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Exploring the Boundary Region of Tolerance Rough
Sets for Feature Selection

Neil Mac Parthaláin and Qiang Shen

Department of Computer Science, Aberystwyth University, Wales, UK.

Abstract

Of all of the challenges which face the effective application of computational intelli-
gence technologies for pattern recognition, dataset dimensionality is undoubtedly one of
the primary impediments. In order for pattern classifiers to be efficient, a dimensionality
reduction stage is usually performed prior to classification. Much use has been made of
Rough Set Theory for this purpose as it is completely data-driven and no other information
is required; most other methods require some additional knowledge. However, traditional
rough set-based methods in the literature are restricted to the requirement that all data must
be discrete. It is therefore not possible to consider real-valued or noisy data. This is usually
addressed by employing a discretisation method, which can result in information loss. This
paper proposes a new approach based on the tolerance rough set model, which has the abil-
ity to deal with real-valued data whilst simultaneously retaining dataset semantics. More
significantly, this paper describes the underlying mechanism for this new approach to utilise
the information contained within the boundary region or region of uncertainty. The use of
this information can result in the discovery of more compact feature subsets and improved
classification accuracy. These results are supported by an experimental evaluation which
compares the proposed approach with a number of existing feature selection techniques.

Key words: feature selection, attribute reduction, rough sets, classification

1 Introduction

Quite often, at the point of data collection every single aspect of a domain may be
recorded such that complete representation can be achieved. The problems associ-
ated with such large dimensionality however mean that any attempt to use machine
learning tools to extract knowledge, results in very poor performance. Feature Se-
lection (FS) [4], [9], [10], [11], [23], [24], [46] is a process which attempts to select
features which are information-rich and also retain the original meaning of the fea-
tures following reduction. It is not surprising therefore, that feature selection has
been applied to problems which have very large dimensionality (>10 000) [2].
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Problems of such scale are outside the scope of most learning algorithms, and in
cases where they are not, the learning algorithm will often find patterns that are
spurious and invalid. As mentioned previously, it may be expected that the inclu-
sion of an increasing number of features would also improve the likelihood of the
ability to distinguish between classes. This may not be the case however if the train-
ing data size does not also increase significantly with the addition of each feature.
Most learning approaches utilise a reduction step to overcome such problems when
dealing with high dimensionality.

Rough set theory (RST) [30] is an approach that can be used for dimensionality re-
duction, whilst simultaneously preserving the semantics of the features [38]. Also,
as RST operates only on the data and does not require any thresholding informa-
tion, it is completely data-driven. Other useful approaches may also be employed
for dimensionality reduction and FS such as; [9], [23], [32], [46], unlike RST how-
ever these approaches require additional information or transform the data. The
main disadvantage of RST is its inability to deal with real-valued data. In order to
tackle this problem, methods of discretising the data were employed prior to the
application of RST. The use of such methods can result in information loss how-
ever, and a number of extensions to RST have emerged [7], [39], [48] which have
attempted to address this inability to operate on real-valued domains. Perhaps the
most significant of these is the tolerance rough set model (TRSM) [39]. TRSM has
the ability to operate effectively on real-valued (and crisp) data, thus minimising
any information loss.

This paper presents a new method for feature selection which is based on the
TRSM. It employs a distance metric to examine the uncertain information con-
tained in the boundary region of tolerance rough sets, and uses this information to
guide the feature selection process. This uncertain information is normally ignored
in the traditional RST and TRSM approaches to FS which can result in information
loss. The remainder of this paper is structured as follows. Section 2 introduces the
theoretical background to RST and TRSM and their application to feature selection.
Section 3 presents the new distance metric-assisted tolerance rough set selection
method with a worked example to demonstrate the approach fully. All experimen-
tal evaluation and results for both approaches is presented in section 4, as well as a
comparison with the Principal Component Analysis (PCA) dimensionality reduc-
tion technique [12], and also four additional FS techniques CFS [13], consistency-
based FS [5], ReliefF [19], and a wrapper FS approach which employs J48 [33] as
an evaluation metric. The paper is then concluded with a brief discussion of future
work in section 5.

2 Background

Although the principal focus of this paper lies in the examination of the informa-
tion contained in the boundary region of tolerance rough sets, an in-depth view of
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both the RST and TRSM methodologies is necessary in order to demonstrate the
motivation for the investigation of the information in the boundary region.

Rough Set Theory [30] is an extension of conventional set theory which supports
approximations in decision making. A rough set is the approximation of a vague
concept by a pair of precise concepts which are known as upper and lower ap-
proximations. These concepts are illustrated in Fig.1. The lower approximation is a
definition of the domain objects which are known with absolute certainty to belong
the concept of interest (set X), whilst the upper approximation is the set of those
objects which possibly belong to the concept of interest. The boundary region or re-
gion of uncertainty is the difference between the upper and lower approximations.
Equivalence classes are groups of objects which are indiscernible from each other,
such as a group of objects in which all of the condition features are the same for
each object.

Fig. 1. Rough Set representation

2.1 Rough Set Attribute Reduction

At the heart of the RSAR approach is the concept of indiscernibility. Let I = (U,A)
be an information system, whereU is a non-empty set of finite objects (the universe)
and A is a non-empty finite set of attributes so that a : U → Va for every a ∈ A.
Va is the set of values that a can take. For any P ⊆ A, there exists an associated
equivalence relation IND(P ):

IND(P ) = {(x, y) ∈ U2 | ∀a ∈ P, a(x) = a(y)} (1)

The partition generated by IND(P ) is denotedU/IND(P ) or abbreviated toU/P
and is calculated as follows:
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U/IND(P ) = ⊗{a ∈ P | U/IND({a})} (2)

where,

U/IND({a}) = {{x | a(x) = b, x ∈ U} | b ∈ Va} (3)

and,

A⊗B = {X ∩ Y | ∀X ∈ A,∀Y ∈ B, X ∩ Y 6= ∅} (4)

where A and B are families of sets.

