rules
are required to distinguish class objects. However, if pat-
terns among each class are overlapping at different levels in
some feature space, discriminative rules are hard to induce.
Experiments conducted in Ref. [34] vary the degree of over-
lap between classes. It is then concluded that “the class
imbalance distribution, by itself, does not seem to be a prob-
lem, but when allied to highly overlapped classes, it can sig-
nificantly decrease the number of minority class examples
correctly classified”. A similar claim based on experiments
is also reported in Ref. [9] as “Linearly separable domains
do not sensitive to any amount of imbalance. As a matter of
fact, as the degree of concept complexity increases, so does
the system’s sensitivity to imbalance.”

• Within-class concepts: In many classification problems, a
single class is composed of various sub-clusters, or sub-
concepts. Samples of a class are collected from different
sub-concepts. These sub-concepts do not always contain
the same number of examples. This phenomena is referred
to as within-class imbalance, corresponding to the imbal-
anced class distribution between classes [31]. The presence
of within-class sub-concepts worsens the imbalance distri-

bution problem (no matter between or within class) in two
aspects: (1) the presence of within-class sub-concepts in-
creases the learning concept complexity of the data set; and
(2) the presence of within-class sub-concepts is implicit in
most cases.

2.2. Reported research solutions

A number of solutions to the class imbalance problem are
reported in the literature. These solutions are developed at both
the data and algorithmic levels. At the data level, the objective
is to re-balance the class distribution by resampling the data
space. At the algorithm level, solutions try to adapt existing clas-
sifier learning algorithms to strengthen learning with regards to
the small class. Cost-sensitive learning solutions incorporating
both the data and algorithmic level approaches assume higher
misclassification costs with samples in the rare class and seek
to minimize the high cost errors. Several boosting algorithms
are also reported as meta-techniques to tackle the class imbal-
ance problem. These boosting approaches will be discussed in
details in Section 4.6.

2.2.1. Data-level approaches
Solutions at the data level include many different forms of

resampling, such as randomly oversampling the small class,
randomly undersampling the prevalent class, informatively
oversampling the small class (in which no new samples are
created, but the choice of samples to resample is targeted
rather than random), informatively undersampling the preva-
lent class (the choice of samples to eliminate is targeted),
oversampling the small class by generating new synthetic data,
and combinations of the above techniques [1,20,21,35].

Even though resampling is an often-used method in dealing
with the class imbalance problem, the matter at issue is what is
or how to decide the optimal class distribution given a data set.
A thorough experimental study on the effect of a training set’s
class distribution on a classifier’s performance is conducted in
Ref. [33]. The general conclusion is that, with respect to the
classification performance on the small class, a balanced class
distribution (class size ratio is 1:1) performs relatively well but
is not necessarily optimal. Optimal class distributions differ
from data to data.

In addition to the class distribution issue, how to effectively
resample the training data is another issue. Random sampling
is simple but not sufficient in many cases. For example, if the
class imbalance problem of a data set is represented by within-
class concepts, random oversampling may over-duplicate sam-
ples on some parts and less so on others. A more favorable
resampling process should be, first, detecting the sub-concepts
constituting the class; then, oversampling each concept, re-
spectively, to balance the overall distribution. However, such
an informative resampling process increases the cost for data
analysis. Informatively undersampling the prevalent class at-
tempting to make the selective samples more representative
poses another problem: what is the criterion in selecting sam-
ples? For example, if samples are measured by some distance

Y. Sun et al. / Pattern Recognition 40 (2007) 3358–3378 3361

measurements, those majority class samples which are rel-
atively far away from the minority class samples may rep-
resent more majority class features, and those which are
relatively close to the minority class samples may be cru-
cial in deciding the class boundary with some classifier
learning algorithms. Which part should be more focused
on when selecting quality samples? These issues can-
not be settled systematically. A number of techniques are
reported, but each of them may be effective if applied in a
certain context.

2.2.2. Algorithm-level approaches
Generally, a common strategy to deal with the class im-

balance problem is to choose an appropriate inductive bias.
For decision trees, one approach is to adjust the probabilistic
estimate at the tree leaf [36,37]; another approach is to develop
new pruning techniques [37]. For SVMs, proposals such as
using different penalty constants for different classes [38], or
adjusting the class boundary based on kernel-alignment ideal
[13], are reported. For association rule mining, multiple mini-
mum supports for different classes are specified to reflect their
varied frequencies in the database [39]. To develop an algorith-
mic solution, one needs knowledge of both the corresponding
classifier learning algorithm and the application domain, espe-
cially a thorough comprehension on why the learning algorithm
fails when the class distribution of available data is uneven.

In recognition-based one-class learning, a system is mod-
elled with only examples of the target class in the absence
of the counter examples. This approach does not try to parti-
tion the hypothesis space with boundaries that separate posi-
tive and negative examples, but it attempts to make boundaries
which surround the target concept. For classification purposes,
it measures the amount of similarity between a query object
and the target class, where a threshold on the similarity value
is introduced. Two classifier learning algorithms are studied in
the context of the one-class learning approach: neural network
training [24] and SVMs [40]. Under certain conditions such as
multi-modal domains, the one-class approach is reported to be
superior to discriminative (two-class learning) approaches [24].
The threshold in this approach represents the boundary between
the two classes. A too strict threshold means that positive data
will be sifted, while a too loose threshold will include consider-
able negative samples. Hence, to set up an effective threshold is
crucial with this approach. Moreover, many machine learning
algorithms such as decision trees, Naïve Bayes and associative
classification, do not function unless the training data includes
examples from different classes.

2.2.3. Cost-sensitive learning
Cost-sensitive classification considers the varying costs of

different misclassification types. A cost matrix encodes the
penalty of classifying samples from one class as another. Let
C(i, j) denote the cost of predicting an instance from class i
as class j. With this notation, C(+, −) is the cost of misclas-
sifying a positive (rare class) instance as the negative (preva-
lent class) instance and C(−, +) is the cost of the contrary

case. In dealing with the class imbalance problem, the recog-
nition importance of positive instances is higher than that of
negative instances. Hence, the cost of misclassifying a posi-
tive instance outweighs the cost of misclassifying a negative
one (i.e., C(+, −) > C(−, +)); making a correct classifica-
tion usually presents 0 penalty (i.e., C(+, +) = C(−, −) = 0).
The cost-sensitive learning process then seeks to minimize
the number of high cost errors and the total misclassification
cost.

A cost-sensitive classification technique takes the cost
matrix into consideration during model building and gen-
erates a model that has the lowest cost. Reported works in
cost-sensitive learning fall into three main categories:

• Weighting the data space: The distribution of the training set
is modified with regards to misclassification costs, such that
the modified distribution is biased towards the costly classes.
This approach can be explained by the translation theorem
derived in Ref. [41]. Against the normal space without con-
sidering the cost item, let us call a data space with domain
X × Y × C as the cost-space, where X is the input space,
Y is the output space and C is the cost associated with mis-
labelling that example. If we have examples drawn from a
distribution D in the cost-space, then we can have another
distribution D̂ in the normal space that

D̂(X, Y) ≡ C

EX,Y,C∼D[C]D(X, Y, C) (2.1)

where EX,Y,C∼D[C] is the expectation of cost values. Ac-
cording to the translation theorem, those optimal error rate
classifiers for D̂ will be optimal cost minimizers for D.
Hence, when we update sample weights integrating the cost
items, choosing a hypothesis to minimize the rate of errors
under D̂ is equivalent to choosing the hypothesis to mini-
mize the expected cost under D.

• Making a specific classifier learning algorithm cost-
sensitive: For example, in the context of decision tree
induction, the tree-building strategies are adapted to min-
imize the misclassification costs. The cost information is
used to: (1) choose the best attribute to split the data [4,42];
and (2) determine whether a subtree should be pruned [43].

• Using Bayes risk theory to assign each sample to its low-
est risk class: For example, a typical decision tree for a
binary classification problem assigns the class label of a leaf
node depending on the majority class of the training sam-
ples that reach the node. A cost-sensitive algorithm assigns
the class label to the node that minimizes the classification
cost [37,44].

Methods in the first group, converting sample-dependent
costs into sample weights, are also known as cost-sensitive
learning by example weighting [45]. The weighted training
samples are then applied to standard learning algorithms. This
approach is at the data level without changing the underlying
learning algorithms. Methods in the second and third groups,
adapting the existing learning algorithms, are at the algorithm
level. Cost-sensitive learning assumes that a cost matrix is

3362 Y. Sun et al. / Pattern Recognition 40 (2007) 3358–3378

Table 1
Confusion matrix

Predicted as positive Predicted as negative

Actually positive True positives (TP) False negatives (FN)
Actually negative False positive (FP) True negatives (TN)

known for different types of errors or samples. Given a data
set, however, the cost matrix is often unavailable.

2.3. Evaluation measures

Evaluation measures play a crucial role in both assessing the
classification performance and guiding the classifier modelling.
Traditionally, accuracy is the most commonly used measure for
these purposes. However, for classification with the class im-
balance problem, accuracy is no longer a proper measure since
the rare class has very little impact on accuracy as compared to
the prevalent class [10,46]. For example, in a problem where a
rare class is represented by only 1% of the training data, a sim-
ple strategy can be to predict the prevalent class label for every
example. It can achieve a high accuracy of 99%. However, this
measurement is meaningless to some applications where the
learning concern is the identification of the rare cases.

In the bi-class scenario, one class with very few training
samples but high identification importance is referred to as the
positive class; the other as the negative class. Samples can be
categorized into four groups after a classification process as
denoted in the confusion matrix presented in Table 1.

Several measures can be derived using the confusion matrix:

• True Positive Rate: TPrate = TP

TP + FN
.

• True Negative Rate: TNrate = TN

TN + FP
.

• False Positive Rate: FPrate = FP

TN + FP
.

• False Negative Rate: FNrate = FN

TP + FN
.

• Positive Predictive Value: PPvalue = TP

TP + FP
.

• Negative Predictive Value: NPvalue = TN

TN + FN
.

Clearly neither of these measures are adequate by them-
selves. For different evaluation criteria, several measures are
devised.