If (x, y) ∈ IND(P ), then x and y are indiscernible by attributes from P . The
equivalence classes of the P-indiscernibility relation are denoted [x]p. Let X ⊆ U.
X can be approximated using only the information contained in P by constructing
the P-lower and P-upper approximations of X:

PX = {x | [x]p ⊆ X} (5)

PX = {x | [x]p ∩X 6= ∅} (6)

Let P and Q be attribute sets that induce equivalence relations over U, then the
positive, negative and boundary regions can be defined:

POSP (Q) =
⋃

X∈U/Q

PX (7)

NEGP (Q) = U− ⋃

X∈U/Q

PX (8)

BNDP (Q) =
⋃

X∈U/Q

PX − ⋃

X∈U/Q

PX (9)

By employing this definition of the positive region it is possible to calculate the
rough set degree of dependency of a set of attributes Q on a set of attributes P .
This can be achieved as follows: For P ,Q ⊆ A, it can be said that Q depends on P
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in a degree k (0 ≤ k ≤ 1), this is denoted (P ⇒k Q) if:

k = γP (Q) =
| POSP (Q) |

| U | (10)

The reduction of attributes or selection of survival features can be achieved through
the comparison of equivalence relations generated by sets of attributes. Attributes
are removed such that the reduced set provides identical predictive capability of
the decision feature or features as that of the original or unreduced set of features.
A reduct (R) can be defined as a subset of minimal cardinality of the conditional
attribute set (C) where γR(D) = γC(D), where D is the decision attribute set.

The QuickReduct algorithm in [38] also shown below searches for a minimal sub-
set without exhaustively generating all possible subsets. The search begins with an
empty subset, attributes which result in the greatest increase in the rough set depen-
dency value are added iteratively. This process continues until the search produces
its maximum possible dependency value for that dataset (γc(D)). Note that this type
of hill-climbing search does not guarantee a minimal subset and may only discover
a local minimum.

Algorithm QuickReduct
Input: C, the set of all conditional features
Input: D, the set of all decisional features
Output: R, a feature subset
1. R ← {}
2. repeat
3. T ← R
4. ∀x ∈ (C −R)
5. if γR∪{x}(D) > γT (D)
6. T ← R ∪ {x}
7. R ← T
8. until γR(D) = γC(D)
9. return R

2.2 Distance Metric Assisted Rough Set Attribute Reduction

Almost all techniques for rough set attribute reduction [14], [21], [22], [28], [38],
[41], [47] adopt an approach to minimisation that employs the information con-
tained within the lower approximation of a set. Very little work [6], [16], [26] has
been carried out where the information in the boundary region is considered for the
purpose of minimisation. This information is uncertain but may be useful in deter-
mining subset quality and hence the discovery of more compact and useful feature
subsets.
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The approach described in this section uses both the information contained in
the lower approximation and the information contained in the boundary region to
search for reducts. This work is based on an approach applied to traditional rough
sets in [26]. The positive region (as defined above) is the union of lower approx-
imations, and this is used (as described previously) for the minimisation of data.
The lower approximation is the set of those objects which can be said with cer-
tainty to belong to a set X . The upper approximation is the set of objects which
either definitely or possibly belong to the set X . The difference between the upper
and lower approximation is the area known as the boundary region. The boundary
region is an area of uncertainty. When the boundary region is empty, there is no un-
certainty regarding the concept which is being approximated and all objects belong
with certainty to the subset of interest.

Any useful information that may be contained in the boundary region when it is
non-empty is therefore lost when only the lower approximation is employed for
minimisation. In order to address this, the DMRSAR method [26] uses a distance
metric to determine the proximity of objects in the boundary region to those in the
lower approximation and assign a significance value to these distances.

2.2.1 Distance Metric and Mean Lower Approximation Definitions

The distance metric employed in this work attempts to qualify the objects in the
boundary region with regard to their proximity to the lower approximation. Similar
research although not specifically involving the lower approximation can be found
in [40]. Intuitively, the closer the proximity of an object in the boundary region
to the upper margin of the lower approximation, the higher the likelihood that it
belongs to the set of interest. For the method outlined here, all of the distances of
objects in the boundary region are calculated. From this the significance value for
a set can be obtained.

Since calculating the margin of the lower approximation for an n-dimensional
space would involve considerable computational effort, a more pragmatic solution
is adopted, - the mean of all object attribute values in the P-lower approximation is
calculated. This can be defined as follows:

PXMEAN =

{∑
o∈PX a(o)

| PX | | ∀a ∈ P

}
(11)

Using this definition of the mean of the P-lower approximation, the distance func-
tion for the proximity of objects in the boundary region from the P-lower approxi-
mation mean can be defined, δP (PXMEAN , y), y ∈ BNDP (Q).

The exact function (δP )is not defined here as a number of different strategies can
be employed for the calculation of the distance of objects in the boundary such as
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Hausdorff distance. In the worked example section a Euclidean type distance metric
is employed.

In order to measure the quality of the boundary region, a significance value ω for
subset P is calculated by obtaining the sum of all object distances and inverting it
such that:

ωP (Q) = (
∑

y∈BNDP (Q))

δP (PXMEAN , y))−1 (12)

This significance measure takes values from the interval [0,1] and is used in con-
junction with the rough set dependency value to gauge the utility of attribute subsets
in a similar way to that of the rough set dependency measure. As one measure only
operates on the objects in the lower approximation and the other only on the ob-
jects in the boundary, both entities can therefore be considered separately and then
combined to create a new evaluation measureM:

M(X) =
ωX(Q) + γX(Q)

2
(13)

A mean of both values is obtained as both operate in the range [0,1]. With this
in mind, a new feature selection mechanism can be constructed that uses both the
significance value and the rough dependency value to guide the search for the best
feature subset.

2.2.2 Distance Metric-based QUICKREDUCT

DMQuickReduct shows a distance metric-based QUICKREDUCT algorithm based
on the previously described rough algorithm.

DMQUICKREDUCT is similar to the RSAR algorithm but uses a combined distance
and rough-set dependency value of a subset to guide the feature selection process.
If the combined value (M) of the current reduct candidate is greater than that of
the previous, then this subset is retained and used in the next iteration of the loop.
It is worth pointing out that the subset is evaluated by examining the value of M,
termination only occurs when the addition of any remaining features results in the
dependency function value (γT ) reaching that of the unreduced dataset. The value
ofM is therefore not used as a termination criterion.

Algorithm DMQuickReduct
Input: C, the set of all conditional features
Input: D, the set of all decisional features
Output: R, a feature subset
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1. T ← {}, R ← {}
2. repeat
3. ∀x ∈ (C−R)
4. if MR∪{x} >M(T )
5. T ← R ∪ {x}
6. R ← T
7. until γR(D) = γC(D)
8. return R

The algorithm begins with an empty subset R. The repeat-until loop works by ex-
amining the combined dependency/significance value of a subset and incrementally
adding a single conditional feature at a time. For each iteration, a conditional fea-
ture that has not already been evaluated will be temporarily added to the subset R.
The combined measure of the subset currently being examined (line 6) is then eval-
uated and compared with that of T (the previous subset). If the combined measure
of the current subset is greater, then the attribute added in (line 5) is retained as part
of the new subset T (line 6).

The loop continues to evaluate in the above manner by adding conditional features,
until the dependency value of the current reduct candidate (γR(D)) equals the con-
sistency of the dataset (1 if the dataset is consistent).

2.3 Tolerance-based Feature Selection

The tolerance rough set model (TRSM) [39] can be useful for application to real-
valued data. TRSM employs a similarity relation to minimise data as opposed to
the indiscernibility relation used in classical rough-sets. This allows a relaxation in
the way equivalence classes are considered. Fig.2 shows the effect of employing
this relaxation, where the granularity of the rough equivalence classes has been
reduced. This flexibility allows a blurring of the boundaries of the former rough or
crisp equivalence classes and objects may now belong to more than one tolerance
class.

In this approach [35], suitable similarity relations must be defined for each feature,
although the same definition can be used for all features if applicable. A standard
measure for this purpose, given in [39], is:

SIMa(x, y) = 1− | a(x)− a(y) |
| amax − amin | (14)

where a is a considered feature, and amax and amin denote the maximum and mini-
mum values of a respectively. When considering the case where there is more than
one feature, the defined similarities must be combined to provide an overall mea-
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Fig. 2. Tolerance Rough Set Model

sure of similarity of objects. For a subset of features, P , this can be achieved in
many ways including the following approaches:

(x, y) ∈ SIMP,τ ⇐⇒ ∏

a∈P

SIMa(x, y) ≥ τ (15)

(x, y) ∈ SIMP,τ ⇐⇒
∑

a∈P SIMa(x, y)

| P | ≥ τ (16)

where τ is a global similarity threshold and determines the required level of simi-
larity for inclusion within a tolerance class. This framework allows for the specific
case of traditional rough sets by defining a suitable similarity measure (e.g. com-
plete equality of features and the use of equation (15)) and threshold (τ = 1).
Further similarity relations are summarised in [29], but are not included here. From
this, the so-called tolerance classes that are generated by a given similarity relation
for an object x are defined as:

SIMP,τ (x) = {y ∈ U | (x, y) ∈ SIMP,τ} (17)

Lower and upper approximations can now be defined in a similar way to that of
traditional rough set theory:

PτX = {x | SIMP,τ (x) ⊆ X} (18)

PτX = {x | SIMP,τ (x) ∩X 6= ∅} (19)
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The tuple 〈PτX , PτX〉 is known as a tolerance rough set [39]. Using this, the
positive region and dependency functions can be defined as follows:

POSP,τ (Q) =
⋃

X∈U/Q

PτX (20)

γP,τ (Q) =
| POSP,τ (Q) |

| U | (21)

From these definitions, an attribute reduction method can be formulated that uses
the tolerance-based degree of dependency, γP,τ (Q), to measure the significance of
feature subsets (in a similar way to the rough set QUICKREDUCT algorithm
described previously). Although this allows the consideration of real-valued data,
the inclusion of the tolerance threshold (τ) also now means that TRSM departs
from the traditional rough set approach which requires no additional thresholding
information.

3 Distance Metric-Assisted Tolerance Rough Set Feature Selection

The Distance Metric-Assisted Tolerance Rough Set Feature Selection (DM-TRS)
is an extension of the TRSM approach described previously which has the ability
to operate on real-valued data. It marries the TRSM with the distance metric as-
sisted rough set approaches. This allows the information of the TRSM boundary
region that is otherwise ignored to be examined and used for FS. This ability to
deal with real-valued data along with the consideration of the uncertain boundary
region information allows a more flexible approach for FS.