2.3.1. F -measure
If only the performance of the positive class is considered,

two measures are important: True Positive Rate (TPrate) and
Positive Predictive Value (PPvalue). In information retrieval,
True Positive Rate is defined as recall denoting the percentage
of retrieved objects that are relevant:

Recall = TPrate = TP

TP + FN
. (2.2)

Positive Predictive Value is defined as precision denoting the
percentage of relevant objects that are identified for retrieval:

Precision = PPvalue = TP

TP + FP
. (2.3)

F -measure (F) is suggested in Ref. [47] to integrate these two
measures as an average

F -measure = 2RP

R + P
. (2.4)

In principle, F -measure represents a harmonic mean between
recall and precision [48]:

F -measure = 2

1/R + 1/P
(2.5)

The harmonic mean of two numbers tends to be closer to the
smaller of the two. Hence, a high F -measure value ensures that
both recall and precision are reasonably high.

2.3.2. G-mean
When the performance of both classes is concerned, both

True Positive Rate (TPrate) and True Negative Rate (TNrate)
are expected to be high simultaneously. Kubat et al. [3] sug-
gested the G-mean defined as

G-mean =√
TPrate · TNrate. (2.6)

G-mean measures the balanced performance of a learning algo-
rithm between these two classes. The comparison among har-
monic, geometric, and arithmetic means are illustrated in Ref.
[48] by way of an example. Suppose that there are two positive
numbers 1 and 5. Their arithmetic mean is 3, their geometric
mean is 2.236, and their harmonic mean is 1.667. The harmonic
mean is the closest to the smaller value and the geometric mean
is closer than the arithmetic mean to the smaller number.

2.3.3. ROC analysis
Some classifiers, such as Bayesian network inference or some

neural networks, assign a probabilistic score to its prediction.
Class prediction can be changed by varying the score thres-
hold. Each threshold value generates a pair of measurements
of (FPrate, TPrate). By linking these measurements with the
False Positive Rate (FPrate) on the X-axis and the True Posi-
tive Rate (TPrate) on the Y -axis, a ROC graph is plotted. The
ideal model is one that obtains 1 True Positive Rate and 0 False
Positive Rate (i.e., TPrate = 1 and FPrate = 0). A model that
makes a random guess should reside along the line connect-
ing the points (TPrate = 0, FPrate = 0), where every instance
is predicted as a negative class, and (TPrate = 1, FPrate = 1),
where every instance is predicted as a positive class. A ROC
graph depicts relative trade-offs between benefits (true posi-
tives) and costs (false positives) across a range of thresholds
of a classification model. A ROC curve gives a good sum-
mary of the performance of a classification model. To compare
several classification models by comparing ROC curves, it is
hard to claim a winner unless one curve clearly dominates the
others over the entire space [49]. The area under a ROC curve

Y. Sun et al. / Pattern Recognition 40 (2007) 3358–3378 3363

(AUC) provides a single measure of a classifier’s performance
for evaluating which model is better on average. It has been
shown in Ref. [50] that there is a clear similarity between AUC
and well-known Wilcoxon statistics.

3. Why boosting?

3.1. Ensemble learning

The basic idea of classifier ensemble learning is to construct
multiple classifiers from the original data and then aggregate
their predictions when classifying unknown samples. The main
motivation for combining classifiers in redundant ensembles is
to improve their generalization ability: each component clas-
sifier is known to make errors with the assumption that it has
been trained on a limited set of data, however, the patterns that
are misclassified by the different classifiers are not necessarily
the same [54]. The effect of combining redundant ensembles
is also studied in terms of the statistical concepts of bias and
variance. Given a classifier, bias–variance decomposition dis-
tinguishes among the bias error, the variance error and the
intrinsic error. The bias can be characterized as a measure of
its ability to generalize correctly to a test set, while the vari-
ance can be similarly characterized as a measure of the extent
to which the classifier’s prediction is sensitive to the data on
which it was trained. The variance is then associated with over-
fitting: if a method overfits the data, the predictions for a sin-
gle instance will vary between samples [55]. The improvement
in performance arising from ensemble combinations is usually
the result of a reduction in variance. This occurs because the
usual effect of ensemble averaging is to reduce the variance
of a set of classifiers. Bagging [51], Random forest [52] and
AdaBoost [29,53] are all reported ensemble learning methods
to be successful in variance reduction.

AdaBoost is also observed to be capable of bias reduction.
As stumps (single-split trees with only two terminal nodes typ-
ically have low variance but high bias) are used as the base
learner, Bagging performs very poorly and AdaBoost improves
the base classification significantly [29,53]. The AdaBoost algo-
rithm weighs each sample reflecting its importance and places
the most weights on those examples which are most often mis-
classified by the preceding classifiers. Such a focus may cause
the learner to produce an ensemble function that differs signif-
icantly from the single learning algorithm.

With an imbalanced data set, small class samples occurring
infrequently, models that describe the rare classes have to be
highly specialized. Standard learning methods pay less attention
to the rare samples as they try to extract the regularities from the
data set. Such a model performs poorly on the rare class due to
the introduced bias error. AdaBoost attempts to reduce the bias
error as it focuses on misclassified examples [25]. The sample
weighting strategy of AdaBoost is equivalent to resampling the
data space combining both up-sampling and down-sampling.
It hence belongs to data-level solutions, which are applicable
to most classification systems without changing their learning
methods. Therefore, the advantages of AdaBoost for learning

imbalanced data are:

1. a boosting algorithm is applicable to most classification sys-
tems;

2. resampling the data space automatically eliminates the extra
learning cost for exploring the optimal class distribution and
the representative samples;

3. resampling the data space through weighting each sample
results in little information loss as compared with eliminat-
ing some samples from the data set;

4. combining multiple classifications has little risk of model
overfitting; and

5. AdaBoost is capable of reducing the bias error of a certain
classification learning method.

These positive features make the boosting approach an attrac-
tive technique in tackling the class imbalance problem. Given a
data set with imbalanced class distribution, misclassified sam-
ples are often in the minority class. When the AdaBoost al-
gorithm is applied, samples in the minority class may receive
more weights; and that the successive learning will focus on the
minority class. Intuitively, the AdaBoost algorithm might im-
prove the classification performance on the small class. How-
ever, experimental results reported in Refs. [46,56,57] show that
the improved identification performances on the small class are
not always guaranteed or satisfactory. The straightforward rea-
son is that AdaBoost is accuracy-oriented: its weighting strat-
egy may bias towards the prevalent class since it contributes
more to the overall classification accuracy. Hence, the learning
issue becomes how to adapt the AdaBoost algorithm to incline
its boosting strategy towards the interested class.

Random forest is also adapted for classification of imbal-
anced data in Ref. [58]. As Random forest is specially designed
only for decision tree classifiers, we leave it without further
consideration.

3.2. AdaBoost algorithm

AdaBoost algorithm reported in Refs. [26,27] takes as input a
training set {(x1, y1), . . . , (xm, ym)} where each xi is an n-tuple
of attribute values belonging to a certain domain or instance
space X, and yi is a label in a label setY. In the context of bi-class
applications, we can express Y = {−1, +1}. The Pseudocode
for AdaBoost is given in Fig. 1.

It has been shown in Ref. [27] that the training error of the
final classifier is bounded as

1

m
|{i : H(xi) �= yi}|�

∏
t

Zt , (3.3)

where

Zt =
∑

i

Dt (i) exp(−�t yiht (xi)) (3.4)

=
∑

i

Dt (i)

(
1 + yiht (xi)

2
e−� + 1 − yiht (xi)

2
e�
)

(3.5)

3364 Y. Sun et al. / Pattern Recognition 40 (2007) 3358–3378

Fig. 1. AdaBoost algorithm.

minimizing Zt on each round, �t is induced as

�t = 1

2
log

(∑
i,yi=ht (xi)

Dt (i)∑
i,yi �=ht (xi)

Dt (i)

)
. (3.6)

The sample weight updating goal of AdaBoost is to decrease the
weight of training samples which are correctly classified and
increase the weights of the opposite part. Therefore, �t should
be a positive value, which demands the training error should
be less than randomly guessing (0.5) based on the current data
distribution, that is∑
i,yi=ht (xi)

Dt (i) >
∑

i,yi �=ht (xi)

Dt (i). (3.7)

3.3. Forward stagewise additive modelling

It has been shown that AdaBoost is equivalent to forward
stagewise additive modelling using exponential loss function.
The exponential loss function is related to the Bernoulli likeli-
hood [29]. From this point, the rather obscure work of the com-
putational learning is well explored in a likelihood method of
standard statistical practice [30]. The exponential loss function
is defined as

L(y, f (x)) = exp(−yf (x)), (3.8)

where

f (x) =
T∑

t=1

�t ht (x) (3.9)

so that H(x)=sign(f (x)). Such on each round, one must solve

(�t , ht) = arg min
�,h

∑
i

exp[−yi(ft−1(xi) + �h(xi))] (3.10)

= arg min
�,h

∑
i

Dt (i) exp(−�yih(xi)), (3.11)

where Dt(i) = exp(−yifm−1(xi)). The solution to Eq. (3.11)
is then obtained in two steps. First, for any value of � > 0,

ht = arg min
h

∑
i

Dt (i)I [yi �= ht (xi)], (3.12)

where for any predicate �, I [�] equals 1 if � holds, 0 otherwise.
Therefore, ht is the classifier that minimizes the weighted error
rate based on the current data distribution. Once the classifier
is fixed, the second step is to decide the value of � to minimize
right side of Eq. (3.11). This job is the same with the learning
objective of AdaBoost (Eq. (3.4)). Then � can be fixed as stated
in Eq. (3.6). The approximation is then updated as

ft (x) = ft−1(x) + �t ht (x) (3.13)

which causes the weights for next iteration will be

Dt+1(i) = Dt(i) · exp(−�t yiht (xi)). (3.14)

It has been proved in Refs. [27,29], after each update to the
weights, the weighted sample distributions between the mis-
classified part and the correctly classified part are even, i.e.,∑

i,ht (xi)=yi
Dt+1(i)=∑i,ht (xi)�=yi

Dt+1(i). This makes the new
weighted problem maximally difficult for next iteration.