3.1 Distance Metric-based ToleranceQUICKREDUCT

Following the outline of TRSM in Section II, a similarity relation is defined on
all features using (16). Employing the already defined tolerance lower and upper
approximations (see (18) & (19)) definition the boundary region can be computed:

BNDP,τ (Q) =
⋃

X∈U/Q

PτX − ⋃

X∈U/Q

PτX (22)

This and the similarity relation form the principal concepts required for the appli-
cation of the distance metric. However, in an attempt to quantify the value of the
boundary region objects, a metric is required. As argued previously in the intuitive
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sense, by introducing the P-lower approximation mean, the distance function for
the calculation of the proximity of objects in the boundary region can be formu-
lated:

δP (PτXMEAN , y), y ∈ BNDPτ (Q) (23)

Once again, various distance metrics can be employed for this distance function.
To measure the quality of the boundary region, a significance value ω is obtained
by measuring all of the distances of the objects and combining them such that:

ωP (Q) =


 ∑

y∈BNDP (Q))

δP (PXMEAN , y)



−1

(24)

An alternative to the mean lower approximation and distance metric is another
approach which uses the Hausdorff metric to calculate the distance between non-
empty sets. It measures the extent to which each point in a set is located relative to
those of another set. The Hausdorff metric has been applied to facial recognition
[36], image processing [37] and FS [31] with much success. It can be defined as:

h(A,B) = maxa∈A{minb∈B{d(a, b)}} (25)

where a and b are points (objects) of sets A and B respectively, and d(a, b) is any
metric between these points. A basic implementation of this has been incorporated
into the above framework using Euclidean distance as a metric. Experimentation
using this approach can be found in section 4. The primary disadvantage of this
approach however is the computational overhead involved in calculating the dis-
tance of all objects in the boundary region from each other. For n boundary region
objects, this means that O(n2) distance calculations must be made, unlike the mean
lower approximation which results in O(n) distance calculations.

As with the previously described rough set-based method the significance mea-
sure takes values in the interval [0, 1]. This measure can now be combined with
the tolerance rough set dependency value and used to gauge the utility of attribute
subsets, using exactly the same mechanism as defined in (13). It should perhaps be
emphasised at this point that no transformation of the data takes place (in contrast
to approaches such as [12,32]) and that the distance measure is only used in con-
junction with the dependency value to form the evaluation metric. This ensures that
this method is stable and will always return the same subset of features for a given
training dataset.

Incidentally, it is worth indicating that although conceptually similar to the work
presented in [44,45], this research focuses on real-valued data entries rather than
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image information retrieval. The ability of the proposed approach in handling prob-
lems captured in data tables will be demonstrated both with a worked example and
nine real-valued datasets later.

DMTQuickReduct shows a distance metric tolerance rough set (DM-TRS) algo-
rithm, that implements the ideas presented above, based on the previously described
DMQuickReduct algorithm.

Algorithm DMTQuickReduct
Input: C, the set of all conditional features
Input: D, the set of all decisional features
Output: R, a feature subset
1. R ← {}, Mbest ← {}, Mprev ← {}
2. M← 0, γ′best ← 0, γ′prev ← 0
3. repeat
4. T ← R
5. Mprev ←Mbest

6. γ′prev ← γ′best
7. ∀x ∈ (C−R)
8. if MR∪{x}(D) >MT (D)
9. T ← R ∪ {x}
10. Mbest ←MT (D)
11. γ′best ← γ′T (D)
12. R ← T
13. until γR(D) = γC(D)
14. return R

The algorithm employs the combined significance and dependency value M to
choose which features to add to the current reduct candidate. The metricM is only
used to select subsets. The termination criterion is the tolerance rough set depen-
dency value; the algorithm terminates when the addition of any single remaining
feature does not result in an increase in the dependency.

Whereas the combined evaluation metric determines the utility of each subset, the
stopping criteria is automatically defined through the use of the dependency mea-
sure and the subset search is complete either; when the addition of further features
does not result in an increase in dependency or when it is equal to 1.

3.2 A Worked Example

To illustrate the operation of the new distance metric-based approach which com-
bines the tolerance rough set and distance metric methods a small example dataset
is considered, containing real-valued conditional attributes and crisp decision at-
tributes.
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Table 1 contains six objects. It has three real-valued conditional attributes and a
single crisp-valued decision attribute. For this example, the similarity measure is
the same as that given in (15) for all conditional attributes, with τ = 0.8. The choice
of this threshold allows attribute values to differ to a limited degree, with close
values considered as though they are identical.

Table 1
Example dataset

Object a b c f

0 −0.4 −0.3 −0.5 no

1 −0.4 0.2 −0.1 yes

2 −0.3 −0.4 −0.3 no

3 0.3 −0.3 0 yes

4 0.2 −0.3 0 yes

5 0.2 0 0 no

Thus by making A = {a}, B = {b}, C = {c} and F = {f}, the following toler-
ance classes are generated:

U/SIMA,τ = {{0, 1, 2}, {3, 4, 5}}
U/SIMB,τ = {{0, 2, 3, 4}, {1}, {5}}
U/SIMC,τ = {{0}, {1}, {3,4,5}, {2}}
U/SIMF,τ = {{0,2,5}, {1,3,4}}

U/SIM{a,b},τ = {{0,2}, {1}, {3,4}, {3,4,5}, {4,5}}
U/SIM{a,c},τ = {{0}, {1}, {2}, {3,4,5}, {3,4,5}}
U/SIM{b,c},τ = {{0,2}, {1}, {3,4}, {5}}
U/SIM{a,b,c},τ = {{0}, {1}, {2}, {3,4}, {4,5}}

It is apparent that some objects belong to more than one tolerance class. This is
a result of employing a similarity measure rather than the strict equivalence of the
conventional rough set model. Using these partitions, a degree of dependency can
be calculated for attribute subsets, providing an evaluation of their significance in
the same way as previously outlined for the crisp rough case.

The DMTQuickReduct algorithm described previously can now be employed. It
considers the addition of attributes to the stored best current subset (initially the
empty set) and selects the feature that results in the greatest increase of the de-
pendency degree. Considering attribute b, the lower approximations of the decision
classes are calculated as follows:
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Bτ {0,2,5} = {x | SIMB,τ (x) ⊆ {0, 2, 5}} = {5}
Bτ {1,3,4} = {x | SIMB,τ (x) ⊆ {0, 2, 5}} = {1}

Also the upper approximations:

Bτ {0,2,5} = {x | SIMB,τ (x) ∩ {0, 2, 5}} = {0, 2, 5}
Bτ {1,3,4} = {x | SIMB,τ (x) ∩ {0, 2, 5}} = {1, 3, 4}

From the lower approximation, the positive and boundary regions can then be gen-
erated:

POSB,τ (F ) =
⋃

X∈U/F

BτX = {1, 5}

BNDB,τ (F ) =
⋃

X∈U/F

BτX − POSB,τ (F ) = {0, 2, 3, 4}

To calculate the distances of the boundary objects from the lower approximation,
it is necessary to generate a lower approximation mean object as described previ-
ously:

PXMEAN =

{∑
o∈PX a(o)

| PX | : ∀a ∈ P

}

=

{∑
a(1), a(5)

| 2 |

}
= 0.1

There are many distance metrics which can be applied to measure the distance of
the objects in the boundary from the lower approximation mean. For simplicity, a
variation of Euclidean distance is used in the approach documented here, and this
is defined as:

δP (PXMEAN , y) =
√∑

a∈P

fa(PXMEAN , y)2 (26)

where:
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fa(x, y) = a(x)− a(y) (27)

From this, the distances of all of the objects in the boundary region in relation to
the lower approximation mean can now be calculated:

obj 0
√

fb(PXMEAN , 0)2 = 0.4

obj 2
√

fb(PXMEAN , 2)2 = 0.5

obj 3
√

fb(PXMEAN , 3)2 = 0.4

obj 4
√

fb(PXMEAN , 4)2 = 0.4

The significance value is therefore:

ωB(F )=
(∑

y∈BNDP (Q)) δP (PXMEAN , y)
)−1

= (
∑

(0.4, 0.5, 0.4, 0.4))−1 = 0.588

The significance value is combined with the rough set dependency to form a subset
measure (M) such that the value for {b}:

M(B) =
ωB(F ) + γB(F )

2
=

0.588 + 0.333

2
= 0.461

By calculating the change in combined significance and dependency value (M)
when an attribute is removed from the set of considered conditional attributes, a
measure of the goodness of that attribute can be obtained. The greater the change
inM the greater the measure of goodness that attribute has attached to it.

The values for the combined metric can be calculated for all considered subsets of
conditional attributes using DMRSAR:

M{a}({f}) = 0.0 M{a,c}({f}) = 0.498

M{b}({f}) = 0.461 M{b,c}({f}) = 1.0

M{c}({f}) = 0.805 M{a,b,c}({f}) = 0.492

It is obvious from the above example that the search finds a subset in the manner
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{c} → {b, c}. As {a} and {a, c} and also {a, b, c} do not result in the same increase
in combined metric these subsets are ignored.

3.3 Computational Complexity

As the DMTQUICKREDUCT algorithm is based on a greedy hill-climbing type of
search. The computational complexity will be similar to that of other approaches
which use this method.

However, in addition to the factors which govern the computational complexity of
the rough set QUICKREDUCT algorithm, other factors must also be taken into ac-
count. In the DM-TRS approach objects in the boundary region are also considered
and this inevitably adds to the computational overhead. Furthermore, all of those
objects in the lower approximation are also considered when calculating a collapsed
lower approximation object for each concept. At this lower level the additional fac-
tors that must be considered (also those that are not employed in the rough set case)
include; the calculation of the collapsed lower approximation mean, the calculation
of the upper approximation, and the calculation of the distances of objects in the
boundary from the collapsed lower approximation mean.

From a high level point-of-view the DMTQUICKREDUCT has an intuitive com-
plexity of (n2 + n)/2 for a dimensionality of n. This is the number of evaluations
of the dependency function and distance measure performed in the ‘worst case’.
For instance if the feature set consists of {a1, a2}, then the DMTQUICKREDUCT

algorithm will make 3 evaluations, one each for {a1} and {a2}, and finally one for
{a1, a2} in the worst case.

4 Experimentation

This section presents the results of experimental studies using 8 real-valued datasets.
These datasets are of the same format as that used for the worked example in the
previous section. They are small-to-medium in size, with between 120 and 390
objects per dataset and feature sets ranging from 5 to 39 - a detailed description
can be found in the appendix. All datasets have been obtained from [1] and [27]
A comparison of both the tolerance rough set algorithm and the distance-metric
based tolerance rough set dimensionality reduction techniques is made based on
subset size, and classification accuracy. Furthermore, the DM-TRS approach is also
compared with five other FS techniques. The comparison is made in terms of both
subset size and classification accuracy and also in terms of classification accuracy
for each given subset size discovered by the DM-TRS method where applicable.
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4.1 Experimental Setup

A range of 4 tolerance values, (0.80–0.95 in intervals of 0.05) were employed when
considering the datasets. It should be borne in mind that the ideal tolerance value
for any given dataset can only be optimised for that dataset by repeated experimen-
tation. This is true of the TRSM as well as to any extensions applied to it, such
as described in this paper. Therefore, the range of values chosen is an attempt to
demonstrate the ideal tolerance threshold for each dataset without exhaustive ex-
perimentation.