4. Cost-sensitive boosting algorithms

The weighting strategy of AdaBoost is to increase weights of
misclassified samples and decrease weights of correctly clas-
sified samples until the weighted sample distributions between
misclassified samples and correctly classified samples are even
on each round. This weighting strategy distinguishes samples
on their classification outputs: correctly classified or misclas-
sified. However, it treats samples of different types (classes)
equally: weights of misclassified samples from different classes
are increased by an identical ratio, and weights of correctly

Y. Sun et al. / Pattern Recognition 40 (2007) 3358–3378 3365

classified samples from different classes are decreased by an-
other identical ratio. The learning objective in dealing with the
imbalance class problem is to improve the identification per-
formance on the small class. This learning objective expects
that the weighting strategy of a boosting algorithm will pre-
serve a considerable weighted sample size of the small class. A
desirable boosting strategy is one which is able to distinguish
different types of samples, and boost more weights on those
samples associated with higher identification importance.

To denote the different identification importance among sam-
ples, each sample is associated with a cost item: the higher the
value, the higher the importance of correctly identifying this
sample. Let {(x1, y1, C1), . . . , (xm, ym, Cm)} be a sequence of
training samples, where each xi is an n-tuple of attribute val-
ues; yi is a class label in Y = {−1, +1}; and Ci ⊂ [0, +∞) is
an associated cost item. For an imbalanced data set, samples
with class label y =−1 are much more than samples with class
label y = +1. As the learning objective is to improve the iden-
tification performance on the small class, the cost values asso-
ciated with samples of the small class can be set higher than
those associated with samples of the prevalent class. Keeping
the same learning framework of AdaBoost, the cost items can
be fed into the weight update formula of AdaBoost (Eq. (3.1))
to bias its weighting strategy. There are three ways to introduce
cost items into the weight update formula of AdaBoost: inside
the exponent, outside the exponent, and both inside and outside
the exponent. Three modifications of Eq. (3.1) then become

• Modification I:

Dt+1(i) = Dt(i) exp(−�tCiht (xi)yi)

Zt

. (4.1)

• Modification II:

Dt+1(i) = CiD
t(i) exp(−�t ht (xi)yi)

Zt

. (4.2)

• Modification III:

Dt+1(i) = CiD
t(i) exp(−�tCiht (xi)yi)

Zt

. (4.3)

Each modification can be taken as a new boosting algorithm
denoted as AdaC1, AdaC2 and AdaC3, respectively. As these
algorithms use cost items, they can also be regarded as cost-
sensitive boosting algorithms. For the AdaBoost algorithm, the
selection of the weight update parameter is crucial in converting
a weak learning algorithm into a strong one [29]. When the cost
items are introduced into the weight updating formula of the
AdaBoost algorithm, the updated data distribution is affected
by the cost items. Without re-inducing the weight update pa-
rameter, which takes the cost items into consideration for each
cost-sensitive boosting algorithm, the boosting efficiency is not
guaranteed. With the AdaBoost algorithm, the weight update
parameter � is calculated to minimize the overall training error
of the combined classifier. Using the same inference method,
we induce the weight update parameter � for each algorithm.

4.1. AdaC1

Unravelling the weight update rule of Eq. (4.1), we obtain

Dt+1(i)=exp(−∑t�tCiyiht (xi))

m
∏

tZt

=exp(−Ciyif (xi))

m
∏

tZt

, (4.4)

where

Zt =
∑

i

Dt (i) exp(−�tCiyiht (xi)) (4.5)

and

f (xi) =
∑

t

�t ht (xi). (4.6)

The over all training error is bounded as

1

m
|{i : H(xi) �= yi}|� 1

m

∑
i

exp(−Ciyif (xi)) (4.7)

=
∑

i

(∏
t

Zt

)
Dt+1(i) =

∏
t

Zt . (4.8)

Thus, the learning objective on each boosting iteration is to find
�t so as to minimize Zt (Eq. (4.5)). According to Ref. [27],
once ciyiht (xi) ∈ [−1 + 1], the following inequality holds:∑

i

Dt (i) exp(−�Ciyih(xi))

�
∑

i

Dt (i)

(
1+Ciyiht (xi)

2
e−�+ 1−Ciyiht (xi)

2
e�
)

. (4.9)

By zeroing the first derivative of the right-hand side of inequal-
ity (4.9), �t can be determined as

�t = 1

2
log

1 +∑
i,yi=ht (xi)

CiD
t (i) − ∑

i,yi �=ht (xi)

CiD
t (i)

1 −∑
i,yi=ht (xi)

CiDt (i) +∑
i,yi �=ht (xi)

CiDt (i)
.

(4.10)

To ensure that the selected value of �t is positive, the following
condition should hold:∑
i,yi=ht (xi)

CiD
t (i) >

∑
i,yi �=ht (xi)

CiD
t (i). (4.11)

4.2. AdaC2

Unravelling the weight update rule of Eq. (4.2), we obtain

Dt+1(i) = Ct
i exp(−∑t�t yiht (xi))

m
∏

tZt

= Ct
i exp(−yif (xi))

m
∏

tZt

,

(4.12)

where f (xi) is the same as defined in Eq. (4.6) and

Zt =
∑

i

CiD
t (i) exp(−�t yiht (xi)). (4.13)

3366 Y. Sun et al. / Pattern Recognition 40 (2007) 3358–3378

Then, the training error of the final classifier is bounded as

1

m
|{i : H(xi) �= yi}|� 1

m

∑
i

exp(−yif (xi))

=
∏
t

Zt

∑
i

CiD
t (i)

C
(t+1)
i

, (4.14)

where C
(t+1)
i denotes the (t + 1)th power of Ci . There exists a

constant � such that ∀i, � < C
(t+1)
i . Then

1

m
|{i : H(xi) �= yi}|�

∏
t

Zt

∑
i

CiD
t (i)

C
(t+1)
i

� 1

�

∏
t

Zt . (4.15)

Since � is a constant, the learning objective at each boosting
iteration is to find �t so as to minimize Zt (Eq. (4.13)). Us-
ing the same inferring method as in AdaC1, �t is uniquely
selected as

�t = 1

2
log

∑
i,yi=ht (xi)

CiD
t (i)∑

i,yi �=ht (xi)
CiDt (i)

. (4.16)

To ensure that the selected value of �t is positive, the following
condition should hold:∑
i,yi=ht (xi)

CiD
t (i) >

∑
i,yi �=ht (xi)

CiD
t (i). (4.17)

4.3. AdaC3

The weight update formula (Eq. (4.3)) of AdaC3 is a com-
bination of that of AdaC1 and AdaC2 (with the cost items be-
ing both inside and outside the exponential function). Then the
training error bound of AdaC3 can be expressed as

1

m
|{i : H(xi) �= yi}|� 1

�

∏
t

Zt , (4.18)

where � is a constant and ∀i, � < C
(t+1)
i , and

Zt =
∑

i

CiD
t (i) exp(−�tCiyiht (xi)). (4.19)

Since � is a constant, the learning objective at each boosting
iteration is to find �t so as to minimize Zt (Eq. (4.19)). Re-
stricting Ciyiht (xi) ∈ [−1 + 1], �t can be determined as

�t = 1

2
log

∑
iCiD

t (i) +∑
i,yi=ht (xi)

C2
i
Dt (i) −∑

i,yi �=ht (xi)
C2

i
Dt (i)∑

iCiD
t (i) −∑

i,yi=ht (xi)
C2

i
Dt (i) +∑

i,yi �=ht (xi)
C2

i
Dt (i)

.

(4.20)

To ensure that the selected value of �t is positive, the following
condition should hold:∑
i,yi=ht (xi)

C2
i Dt (i) >

∑
i,yi �=ht (xi)

C2
i Dt (i). (4.21)

4.4. Cost-sensitive exponential loss and AdaC2

AdaC2 tallies with the stagewise additive modelling, where
steepest descent search is carried on to minimize the overall

cost loss under the exponential function. By integrating a cost
item C into Eq. (3.8), the cost-sensitive exponential loss func-
tion becomes

C · L(y, f (x)) = C · exp(−yf (x)). (4.22)

The goal is to learn a classifier which minimizes the expected
cost loss under the exponential function. On each iteration, ht

and �t are learned separately to solve

(�t , ht)= arg min
�,h

∑
i

Ci · exp[−yi(ft−1(xi)+�h(xi))] (4.23)

= arg min
�,h

∑
i

Ci · Dt(i) exp(−�yih(xi)), (4.24)

where Dt(i) = exp(−yifm−1(xi)). The solution to Eq. (4.24)
is obtained in two steps. First, for any value of � > 0, ht is the
one which minimizes the cost error, which is

ht = arg min
h

∑
i

Ci · Dt(i)I [yi �= ht (xi)]. (4.25)

Standard classification learning algorithms minimize the er-
ror rate instead of the expected cost. Here, translation theorem
(2.1) can be applied to solve this problem. If we weight each
sample by its cost item, we obtain a distribution in the normal
space

D̂t (i) = Ci · Dt(i). (4.26)

Then, those optimal error rate classifiers for D̂ will be optimal
cost minimizers for D. Thus, ht can be fixed to minimize the
error rate for D̂t which is equivalent to minimizing cost error
for Dt . Once the classifier is fixed, the second step is to decide
the value of � to minimize the right side of Eq. (4.24). This
job shares with the learning objective of AdaC2 (Eq. (4.13)). �
is then fixed as stated in Eq. (4.16). The approximation is then
updated as

ft (x) = ft−1(x) + �t ht (x) (4.27)

which causes the weights for the next iteration to be

Dt+1(i) = Dt(i) · exp(−�t yiht (xi)). (4.28)

To minimize the cost-sensitive exponential loss (Eq. (4.22)), the
learning objective on each round is to minimize the expected
cost (Eq. (4.25)). By applying the translation theorem, each
sample is reweighted by its cost factor. Therefore, each sample
weight for learning of the next iteration is updated as

D̂t+1(i) = Ci · Dt(i) · exp(−�t yiht (xi)). (4.29)

Using the method in Refs. [27,29], it can be proved that for the
next iteration we will have∑
i,ht (xi)=yi

D̂t+1(i) =
∑

i,ht (xi)�=yi

D̂t+1(i). (4.30)

Y. Sun et al. / Pattern Recognition 40 (2007) 3358–3378 3367

This makes the learning of the next iteration maximally
difficult.