Table 2
Classification Accuracy using QSBA

QSBA τ = 0.8 τ = 0.85 τ = 0.90 τ = 0.95

Dataset Unred. TRS DM-TRS TRS DM-TRS TRS DM-TRS TRS DM-TRS

water 2 57.94 77.76 77.76 73.16 73.16 74.53 74.53 67.79 76.38

water 3 48.97 63.12 63.12 74.34 74.34 73.56 73.56 68.25 63.83

cleveland 37.46 36.51 39.47 35.78 35.78 43.58 46.61 43.28 43.28

glass 43.65 37.60 37.60 38.51 38.51 25.88 25.88 42.12 39.43

heart 64.07 77.41 77.42 73.33 74.07 70.00 70.00 74.81 74.81

ionosphere 80.67 74.34 74.34 68.26 68.26 68.26 69.14 64.10 65.65

olitos 64.16 61.66 64.16 57.50 86.08 61.66 62.36 54.16 60.01

wine 94.86 85.39 85.39 81.40 81.40 84.11 84.11 83.72 84.10

Table 3
Classification Accuracy using JRIP, PART, and J48 Classifiers (τ = 0.80)

TRS DM-TRS

Dataset JRIP PART J48 JRIP PART J48

water 2 83.58 84.61 83.58 83.58 84.61 83.58

water 3 84.61 81.80 83.84 84.61 81.80 83.84

cleveland 52.86 52.18 53.19 55.55 53.53 54.20

glass 50.00 49.53 48.13 50.00 49.53 48.13

heart 73.70 78.89 75.56 73.70 78.89 75.56

ionosphere 89.13 88.26 88.26 89.13 88.26 88.26

olitos 67.50 70.00 64.16 65.83 62.50 59.16

wine 95.50 94.38 81.40 81.40 84.11 84.11

4.2 Classifier Learning Methods

In the generation and discussion of results for classification accuracies, a fuzzy
classifier learning method QSBA [34], and three other classifier learners - J48, JRip,
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Table 4
Classification Accuracy using JRIP, PART, and J48 Classifiers (τ = 0.85)

TRS DM-TRS

Dataset JRIP PART J48 JRIP PART J48

water 2 84.61 82.30 84.87 84.61 82.30 84.87

water 3 83.58 82.30 81.02 83.58 82.30 81.02

cleveland 53.87 50.84 54.54 53.87 50.54 54.54

glass 64.95 60.74 68.22 61.93 66.82 68.70

heart 75.55 77.40 82.59 81.85 80.74 82.63

ionosphere 90.42 88.69 86.52 90.42 88.69 86.52

olitos 62.50 60.83 60.00 62.50 65.83 67.50

wine 95.25 95.50 96.06 95.25 95.50 96.06

Table 5
Classification Accuracy using JRIP, PART, and J48 Classifiers (τ = 0.90)

TRS DM-TRS

Dataset JRIP PART J48 JRIP PART J48

water 2 85.38 82.30 87.43 85.38 82.30 87.43

water 3 80.00 81.53 76.67 80.00 81.53 76.67

cleveland 54.20 53.87 52.52 54.03 55.55 54.88

glass 65.88 69.15 68.69 65.88 69.15 68.69

heart 79.25 75.19 78.88 79.25 75.19 78.88

ionosphere 85.65 86.52 85.21 86.01 89.56 89.13

olitos 70.00 65.83 61.66 59.17 60.84 67.50

wine 96.06 94.94 96.62 96.06 94.94 96.62

and PART [42] - were employed. These are briefly outlined below.

QSBA [34] works by generating fuzzy rules using the fuzzy subsethood measure
for each decision class and a threshold to determine what appears in the rule for
that decision class. The fuzzy subsethood measure is then used to act as weights,
and the algorithm then modifies the weights to act as fuzzy quantifiers.

J48 [33] creates decision trees by choosing the most informative features and re-
cursively partitioning the data into subtables based on their values. Each node in
the tree represents a feature with branches from a node representing the alternative
values this feature can take according to the current subtable. Partitioning stops
when all data items in the subtable have the same classification. A leaf node is then
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Table 6
Classification Accuracy using JRIP, PART, and J48 Classifiers (τ = 0.95)

TRS DM-TRS

Dataset JRIP PART J48 JRIP PART J48

water 2 82.82 83.07 82.05 84.10 84.10 80.77

water 3 81.02 80.77 81.02 83.59 78.98 81.80

cleveland 50.54 50.84 54.54 50.54 50.84 54.54

glass 69.62 68.22 69.62 65.42 64.95 62.00

heart 80.38 78.57 81.48 80.38 78.57 81.48

ionosphere 86.08 87.39 87.39 85.93 87.82 87.82

olitos 64.16 66.67 64.16 64.16 65.88 64.16

wine 93.25 95.50 96.02 91.57 94.98 97.19

Table 7
Comparison of Subset size for each tolerance threshold value

Original Subset size Subset size Subset size Subset size

number (τ = 0.8) (τ = 0.85) (τ = 0.90) (τ = 0.95)

Dataset of features TRS DM-TRS TRS DM-TRS TRS DM-TRS TRS DM-TRS

water 2 39 6 6 5 5 8 8 12 12*

water 3 39 5 5 9 9 9 9 12 11

cleveland 14 3 2 2 2 11 10 8 8

glass 10 3 3 5 5* 3 3 8 3

heart 14 4 4 6 8 12 12 8 8

ionosphere 34 3 3 6 6 6 6* 8 8*

olitos 25 8 5 5 5* 9 8 6 6*

wine 13 5 5 4 4 5 5 5 5*

* - Denotes subset whose size was the same as TRS but for which different attributes had been selected

created, and this classification assigned.

JRip [3] learns propositional rules by repeatedly growing rules and pruning them.
During the growth phase, antecedents are added greedily until a termination condi-
tion is satisfied. Antecedents are then pruned in the next phase subject to a pruning
metric. Once the ruleset is generated, a further optimization is performed where
rules are evaluated and deleted based on their performance on randomized data.