4.5. Cost factors

For cost-sensitive boosting algorithms, the cost items are
used to characterize the identification importance of different
samples. The cost value of a sample may depend on the nature
of the particular case [59]. For example, in detection of fraud,
the cost of missing a particular case of fraud will depend on
the amount of money involved in that particular case [2]. Sim-
ilarly, the cost of a certain kind of mistaken medical diagnosis
may be conditional on the particular patient who is misdiag-
nosed [59]. In the case that the misclassification costs or learn-
ing importance for samples in one class are the same, a unique
number can be set up for each class. For a bi-class imbalanced
data set, there will be two cost items: CP denoting the learning
importance (misclassification cost) of the positive (small) class
and CN denoting that of the negative (prevalent) class. Since
the purpose of the cost-sensitive boosting is to boost a larger
class size on the positive class, CP should be set greater than
CN . With a higher cost value on the positive class, a consid-
erable weighted sample size of the positive class is boosted to
strengthen learning. Consequently, more relevant samples can
be identified.

Referring to the confusion matrix Table 1, the recall
value (Eq. (2.2)) measures the percentage of retrieved ob-
jects that are relevant. A higher positive recall value is
more favorable for a bi-class imbalanced data set based on
the fact that misclassifying a positive sample as a nega-
tive one will cost much more than the reverse. There are
some econometric applications, like credit card fraud de-
tection, misclassifying a valuable customer as a fraud may
cost much more than the opposite case in the current cli-
mate of intense competition. The cost of misclassifying
a negative case is regarded as higher than misclassify-
ing a positive sample [60]. For this kind of application,
we still associate a higher cost value with the positive
class. By applying the cost-sensitive boosting algorithm,
many more relevant samples are included to generate a
“denser” data set for further analysis, and so a conclusive
decision.

Given a data set, the cost setup is usually unknown. For a
binary application, the cost values can be decided using empir-
ical methods. Suppose the learning objective is to improve the
identification performance on the positive class. This learning
objective expects a higher F -measure value (Eq. (2.4)) on the
positive class. As stated previously, with a higher cost value of
the positive class than that of negative class, more weights are
expected to be boosted on the positive class, and the recall value
of the positive class is improved. However, if weights are over-
boosted on the positive class, more irrelevant samples will be
included simultaneously. The precision value (Eq. (2.3)), mea-
suring the percentage of relevant objects in the set to all ob-
jects returned by a search, decreases. Hence, there is a trade-off
between recall and precision values: when recall value in-

creases, precision value decreases. To get a better F -measure
value, weights boosted on the positive class should be fair in
order to balance the recall and precision values. Therefore, cost
values can be tested by evaluating the F -measure value iter-
atively. The situation is similar if the learning objective is to
balance the classification performance evaluated by G-mean
(Eq. (2.6)).

As stated in Ref. [61], given a set of cost setups, the de-
cisions are unchanged if each one in the set is multiplied by
a positive constant. This scaling corresponds to changing the
accounting unit of costs. Hence, it is the ratio between CP and
CN that denotes the deviation of the learning importance be-
tween two classes. Therefore, the job of searching for an effec-
tive cost setup for applying cost-sensitive boosting algorithms
is actually to obtain a proper ratio between CP and CN , for a
better performance according to the learning objective.

4.6. Other related algorithms

There are some other reported boosting algorithms for clas-
sification of imbalanced data in literature. These boosting al-
gorithms can be categorized into two groups: the first group
represents those that can be applied to most classifier learning
algorithms directly, such as AdaCost [56], CSB1 and CSB2
[57], and RareBoost [46]; the second group includes those
that are based on a combination of the data synthesis algo-
rithm and the boosting procedure, such as SMOTEBoost [62],
and DataBoost-IM [63]. Synthesizing data may be application-
dependent and hence involves extra learning cost. We only con-
sider boosting algorithms that can be applied directly to most
classification learning algorithms. Among this group, AdaCost
[56], CSB1 and CSB2 [57] employ cost items to bias the boost-
ing towards the small class, and RareBoost [46] has been devel-
oped to directly address samples of the four types as tabulated
in Table 1.

4.6.1. AdaCost
In AdaCost, Eq. (3.1) is replaced by

Dt+1(i) = Dt(i) · exp(−�t yiht (xi)�sgn(ht (xi),yi)
), (4.31)

where � is called a cost adjustment function. The requirement
for this function is as follows: for an instance with a higher cost
factor, the function increases its weight “more” if the instance
is misclassified, but decreases its weight “less” otherwise. In
Ref. [56], the authors provide their recommended setting as:
�+ = −0.5Cn + 0.5 and �− = 0.5Cn + 0.5, where Cn is the
cost of misclassifying the nth example.

In AdaCost, �t is calculated as

�t = 1

2
log

1 + rt

1 − rt
, (4.32)

where

rt =
∑

i

Dt (i) exp(−�t yiht (xi)�sgn(ht (xi),yi)
). (4.33)

AdaCost is a variation of AdaC1 by introducing a cost adjust-
ment function instead of a cost item inside the exponential func-

3368 Y. Sun et al. / Pattern Recognition 40 (2007) 3358–3378

tion. However, the selection of the cost adjustment function is
somehow ad hoc, and when the cost factors are set equally for
both positive and negative class, the AdaCost algorithm will
not reduce to the AdaBoost algorithm.

4.6.2. CSB1 and CSB2
CSB1 modifies weight update formula of AdaBoost (Eq.

(3.1)) to

Dt+1(i) = Dt(i)Csgn(ht (xi),yi) exp(−yiht (xi))

Zt

. (4.34)

And CSB2 changes it to

Dt+1(i) = Dt(i)Csgn(ht (xi),yi) exp(−�t yiht (xi))

Zt

, (4.35)

where sgn(ht (xi), yi) denotes “+” if ht (xi) equals to yi (xi

is correctly classified), “–” otherwise. The parameters C+ and
C− are set as C+ = 1 and C− = cost(yi, ht (xi))�1, where
cost(i, j) is the cost of misclassifying a sample of class i to
class j. For the weight updating of the next iteration, CSB1
does not use any �t factor (or �t = 1) and CSB2 uses the
same �t as computed by AdaBoost. Even though the weight
update formula of CSB2 is similar to AdaC2, CSB2 does not
reference the weight update parameter � by taking the cost set
up into consideration. Affected by the cost factors, the boosting
efficiency of AdaBoost varies by both CSB1 and CSB2.

4.6.3. RareBoost
RareBoost scales False Positive examples in proportion to

how well they are distinguished from True Positive examples,
and scales False Positive examples in proportion to how well
they are distinguished from True Negative examples (refer to
Table 1). In their algorithm, the weight update factor �p

t for
positive predictions at the t th iteration is calculated as

�p
t = 1

2
ln

TPt

FPt

, (4.36)

where TPt and FPt denote the weight summation over all True
Positive examples and False Positive examples, respectively.
The weight update factor �n

t for negative predictions at the t th
iteration is calculated as

�n
t = 1

2
ln

TNt

FNt

(4.37)

where TNt and FNt denote the weight summation over all True
Negative examples and False Negative examples, respectively.
Weights are then updated separately using different factors re-
specting positive predictions and negative predictions.

This weighting strategy decreases the weights of True Posi-
tives (TP) and True Negatives (TN), and increases the weights
of False Positives (FP) and False Negatives (FN) only if
TP > FP and TN > FN. The constraint of TP > FP is equiva-
lent to that the precision measure (Eq. (2.3)) of the positive
class should be greater than 0.5. In the presence of the class
imbalance problem, the small class is always associated with
both poor recall and precision values. Hence, such a constraint
is a strong condition. Without this condition being satisfied, the

algorithm will collapse. We therefore discard this algorithm
without further consideration.

5. Resampling effects

In this section, we will show how each boosting algorithm
updates weights corresponding to the four types of examples
tabulated in Table 1. Here we are not trying to figure out how
the weight of a specific training sample will change over all the
iterations, given that its role among TP and FN or FP and TN
will switch from iteration to iteration. Our interest is on how the
weight updating mechanism of each boosting algorithm treats
the four groups of samples differently. In this paper, our study
concentrates on AdaBoost [26,27], AdaCost [56], CSB2 [57],
and the proposed three boosting algorithms, AdaC1, AdaC2,
and AdaC3. For cost-sensitive boosting algorithms, we use CP

to denote the misclassification cost of the positive class and
CN for that of the negative class. This study is inspired by the
method used in Ref. [46].

Referring to Eqs. (3.1), (4.1)–(4.3), (4.31), and (4.35), Ad-
aBoost, AdaC1, AdaC2, AdaC3, AdaCost and CSB2 update
sample weights on these four groups from the t th iteration to
the (t + 1)th iteration as summarized in Table 2.

For the AdaBoost algorithm, weights of False Negatives and
False Positives are improved equally; weights of True Posi-
tives and True Negatives are decreased equally with �t being
a positive number. The learning objective in dealing with the
imbalance class problem is to obtain a satisfactory identifica-
tion performance on the positive (small) class. This learning
objective expects that the weighting strategy of a boosting al-
gorithm preserves a considerable weighted sample size of the
small class. A desirable weight updating rule is to increase the
weights of False Negatives more than those of False Positives,
but decrease the weights of True Positives more conservatively
than those of True Negatives [56]. The resampling strategies of
each cost-sensitive boosting algorithm are:

• AdaC1: False Negatives get more weight increase than False
Positives with eCP ·�t

> eCN ·�t
; True Positives lose more

weights than True Negatives with 1/eCP ·�t < 1/eCN ·�t .
• AdaC2: False Negatives receive a greater weight increase

than False Positives; True Positives lose less weights than
True Negatives given CP > CN .

Table 2
Weighting strategies

AdaBoost TPt+1 = TPt /e�t FPt+1 = FPt · e�t

TNt+1 = TNt /e�t FNt+1 = FNt · e�t

AdaC1 TPt+1 = TPt /eCP ·�t FPt+1 = FPt · eCN ·�t

TNt+1 = TNt /eCN ·�t FNt+1 = FNt · eCP ·�t

AdaC2 TPt+1 = CP · TPt /e�t FPt+1 = CN · FPt · e�t

TNt+1 = CN · TNt /e�t FNt+1 = CP · FNt · e�t

AdaC3 TPt+1 = CP · TPt /eCP ·�t FPt+1 = CN · FPt · eCN ·�t

TNt+1 = CN · TNt /eCN ·�t FNt+1 = CP · FNt · eCP ·�t

AdaCost TPt+1 = TPt /e�++·�t FPt+1 = FPt · e�−−·�t

TNt+1 = TNt /e�−+·�t FNt+1 = FNt · e�+−·�t

CSB2 TPt+1 = TPt /e�t FPt+1 = CN · FPt · e�t

TNt+1 = TNt /e�t FNt+1 = CP · FNt · e�t

Y. Sun et al. / Pattern Recognition 40 (2007) 3358–3378 3369

Table 3
Resampling effects

An ideal weighting strategy True predictions False predictions

Decreases the weights of True Increases the weights of
Positives more conservatively than False Negatives more than
those of True Negatives those of False Positives

AdaBoost × ×
AdaC1 × ∨
AdaC2 ∨ ∨
AdaC3 Uncertain ∨
AdaCost ∨ ∨
CSB2 × ∨

• AdaC3: Sample weights are updated by the combinational
results of AdaC1 and AdaC2. As both AdaC1 and AdaC2 in-
crease more weights on False Negatives than False Positives,
AdaC3 furthers this effect. On the correctly classified part,
AdaC1 decreases weights of True Positives more than those
of True Negatives, while AdaC2 preserves more weights on
True Positives than True Negatives. Due to the complicated
situations of training error and cost setups, it is difficult to
decide when AdaC3 preserves more weights or decreases
more weights on True Positives.

• AdaCost: False Negatives receive a greater weight increase
than False Positives and True Positives loss less weights than
True Negatives by using a cost adjustment function. The rec-
ommended cost adjustment function is: �+ = −0.5Cn + 0.5
and �− = 0.5Cn + 0.5, where Cn is the misclassification
cost of the nth example, �+ (�−) denotes the output in case
of the sample correctly classified (misclassified). Since the
cost factors for instances in the positive class is set greater
than those for instances in the negative class, �++ < �−+ and
�+− > �−−, where �++ (�+−) denotes the outputs for correctly
classified (misclassified) samples in the positive class, �−+
(�−−) denotes the outputs for correctly classified (misclassi-
fied) samples in the negative class.

• CSB2: Weights of True Positives and True Negatives are
decreased equally; False Negatives get more boosted weights
than False Positives.

Their resampling effects regarding the boosting objective for
learning imbalanced data are summarized in Table 3. In brief,
all cost-sensitive boosting algorithms increase the weights of
False Negatives more than those of False Positives. On the true
predictions (True Positive and True Negative), their weighting
strategies are different. AdaC2 and AdaCost are preferable by
preserving more weights on the True Positives; AdaC1 and
CSB2 are on the opposite; and AdaC3 is uncertain as it is a
combinational result of AdaC1 and AdaC2.

6. Experiments

In this section, we set up experiments to investigate boosting
algorithms—AdaBoost, AdaC1, AdaC2, AdaC3, AdaCost and
CSB2—in terms of their capabilities in dealing with the class
imbalance problem.

To test and compare these boosting algorithms, two kinds
of classification systems are specially selected as the base
classifiers: one is the well-known and widely used decision
tree classification system C4.5 and another one is an associa-
tive classification system. C4.5 remains a popular classifier
for research on the class imbalance problem [1]. Association
mining is reported sensitive to the class imbalance problem
as significant associations among rarely occurring events
are prone to being missed [10]. Three associative classifica-
tion systems are studied in Ref. [64]. In this paper, we test
boosting algorithms on the high-order pattern and weight-
of-evidence rule based classifier (HPWR). Interested read-
ers should refer to Refs. [16,64,65] for more details on the
algorithms.

Given a data set with imbalanced class distribution, classi-
fication performance regarding the small class is usually poor.
In dealing with this observation, the learning objective can be
either to achieve high recognition success of the small class,
or to balance identify ability between two classes. For the for-
mer, the classification performance is evaluated by F -measure;
for the latter, the classification performance is evaluated by
G-mean. The ROC analysis method is used to compare classi-
fication models or select possibly optimal models given various
learning parameters. The ROC analysis method, however, needs
a classifier to yield a score representing the degree to which an
example pertains to a class. For decision trees, the class distri-
butions at each leaf is usually used as the score [34]. For HPWR,
no such score is provided. For consistent results, these boost-
ing algorithms are evaluated by F -measure and G-mean. The
experimental results evaluated by these two measures expose
similar features of these boosting algorithms. Due to space lim-
itation, we only present results evaluated by F -measure. In-
terested readers can find other results evaluated by G-mean in
Ref. [66].

In each boosting algorithm, the parameter T governing the
number of classifiers generated is set as 10 for these exper-
iments. The iteration round of boosting can be terminated
through one of the three conditions: (1) the iteration round
reaches the prefixed number, like 10 in our experiments; (2)
the condition with respect to each boosting algorithm (i.e.,
Eqs. (3.7), (4.11), (4.17), or (4.21), respectively) does not hold
anymore; and (3) the training error of the current classifier is

3370 Y. Sun et al. / Pattern Recognition 40 (2007) 3358–3378

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

P
e
rc

e
n
ta

g
e

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

F-measure

Recall

Precision

C4.5 HPWR

AdaC1

AdaC2

AdaC3

AdaCost

CSB2

Cost Setups

Fig. 2. F -measure, recall and precision values of the positive class respecting to the cost setups of the negative class by applying AdaC1, AdaC2, AdaC3,
AdaCost and CSB2 to the base learners C4.5 and HPWR on the Cancer data.

0 while the sample weights do not change, and the classifiers
in the succeeding iterations remain unchanged.

6.1. Data sets

We use four medical diagnosis data sets taken from the UCI
Machine Learning Database [5] for the test. All data sets have
two output labels: one denotes the disease category which is
treated as the positive class, and another represents the nor-
mal category which is treated as the negative class. These
data sets are selected as the class imbalance problem inherent

in the data hinders the learning from building an effective
classification model to distinguish diseased people from the
normal population. These four data sets are: Breast cancer data
(Cancer), Hepatitis data (Hepatitis), Pima Indian’s diabetes
database (Pima), and Sick-euthyroid data (Sick).

1. Breast cancer data: This breast cancer domain was obtained
from the University Medical Centre, Institute of Oncology,
Ljubljana, Yugoslavia. Each instance is described by 9 at-
tributes, 3 of which are linear and 6 are nominal. There
are 286 instances in this data set, 9 instances with missing

Y. Sun et al. / Pattern Recognition 40 (2007) 3358–3378 3371

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

P
e
rc

e
n
ta

g
e

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1
F-measure

Recall

Precision

C4.5 HPWR

AdaC1

AdaC2

AdaC3

AdaCost

CSB2

Cost Setups

Fig. 3. F -measure, recall and precision values of the positive class respecting to the cost setups of the negative class by applying AdaC1, AdaC2, AdaC3,
AdaCost and CSB2 to the base learners C4.5 and HPWR on the Hepatitis data.

values. Class distributions are 29.7% of recurrence-events
(positive class) and 70.3% of no-recurrence-events (negative
class).

2. Hepatitis data: This is a small collection of hepatitis domain
data with only 155 instances in the whole data set. Each
instance is described by 19 attributes with only one being
continuously valued. The data set is composed of 32 pos-
itive instances (20.65%) in class “DIE” and 123 negative
instances (79.35%) in class “LIVE”.

3. Pima Indian’s diabetes database: The diagnostic vari-
able investigated is whether the patient shows signs of
diabetes. In this data, each instance is described by 8 con-

tinuously valued attributes. There are 768 instances, 500
instances being negative and 268 being positive. There-
fore, the two classes are non-evenly distributed with 34.9%
of positive instances and 65.1% of negative instances,
respectively.

4. Sick-euthyroid data: The goal of this data set is to predict the
disease of thyroid domains. The data were collected with 25
attributes, 7 being continuous and 18 being Boolean values.
The data set contains 3163 instances, with 9.26% of the
instances being euthyroid and the remaining 90.74% being
negative. There are several instances with missing attribute
values.

3372 Y. Sun et al. / Pattern Recognition 40 (2007) 3358–3378

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

P
e
rc

e
n
ta

g
e

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

C4.5 HPWR

AdaC1

AdaC2

AdaC3

AdaCost

CSB2

Cost Setups

F-measure

Recall

Precision

Fig. 4. F -measure, recall and precision values of the positive class respecting to the cost setups of the negative class by applying AdaC1, AdaC2, AdaC3,
AdaCost and CSB2 to the base learners C4.5 and HPWR on the Pima data.

There are some missing attribute values in data set Cancer,
Hepatitis and Sick. C4.5 handles missing attribute values and
HPWR treats missing attribute values as having an unknown
value “?”. Each data set is randomly divided into two disjointed
parts: 80% for training and the remaining 20% for testing. This
process is repeated 10 times to obtain an average performance.

6.2. Cost setups

In our experiments, the misclassification costs for samples in
the same category are set with the same value: CP denotes the

misclassification cost of the positive class and CN represents
that of the negative class. With these cost-sensitive boosting
algorithms, cost items are used to boost more weights towards
the positive (small) class. The larger the cost ratio of the positive
class to the negative class, the more the weights are expected
to boost on the positive class. The ratio between CP and CN

denotes the deviation of the learning importance between the
two classes. As values of CP and CN are not available for
these data sets, a range of values is tested. Considering the
constraint stated in Eq. (4.9) and (4.20) (i.e., cost values should
be restricted in [−1 + 1]), we fix the cost item of the positive

Y. Sun et al. / Pattern Recognition 40 (2007) 3358–3378 3373

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.2

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.2

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.2

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.2

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.2

0.6

0.8

1

P
e
rc

e
n
ta

g
e

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.2

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.2

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.2

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.2

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.2

0.6

0.8

1

F-measure

Recall

Precision

C4.5 HPWR

AdaC1

AdaC2

AdaC3

AdaCost

CSB2

Cost Setups

Fig. 5. F -measure, recall and precision values of the positive class respecting to the cost setups of the negative class by applying AdaC1, AdaC2, AdaC3,
AdaCost and CSB2 to the base learners C4.5 and HPWR on the Sick data.

class to 1 and change the cost item of the negative class from
0.1 to 0.9. That is, a set of cost settings of [1.0 : 0.1, 1.0 :
0.2, 1.0 : 0.3, 1.0 : 0.4, 1.0 : 0.5, 1.0 : 0.6, 1.0 : 0.7, 1.0 :
0.8, 1.0 : 0.9] is going to be tested. The cost ratio of the
positive class to the negative class is growing smaller as the
cost item of the negative class changes from 0.1 to 0.9. When
these two items are set equally as CP = CN = 1, the proposed
three boosting algorithms AdaC1, AdaC2 and AdaC3 reduce to
the original AdaBoost algorithm. For CSB2, the requirements
for the cost setup are: if a sample is correctly classified, CP =
CN =1; otherwise, CP > CN �1. Hence, we fix the cost setting

for False Negatives as 1 and use the cost settings of CN for
True Positives, True Negatives and False Positives. Then the
weights of true predictions are updated from the t th iteration
to the (t + 1)th iteration by TPt+1 =CN ·TPt /e�t and TNt+1 =
CN · TNt /e�t .