PART [43] generates rules by means of repeatedly creating partial decision trees
from data. The algorithm adopts a divide-and-conquer strategy such that it removes
instances covered by the current ruleset during processing. Essentially, a rule is
created by building a pruned tree for the current set of instances; the leaf with the
highest coverage is promoted to a rule.
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4.3 Comparison of Classification Accuracy

The data presented in Table 2 shows the average classification accuracy using the
classifiers learned by the four learner methods described previously. The recorded
values are expressed as a percentage and obtained using 10-fold cross validation.
Classification was initially performed on the unreduced dataset, followed by the
reduced datasets, which were obtained by using both the TRS and DM-TRS di-
mensionality reduction techniques respectively for each of the tolerance values.

Examining the classification values obtained using QSBA, even when the subset
size in Table 7 is of a similar value to that of the TRS approach, the correspond-
ing classification figures for DM-TRS demonstrate the selection of better quality
subsets. In some cases the DM-TRS approach even manages to select a subset of
smaller cardinality for a given dataset, whilst also maintaining a similar level of
classification as TRS.

Obviously, where DM-TRS discovers identical subsets to those found by TRS, the
classification accuracies will also be identical. Where this is not the case however,
the results can differ substantially depending on whether fuzzy or crisp classifiers
have been employed in obtaining the results e.g. for the water 3 dataset with (τ =
0.95), the crisp classifiers show an average result for DM-TRS that is better than
TRS, whilst the fuzzy classifier shows a result that is poorer than TRS. For the same
tolerance value (0.95), the glass dataset, also demonstrates a small decrease in the
order of up to 7% (for all classifiers), however when the corresponding decrease
in dimensionality of 37.5% is considered over the TRS method, this decrease is
not significant. In all other cases where the crisp classifiers show a decrease in
classification accuracy, this is reflected as an increase when QSBA is employed for
classification. This is due mainly to the fact that although J48, JRip, and PART are
intended to handle real-valued data, they are unable to examine data in the same
way that a fuzzy classifier learner such as QSBA can.

4.4 Subset size

Table 7 presents the results of a comparison of subset size, for both the TRS and
DM-TRS approaches, with DM-TRS showing a small but clear advantage in terms
of more compact subsets.

Examining the results in Table 7, the DM-TRS method shows that there is much
information contained in the boundary region of a tolerance rough set. This is re-
flected in the subset sizes obtained. DM-TRS succeeds in finding subsets of cardi-
nality that are at least equal and sometimes smaller than those obtained using the
TRS method, with the exception of the heart dataset for τ = 0.85. However if the
classification results are examined closely, it is clear that although the subset size
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is of greater cardinality for this particular case, the subset is of greater quality than
that obtained using TRS. The results also demonstrate that the nature of the data
along with a particular value of τ can mean that there is little or no information
in the boundary region and therefore DM-TRS relies purely on the information
contained in the lower approximation dependency value. This can in-turn result in
subsets that are identical to those discovered by the TRS method.

Whilst it may be expected that a change in τ would reflect a change in performance
in terms of subset size for the TRS method such that an optimal value is arrived
at after a period of experimentation. The results for subset size demonstrate an
interesting trend where the DM-TRS method may discover smaller subset sizes than
TRS. As the DM-TRS method examines the boundary region information, it would
be expected that a decrease in τ (thereby increasing the number of objects in the
lower approximation and decreasing the number of objects in the boundary region)
would result in the DM-TRS performing poorly for the next decrement of threshold
value documented above – as there is less information contained in the boundary
region for the DM-TRS method to examine. However, if the results in Table 7 and 2
are examined for e.g. the dataset olitos, it can be seen that DM-TRS selects subsets
which are of smaller size and in some cases of better quality. This suggests that, as
long as there is some information in the boundary region, regardless of whether the
optimal value of τ has been obtained, DM-TRS can select subsets of better quality
than TRS.

4.5 Comparison with Randomly Selected Subsets

The FS process helps to remove measurement noise as a positive by-product. A
valid question therefore is whether other subsets of dimensionality 5 (e.g. for the
“water 2” dataset) would perform similarly as those identified by DM-TRS selec-
tion. To avoid a biased answer to this, and without resorting to exhaustive com-
putation 30 sets of five features have been randomly chosen in order to see what
classification results might be achieved.

Figure 3 shows the error rate of the corresponding 30 classifiers, along with the
error rate of the classifier that uses the DM-TRS selected subset. The average er-
ror of the classifiers that each employ five randomly selected features is 22.32%,
far higher than that attained by the classifier which utilises the DM-TRS selected
subset of the same dimensionality. This implies that those randomly selected entail
important information loss in the course of feature selection; this is not the case for
the DM-TRS selection-based approach.
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Fig. 3. DM-TRS vs. randomly selected subsets

4.6 Hausdorff Metric Implementation

The Hausdorff metric approach to distance measurement has been described pre-
viously as an alternative to the mean lower approximation and Euclidean distance
based method which was used to generate the empirical results described previ-
ously.

The DM-TRS approach was augmented with the Hausdorff metric to measure the
distance between the lower approximation and the boundary region was imple-
mented in order to investigate the performance of this method in terms of subset
size. The results of this investigation are included here in Table 8. For brevity only
the results for a single tolerance value are included here.

It is apparent that this particular implementation of the Hausdorff metric fails to
capture the useful information of the boundary region in the same way that the
mean lower approximation method does. Examining the results for subset size, it
can be seen that the existing DMRSAR approach returns superior results in all
cases. This approach took a considerable length of time to run, however this was
to be expected as there are a large number of distance calculations performed even
for small datasets (exponential O(n2) for n upper approximation objects).