6.3. F -measure evaluation

The cost setup is one aspect that influences the weights
boosted towards each class. Another factor that decides the
weight distributions is the resampling strategy of each boost-

3374 Y. Sun et al. / Pattern Recognition 40 (2007) 3358–3378

Table 4
F -measure comparisons

Base AdaBoost AdaC1 AdaC2 AdaC3 AdaCost CSB2

Cost 1:0.9 1:0.6 1:0.6 1:0.4 1:0.1
F 39.51 42.60 44.77 48.22 49.81 48.72 48.31

C4.5 R 34.53 39.25 41.86 56.45 56.65 54.92 65.10
Cancer P 47.92 48.36 50.18 42.28 44.76 44.81 40.37
data Cost 1:0.9 1:0.7 1:0.6 1:0.2 1:0.4

F 41.44 46.44 50.70 53.98 54.97 50.75 50.73
HPWR R 44.17 44.68 49.06 70.80 83.45 59.50 66.98
Od = 6 P 40.91 49.58 54.18 44.61 41.44 44.64 41.04

Cost 1:0.1 1:0.5 1:0.8 1:0.8 1:0.8
F 50.89 55.87 61.39 71.63 70.13 62.05 60.55

C4.5 R 53.84 53.98 64.20 77.89 66.78 60.85 61.60
Hepa P 50.08 69.56 60.86 70.16 74.94 63.29 59.53
data Cost 1:0.6 1:0.7 1:0.7 1:0.7 1:0.9

F 56.45 61.86 63.59 65.19 62.88 61.93 58.51
HPWR R 68.68 59.23 60.86 81.73 75.99 64.67 64.23
Od = 3 P 52.20 66.93 71.11 57.02 56.77 61.29 56.20

Cost 1:0.6 1:0.9 1:0.9 1:0.3 1:0.7
F 64.98 65.61 66.17 68.69 68.29 67.77 64.98

C4.5 R 59.57 60.42 61.40 82.52 81.99 83.75 59.96
Pima P 72.26 72.55 71.75 59.15 58.69 57.11 71.81
data Cost 1:0.3 1:0.7 1:0.6 1:0.3 1:0.9

F 67.98 68.17 72.59 71.03 73.36 69.05 65.58
HPWR R 70.97 68.85 81.15 80.94 80.89 76.33 68.55
Od = 4 P 65.52 67.77 65.83 63.49 67.25 63.40 64.22

Cost 1:0.5 1:0.9 1:0.9 1:0.7 1:0.9
F 84.79 84.04 85.31 82.38 83.53 83.46 79.18

C4.5 R 83.87 82.96 84.75 83.46 84.26 84.74 80.57
Sick P 85.73 85.19 86.03 81.46 82.97 82.45 79.15
data Cost 1:0.9 1:0.9 1:0.8 1:0.9 1:0.6

F 69.22 79.77 86.36 78.05 81.04 82.67 64.88
HPWR R 70.89 80.99 86.36 83.19 86.85 87.11 71.05
Od = 3 P 68.30 79.08 76.15 73.44 76.01 78.78 59.96

ing algorithm. A thorough study on the resampling effects of
these boosting algorithms (Section 5) indicates their distinc-
tive boosting emphasis with respect to the four types of exam-
ples tabulated in Table 1. In this part of the experiments, we
explore: (1) how these boosting schemes affect the recall and
precision values of the positive class as the cost ratio is chang-
ing; and (2) whether or not these boosting algorithms are able
to improve the recognition performance on the positive class.
For the first issue, we plot the F -measure, recall and precision
values corresponding to the cost setups of the negative class to
illustrate the trend. For the second issue, we tabulate the best
F -measure values on the positive classes attainable by these
boosting algorithms, within the cost setups on the experimental
data sets.

Figs. 2–5 show the trade-offs between recall and precision.
Each figure corresponds to one data set. In each figure, each
sub-graph plots F -measure, recall and precision values of
the positive class with respect to the cost setups when apply-
ing one boosting algorithm out of AdaC1, AdaC2, AdaC3,
AdaCost and CSB2 to one base classifier, left side C4.5 and
right side HPWR. From these plots, some general views we

obtained are:

1. Except AdaC1, the other algorithms are able to achieve
higher recall values than precision values with the recall line
lying above the F -measure line and the precision line below
the F -measure line in most setups. AdaC1 cannot always
obtain higher recall values than precision values. In the plots
of C4.5 applied to Cancer, Hepatitis and Pima data and in
the plots of HPWR applied to Cancer and Hepatitis data,
recall values are lower than precision values with all cost
setups;

2. AdaC2 and AdaC3 are sensitive to the cost setups. When the
cost item of the negative class is set with a small value de-
noting a large cost ratio of positive class to negative class,
AdaC2 and AdaC3 can achieve very high recall values, but
very low precision values as well; there is an obvious trend
with plots of AdaC2 and AdaC3 in that the recall lines fall
and precision lines climb when the cost setup of the nega-
tive class is changing from smaller to larger values. Com-
paratively, AdaC1 and AdaCost are less sensitive to the cost
setups. Their recall lines and precision lines stay relatively

Y. Sun et al. / Pattern Recognition 40 (2007) 3358–3378 3375

flat when the cost setup changes. CSB2 produces values os-
cillating slightly as the cost setup changes.

3. Comparing AdaCost with AdaC1, recall values of AdaCost
are higher than those of AdaC1 in most cases.

These observations are consistent with the analysis of the re-
sampling effects of these boosting algorithms. AdaC1, AdaC2
and AdaC3 all boost more weights on False Negatives than
those on False Positives; on the correctly classified part, AdaC1
decreases weights of True Positives more than those of True
Negatives, AdaC2 preserves more weights of True Positives
than those of True Negatives. Therefore, AdaC1 conserves more
weights on the negative class, AdaC2 boosts more weights to-
wards the positive class, and AdaC3 is a combinational result of
AdaC1 and AdaC2. These analyses account for the observation
that AdaC2 and AdaC3 achieve higher recall values than AdaC1.
AdaCost [56] is a variation of AdaC1, in that it introduces a cost
adjustment function instead of a cost item inside the exponen-
tial function. The cost adjustment function increases its weight
“more” if misclassified and decreases the weight “less” other-
wise. AdaCost therefore boosts more weights on the positive
class than AdaC1. As a result, recall values obtained by Ada-
Cost are usually higher than those of AdaC1. However, these
plots indicate that AdaCost is not sensitive to the changes of
cost setups with relatively flat lines. CSB2 increases weights
more on False Negatives than False Positives, but decreases
weights on true predictions equally. After normalization, it is
not always guaranteed that the overall boosted weights on the
positive class are more than those on the negative class, as sam-
ples of the positive class are few.

Table 4 shows the best F -measure values achieved by
each boosting algorithm and the cost settings with which
these values are achieved. To indicate at what recall and
precision values these F -measure values are achieved, we
also list the corresponding recall and precision values of
the positive class. In these tables, “F ” denotes F -measure,
“R” recall and “P ” precision of the positive class. Com-
paring with the F -measure (on the positive class) values
obtained by the base classifications, those significantly better
F -measure values through t-test with 95% confidence inter-
val are presented in italics and the best results with respect
to each base classifier applied to a data set are denoted in
bold.

Comparing with the base classifications on the Cancer data,
most cost-sensitive boosting algorithms obtained significantly
better F -measure values except AdaC1 when applied to C4.5.
On the Hepatitis data, when applied to C4.5, all cost-sensitive
boosting algorithms achieve significantly better F -measure val-
ues; when applied to HPWR, AdaC1, AdaC2 and AdaC3 obtain
significantly better F -measure values. On the Pima data, AdaC1
and AdaC3 when applied to HPWR get significantly better re-
sults. On the Sick data, except CSB2, the other boosting algo-
rithms including AdaBoost achieve significantly better values
when applied on HPWR. Taking one base classifier associated
with one data set as one entity, among these 8 entities (2 base
classifier crossing with 4 data sets), AdaBoost achieved signifi-
cantly better results on 1 entity, AdaC1 on 4 entities, AdaC2 on

5 entities, AdaC3 on 6 entities, AdaCost on 4 entities and CSB2
on 3 entities. For the best performance out of the 8 entities,
AdaC1 win 2 times, and AdaC2 and AdaC3 both win 3 times.

7. Conclusions and future research

In this paper, we investigate cost-sensitive boosting algo-
rithms for advancing the classification of imbalanced data.
Three new cost-sensitive boosting algorithms are studied along
with several existing related algorithms. Several good features
of AdaC2 indicate that AdaC2 is superior to its rivals:

1. Weight updating strategy of AdaC2 weighs each sample by
its associated cost item directly. This enables a standard
classification learning algorithm that optimizes error rate to
optimize cost error rate according to the translation theorem.

2. Weight updating strategy of AdaC2 increases more weights
on misclassified samples form the small class and less on
those from the prevalent class, decreases less weights on
correctly classified samples form the small class and more
on those from the prevalent class. This ensures that more
weights are always accumulated on the small class to bias
the learning.

3. AdaC2 tallies with the stagewise additive modelling, where a
steepest descent search is carried on to minimize the overall
cost loss under the exponential function.

4. Experimental results indicate AdaC2 is sensitive to the cost
setups. This observation indicates the effectiveness of the
cost setup employed by AdaC2 in adjusting the learning
focus and influencing the identification performance on the
positive class.

5. AdaC2 has furnished better results in most experiments.

Some research issues are open for future investigation:

1. Cost-sensitive learning and/or measures assume that a cost
matrix is known for different types of errors or samples.
Given a data set, however, the cost matrix is often unavail-
able. In this paper, we test a range of cost factors manually.
In practice, such a method may be inadequate as it increases
learning cost. A notable task for future research is to fix cost
factors using some more efficient methods.

2. In our experimental study on classifying imbalanced data,
most of the data sets are medical diagnosis data taken from
the UCI machine learning repository. The proposed cost-
sensitive boosting algorithms can also be applied to other
application domains, such as fraud detection and network
intrusion, to explore their effectiveness in these specific
domains.

3. In this research, cost-sensitive boosting algorithms are
developed by adapting the discrete AdaBoost algorithm,
which assumes the outputs of a base classifier are hard class
labels. As a variation of AdaBoost, RealBoost was proposed
to boost base classifiers with real-valued outputs of class
probability estimates instead of class labels. The proposed
cost-sensitive boosting methods are applicable to the Real-
Boost algorithm: integrating cost values into the framework

3376 Y. Sun et al. / Pattern Recognition 40 (2007) 3358–3378

of RealBoost and developing cost-sensitive boosting al-
gorithms using the same inference methods as introduced
in this paper. Affected by the cost setup, weights boosted
towards samples will be biased and class probability esti-
mation will be varied. These factors on the small class will
be strengthened when a higher cost value is associated. This
analysis indicates that the cost-sensitive boosting approach
should be as effective for the real-valued classifiers in
tackling the imbalanced data as for the discrete classifiers.
Further investigation with real applications is required.

There are of course many other worthwhile research possibil-
ities that are not included in the list. We believe that because of
the challenging topics and tremendous potential applications,
the classification of imbalanced data will continue to receive
more and more attention in both the scientific and the industrial
worlds.

References

[1] N.V. Chawla, N. Japkowicz, A. Kolcz, Editorial: special issue on learning
from imbalanced data sets, SIGKDD Explorations Special Issue on
Learning from Imbalanced Datasets 6 (1) (2004) 1–6.

[2] T.E. Fawcett, F. Provost, Adaptive fraud detection, Data Mining Knowl.
Discovery 1 (3) (1997) 291–316.

[3] M. Kubat, R. Holte, S. Matwin, Machine learning for the detection of
oil spills in satellite radar images, Mach. Learn. 30 (1998) 195–215.

[4] P. Riddle, R. Segal, O. Etzioni, Representation design and brute-force
induction in a boeing manufacturing domain, Appl. Artif. Intell. 8 (1991)
125–147.

[5] P.M. Murph, D.W. Aha, UCI repository of machine learning databases,
Department of Information and Computer Science, University of
California, Irvine, 1991.

[6] K. Ezawa, M. Singh, S.W. Norton, Learning goal oriented Bayesian
networks for telecommunications risk management, in: Proceedings of
the Thirteenth International Conference on Machine Learning, Bari, Italy,
1996, pp. 139–147.

[7] C. Cardie, N. Howe, Improving minority class predication using case-
specific feature weights, in: Proceedings of the fourteenth International
Conference on Machine Learning, Nashville, TN, July 1997, pp. 57–65.

[8] G.E.A.P.A. Batista, R.C. Prati, M.C. Monard, A study of the behavior of
several methods for balancing machine learning training data, SIGKDD
Explorations Special Issue on Learning from Imbalanced Datasets, vol.
6(1), 2004, pp. 20–29.

[9] N. Japkowicz, S. Stephen, The class imbalance problem: a systematic
study, Intell. Data Anal. J. 6 (5) (2002) 429–450.

[10] G. Weiss, Mining with rarity: a unifying framework, SIGKDD
Explorations Special Issue on Learning from Imbalanced Datasets, vol.
6(1), 2004, pp. 7–19.

[11] R. Akbani, S. Kwek, N. Jakowicz, Applying support vector machines
to imbalanced datasets, in: Proceedings of European Conference on
Machine Learning, Pisa, Italy, September 2004, pp. 39–50.

[12] B. Raskutti, A. Kowalczyk, Extreme rebalancing for SVMs: a case study,
in: Proceedings of European Conference on Machine Learning, Pisa,
Italy, September 2004, pp. 60–69.

[13] G. Wu, E.Y. Chang, Class-boundary alignment for imbalanced dataset
learning, in: Proceedings of the ICML’03 Workshop on Learning from
Imbalanced Data Sets, Washington, DC, August 2003.

[14] J. Zhang, I. Mani, KNN approach to unbalanced data distributions: a case
study involving information extraction, in: Proceedings of the ICML’03
Workshop on Learning from Imbalanced Data Sets, Washington, DC,
August 2003.

[15] B. Liu, W. Hsu, Y. Ma, Mining association rules with multiple minimum
supports, in: Proceedings of the Fifth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Diego, CA,
August 1999, pp. 337–341.

[16] A.K.C. Wong, Y. Wang, High order pattern discovery from discrete-
valued data, IEEE Trans. Knowl. Data Eng. 9 (6) (1997) 877–893.

[17] N. Japkowicz, in: Proceedings of the AAAI’2000 Workshop on Learning
from Imbalanced Data Sets, AAAI Tech Report WS-00-05, AAAI, 2000.

[18] N.V. Chawla, N. Japkowicz, A. Kotcz, in: Proceedings of the ICML’2003
Workshop on Learning from Imbalanced Data Sets, ICML, 2003.

[19] N.V. Chawla, N. Japkowicz, A. Kotcz, SIGKDD Explorations, Special
Issue on Class Imbalances, vol. 6(1), ACM, New York, June 2004.

[20] N. Chawla, K. Bowyer, L. Hall, W.P. Kegelmeyer, SMOTE: synthetic
minority over-sampling technique, Journal of Artificial Intelligence
Research 16 (2002) 321–357.

[21] A. Estabrooks, A combination scheme for inductive learning from
imbalanced data sets, Master’s Thesis, Faculty of Computer Science,
Dalhousie University, Halifax, Nova Scotia, Canada, 2000.

[22] M. Kubat, S. Matwin, Addressing the curse of imbalanced training sets:
one-sided selection, in: Proceedings of the 14th International Conference
on Machine Learning, Morgan Kaufmann, Los Altos, CA, 1997,
pp. 179–186.

[23] M. Pazzani, C. Merz, P. Murphy, K. Ali, T. Hume, C. Brunk, Reducing
misclassification costs, in: Proceedings of the Eleventh International
Conference on Machine Learning, New Brunswick, NJ, July 1994,
pp. 217–225.

[24] N. Japkowicz, Supervised versus unsupervised binary-learning by
feedforward neural networks, Mach. Learn. 41 (1) (2001).

[25] Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm,
in: Proceedings of the Thirteenth International Conference on Machine
Learning, 1996, The Mit Press, Cambridge, MA, Morgan Kaufmann,
Los Altos, CA, pp. 148–156.

[26] Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line
learning and an application to boosting, J. Comput. Syst. Sci. 55 (1)
(1997) 119–139.

[27] R.E. Schapire, Y. Singer, Improved boosting algorithms using confidence-
rated predictions, Mach. Learn. 37 (3) (1999) 297–336.

[28] R.E. Schapire, Y. Singer, Boosting the margin: a new explanation for the
effectiveness of voting methods, Mach. Learn. 37 (3) (1999) 297–336.

[29] J. Friedman, T. Hastie, R. Tibshirani, Additive logistic regression: a
statistical view of boosting, Ann. Statist. 28 (2) (2000) 337–374.

[30] G. Ridgeway, The state of boosting, Comput. Sci. Statist. 31 (1999)
172–181.

[31] N. Japkowicz, Concept-learning in the presence of between-class and
within-class imbalances, in: Proceedings of the Fourteenth Conference of
the Canadian Society for Computational Studies of Intelligence, Ottawa,
Canada, June 2001, pp. 67–77.

[32] M.V. Joshi, Learning classifier models for predicting rare phenomena,
Ph.D. Thesis, University of Minnesota, Twin Cites, MN, USA, 2002.

[33] G. Weiss, F. Provost, Learning when training data are costly: the effect
of class distribution on tree induction, J. Artif. Intell. Res. 19 (2003)
315–354.

[34] R.C. Prati, G.E.A.P.A. Batista, Class imbalances versus class overlapping:
an analysis of a learning system behavior, in: Proceedings of the Mexican
International Conference on Artificial Intelligence (MICAI), Mexico City,
Mexico, April 2004, pp. 312–321.

[35] Z.H. Zhou, X.Y. Liu, Training cost-sensitive neural networks with
methods addressing the class imbalance problem, IEEE Trans. Knowl.
Data Eng. 18 (1) (2006) 63–77.

[36] J.R. Quinlan, Improved estimates for the accuracy of small disjuncts,
Mach. Learn. 6 (1991) 93–98.

[37] B. Zadrozny, C. Elkan, Learning and making decisions when costs
and probabilities are both unknown, in: Proceedings of the Seventh
International Conference on Knowledge Discovery and Data Mining,
San Francisco, CA, August 2001, pp. 204–213.

[38] Y. Lin, Y. Lee, G. Wahba, Support vector machines for classification in
nonstandard situations, Mach. Learn. 46 (2002) 191–202.

[39] B. Liu, Y. Ma, C.K. Wong, Improving an association rule based classifier,
in: Proceedings of the 4th European Conference on Principles of Data
Mining and Knowledge Discovery, Lyon, France, September 2000,
pp. 504–509.

Y. Sun et al. / Pattern Recognition 40 (2007) 3358–3378 3377

[40] L.M. Manevitz, M. Yousef, One-class svms for document classification,
J. Mach. Learn. Res. 2 (2001) 139–154.

[41] B. Zadrozny, J. Langford, N. Abe, Cost-sensitive learning by cost-
proportionate example weighting, in: Proceedings of the Third IEEE
International Conference on Data Mining, Melbourne, FL, November
2003, pp. 435–442.

[42] C.X. Ling, C. Li, Decision trees with minimal costs, in: Proceedings of
the 21st International Conference on Machine Learning, Banff, Canada,
July 2004.

[43] J. Bradford, C. Kunz, R. Kohavi, C. Brunk, C.E. Brodley, Pruning
decision trees with misclassification costs, in: Proceedings of the Tenth
European Conference on Machine Learning (ECML-98), Chemnitz,
Germany, April 1998, pp. 131–136.

[44] P. Domingos, P. Metacost, Metacost: a general method for making
classifiers cost sensitive, in: Advances in Neural Networks, International
Journal of Pattern Recognition and Artificial Intelligence, San Diego,
CA, 1999, pp. 155–164.

[45] N. Abe, B. Zadrozny, J. Langford, An iterative method for multi-class
cost-sensitive learning, in: Proceedings of the tenth ACN SIGKDD
International Conference on Knowledge Discovery and Data Mining,
Seattle, WA, August 2004, pp. 3–11.

[46] M.V. Joshi, V. Kumar, R.C. Agarwal, Evaluating boosting algorithms to
classify rare classes: Comparison and improvements, in: Proceedings of
the First IEEE International Conference on Data Mining (ICDM’01),
2001.

[47] D. Lewis, W. Gale, Training text classifiers by uncertainty sampling,
in: Proceedings of the Seventeenth Annual International ACM SIGIR
Conference on Research and Development in Information, New York,
NY, August 1998, pp. 73–79.

[48] P. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, Addison-
Wesley, Reading, MA, 2006.

[49] F. Provost, T. Fawcett, Analysis and visualization of classifier
performance: comparison under imprecise class and cost distributions,
in: Proceedings of the Third International Conference on Knowledge
Discovery and Data Mining (KDD-97), Newportbeach, CA, August 1997,
p. 43–48.

[50] J.A. Hanley, B.J. McNeil, The meaning and use of the area under a
receiver operating characteristic (ROC) curve, Intell. Data Anal. J. 143
(1982) 29–36.

[51] L. Breiman, Bagging predictors, Machine Learning 24 (2) (1996) 123–
140.

[52] L. Breiman, Random forests, Machine Learning 45 (2001) 5–32.
[53] R.E. Schapire, The boosting approach to machine learning—an overview,

in: MSRI Workshop on Nonlinear Estimation and Classification,
Berkeley, CA, March 2002, pp. 149–172.

[54] J. Kittler, M. Katef, R. Duin, J. Matas, On combining classifiers, IEEE
Trans. Pattern Anal. Mach. Intell. 20 (3) (1998).

[55] M.S. Kamel, N. Wanas, Data dependence in combining classifiers, in:
Proceedings of the Fourth International Workshop on Multiple Classifiers
Systems, Surrey, UK, June 2003.

[56] W. Fan, S.J. Stolfo, J. Zhang, P.K. Chan, Adacost: misclassification cost-
sensitive boosting, in: Proceedings of Sixth International Conference on
Machine Learning (ICML-99), Bled, Slovenia, 1999, pp. 97–105.

[57] K.M. Ting, A comparative study of cost-sensitive boosting algorithms, in:
Proceedings of the 17th International Conference on Machine Learning,
Stanford University, CA, 2000, pp. 983–990.

[58] C. Chen, A. Liaw, L. Breiman, Using random forests to learn
unbalanced data, 〈http://stat-www.berkeley.edu/users/chenchao/666.pdf〉,
2004, Technical Report 666, Statistics Department, University of
California at Berkeley.

[59] P. Turney, Types of cost in inductive concept learning, in: Proceedings
of Workshop on Cost-Sensitive Learning at the 17th International
Conference on Machine Learning, Stanford University, CA, 2000,
pp. 15–21.

[60] P. Viola, M. Jones, Fast and robust classification using asymmetric
adaboost and a detector cascade, in: Proceedings of the Neural
Information Processing Systems Conference, Vancouver, BC, Canada,
December 2001, pp. 1311–1318.

[61] C. Elkan, The foundations of cost-sensitive learning, in: Proceedings of
the Seventeenth International Joint Conference on Artificial Intelligence,
2001, pp. 973–978.

[62] N.V. Chawla, A. Lazarevic, L.O. Hall, K.W. Bowyer, SMOTEBoost:
improving prediction of the minority class in boosting, in: Proceedings
of the Seventh European Conference on Principles and Practice
of Knowledge Discovery in Databases, Dubrovnik, Croatia, 2003,
pp. 107–119.

[63] H. Guo, H.L. Viktor, Learning from imbalanced data sets with boosting
and data generation: the databoost-IM approach, SIGKDD Explorations
Special Issue on Learning from Imbalanced Datasets 6 (1) (2004)
30–39.

[64] Y. Sun, A.K.C. Wong, Y. Wang, An overview of associative classifiers,
in: The 2006 International Conference on Data Mining (DMIN’06), Las
Vegas, Nevada, June 2006, pp. 138–143.

[65] Y. Wang, A.K.C. Wong, From association to classification: inference
using weight of evidence, IEEE Trans. Knowl. Data Eng. 15 (3) (2003)
764–767.

[66] Y. Sun, Cost-sensitive boosting for classification of imbalanced
data, Ph.D. Thesis, University of Waterloo, Waterloo, Ont., Canada,
2007.

About the Author—YANMIN SUN received the BS and MS degrees in Electrical and Computer Engineering Department from Wuhan Transportation
University, China, in 1988 and 1999, respectively. She received his Ph.D. degree in the Electrical and Computer Engineering Department at the University of
Waterloo, Canada, in April 2007. Her research interests include machine learning algorithms, data mining, and classification with imbalanced data.

About the Author—MOHAMED S. KAMEL received the B.Sc. (Hons) degree in Electrical Engineering from the University of Alexandria, Egypt, his M.Sc.
degree in Computation from McMaster University, Hamilton, Canada, and his Ph.D. degree in Computer Science from the University of Toronto, Canada.

He joined the University of Waterloo, Canada in 1985 where he is at present Professor and Director of the Pattern Analysis and Machine Intelligence
Laboratory at the Department of Electrical and Computer Engineering. Professor Kamel holds Canada Research Chair in Cooperative Intelligent Systems.

Dr. Kamel’s research interests are in Computational Intelligence, Pattern Recognition, Machine Learning, and Cooperative Intelligent Systems. He has
authored and co-authored over 350 papers in journals and conference proceedings, 7 edited volumes, 2 patents, and numerous technical and industrial project
reports. Under his supervision, 67 Ph.D and M.A.SC. students have completed their degrees.

He is the Editor-in-Chief of the International Journal of Robotics and Automation, Associate Editor of the IEEE SMC, Part A, Pattern Recognition Letters,
Cognitive Neurodynamics journal. He is also a member of the editorial advisory board of the International Journal of Image and Graphics and the Intelligent
Automation and Soft Computing journal. He also served as Associate Editor of Simulation, the Journal of The Society for Computer Simulation.

Based on his work at the NCR, he received the NCR Inventor Award. He is also a recipient of the Systems Research Foundation Award for outstanding
presentation in 1985 and the ISRAM best paper award in 1992. In 1994, he has been awarded the IEEE Computer Society Press outstanding referee award.
He was also a co-author of the best paper in the 2000 IEEE Canadian Conference on electrical and Computer Engineering. Dr. Kamel is recipient of the
University of Waterloo outstanding performance award, the faculty of engineering distinguished performance award.

Dr. Kamel is a member of ACM, PEO, Fellow of IEEE, and Fellow of EIC. He served as consultant for General Motors, NCR, IBM, Northern Telecom
and Spar Aerospace. He is also a member of the board of directors and co-founder of Virtek Vision Inc. of Waterloo (www.virtek.ca).

About the Author—ANDREW K. C. WONG holds a Ph.D. from Carnegie Mellon University; B.Sc. (Hons) and M.Sc. from the Hong Kong University. He
is an IEEE Fellow (for his contribution in machine intelligence, computer vision, and intelligent robotics).

http://stat-www.berkeley.edu/users/chenchao/666.pdf
http://www.virtek.ca

3378 Y. Sun et al. / Pattern Recognition 40 (2007) 3358–3378

Currently, Dr. Wong is a Distinguished Professor Emeritus (Systems Design Engineering) where he is also Adjunct to the School of Computer Sciences and
the Electrical and Computer Engineering at the University of Waterloo (UW). He was the Founding Director of Pattern Analysis and Machine Intelligence
Laboratory (PAMI Lab) at UW and a Distinguished Chair Professor at the Hong Kong Polytechnic University (00–03). His research areas cover machine
intelligence, computer vision, intelligence robotics, pattern recognition, pattern mining, and bioinformatics. Dr. Wong has published close to 300 journal and
conference papers and book chapters; and is holding five US Patents. He has served as consultant to many high-tech companies in USA and Canada.

Based on the core technologies he and his team have developed, three high tech companies were founded. Dr. Wong is a founder, and retired director
(93–03) of Virtek Vision International Corporation, a publicly traded company and a leader in laser and vision technology. He was its president (86–93) and
Chairman (93–97). In 1997, he co-founded Pattern Discovery Software Systems Ltd. and has served as Chairman ever since. In 2004, he helped founding
Envisage Healthcare Solutions, a software company dedicated to research, development, and deployment of health information and bioinformatics for decision
support in patients’ diagnosis, therapeutic management, and intervention.

About the Author—YANG WANG received his B. Eng. degree in electronic engineering and his M. Eng. degree in systems engineering from Tsinghua
University, Beijing, China, in 1989 and 1991, respectively. He received his Ph.D. degree in systems design engineering from the University of Waterloo,
Waterloo, Ont., Canada, in 1997.

Dr. Wang is a co-founder of Pattern Discovery Software Systems Ltd., a software firm specialized in data mining solutions, and has been the CTO of the
company since 1997. His current research interests include exploratory data mining, knowledge discovery, intelligent data analysis, and their applications. He
is an adjunct professor of Systems Design Engineering at the University of Waterloo, where he supervises graduate students and conducts academic research.

Dr. Wang is a member of the IEEE Computer Society and ACM.

	Cost-sensitive boosting for classification of imbalanced data
	Introduction
	Class imbalance problem
	Nature of the problem
	Reported research solutions
	Data-level approaches
	Algorithm-level approaches
	Cost-sensitive learning

	Evaluation measures
	F-measure
	G-mean
	ROC analysis

	Why boosting?
	Ensemble learning
	AdaBoost algorithm
	Forward stagewise additive modelling

	Cost-sensitive boosting algorithms
	AdaC1
	AdaC2
	AdaC3
	Cost-sensitive exponential loss and AdaC2
	Cost factors
	Other related algorithms
	AdaCost
	CSB1 and CSB2
	RareBoost

	Resampling effects
	Experiments
	Data sets
	Cost setups
	F-measure evaluation

	Conclusions and future research
	References