4.7 Comparison of DM-TRS with existing FS methods

It is appreciated that there are many other FS methods with which DM-TRS could
be compared e.g. [8], such examples however are focussed primarily on text clas-
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Table 8
DMRSAR – Hausdorff Metric Implementation (τ =0.90)

DM-TRS Hausdorff Metric

Dataset Subset Size Subset Size

water2 8 10

water3 9 32

cleveland 10 12

glass 3 9

heart 12 13

ionosphere 6 16

olitos 8 14

wine 5 13

sification. The motivation for the development of the DM-TRS method lies in its
ability operate on real-valued domains, although it can also handle discrete data.

In this section further comparison of DM-TRS with some of the more traditional
dimensionality reduction and FS techniques demonstrates the approach in a more
comprehensive manner. DM-TRS is compared with principal component analy-
sis (PCA) [12], ReliefF [19], CFS [13], consistency-based FS [42], and a wrapper
method employing J48 [33] as an evaluation metric.

4.7.1 PCA

PCA is a versatile transformation-based DR technique which projects the data onto
a new coordinate system of reduced dimensions. This process of linear transforma-
tion however also transforms the underlying semantics or meaning of the data. This
results in data that difficult for humans to interpret, but which may still provide
useful automatic classification of new data. In order to ensure that the comparison
of DM-TRS and PCA is balanced, the same subset sizes discovered for each dataset
and tolerance level are also employed in the analysis of PCA, e.g. olitos in Table 7
has subsets of size 5, 6, and 8. Each of the best number of transformed features are
utilised for PCA, (in this case the best 5, 6, and 8).

The results in Table 9 show that of the eight datasets only olitos demonstrates a
consistent decrease in classification accuracy performance for DM-TRS (see fu-
ture work for further discussion). There are other instances where PCA slightly
outperforms the DM-TRS method but this is not consistent and in a majority of
cases DM-TRS usually shows equal performance or an increase in classification
accuracy.
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Table 9
PCA & DM-TRS – Comparison of Classification Accuracy

subset size PCA DM-TRS

J48 JRIP PART J48 JRIP PART

water 2 5 83.33 83.84 83.07 84.61 82.30 84.87

6 86.41 85.38 87.69 84.87 84.61 82.30

8 81.02 83.58 83.33 85.38 82.30 87.43

12 85.89 84.36 81.28 84.10 84.10 80.77

water 3 5 87.94 85.64 83.58 84.61 81.80 83.84

9 82.30 84.36 81.35 83.58 82.30 81.02

11 84.35 85.38 83.07 83.59 78.98 81.80

cleveland 2 58.92 53.87 57.23 55.55 53.53 54.20

8 56.90 57.91 54.20 50.54 50.84 54.54

10 51.85 52.18 50.16 54.03 55.55 54.88

glass 3 64.48 61.68 65.42 65.88 69.15 68.69

5 68.61 61.21 66.35 61.93 66.82 68.70

heart 4 82.96 82.59 82.96 73.70 78.89 75.56

8 79.25 83.33 79.62 81.85 80.74 82.63

12 82.59 84.07 78.14 79.25 75.19 78.88

ionosphere 3 77.39 77.39 79.56 89.13 88.26 88.26

6 83.04 86.08 79.56 90.42 88.69 86.52

8 82.60 85.21 82.17 85.93 87.82 87.82

olitos 5 85.00 80.00 82.50 62.50 65.83 75.56

6 85.00 81.66 81.66 64.16 65.88 64.16

8 80.33 75.00 80.33 59.17 60.84 67.50

wine 4 93.25 92.69 93.82 95.25 95.50 96.06

5 93.25 89.88 94.38 96.06 94.94 96.62

It should be emphasised however that while PCA might outperform DM-TRS in
some instances in terms of classification accuracy, the semantics of the data is ir-
reversibly transformed following dimensionality reduction. This can have conse-
quences where human interpretability of the data is important, which is one of the
key reasons for performing feature selection tasks to begin with. As DM-TRS is
a feature selection approach as opposed to a feature ranking method, a predefined
threshold is not required; selection is complete as soon as the termination criterion
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(rough set dependency) is fulfilled. The rough set dependency value is integral to
the selection process and as such, in contrast to PCA does not need to be predefined.

Finally, it is worth noting that PCA is selected for comparison here due to recog-
nition of the fact that it is an established approach for dimensionality reduction.
However, such comparison uses PCA as a global step prior to classification. This
may not maximise the potential of PCA serving as a powerful feature reduction
tool. It may be a better approach to include PCA as an intrinsic substep of LDA
[32], [15]. However, the FS method employed here is a global preprocessor for
semantics-preserving dimensionality reduction and hence PCA is examined in a
similar manner.

4.7.2 CFS - Correlation-based Feature Selection

CFS [13] is a filter-based approach to FS and uses a search algorithm along with
an evaluation metric to decide on the ‘goodness’ or merit of potential feature sub-
sets. Rather than scoring (and ranking) individual features, the method scores (and
ranks) the worth of subsets of features. As the feature subset space is usually large,
CFS employs a best-first-search heuristic. This heuristic algorithm takes into ac-
count the usefulness of individual features for predicting the class along with the
level of intercorrelation amongst features using the premise that good feature sub-
sets contain features that are highly correlated to the class, yet not correlated to each
other. CFS calculates a matrix of feature-to-class and feature-to-feature correlations
from the training data.

The subset generation technique employed in this case was a greedy-hillclimbing
type similar to DM-TRS, where features are added greedily until the termination
criteria is fulfilled. The results for subset size and classification values for the three
classifier learners are illustrated in Table 10.

Table 10
CFS Subset size and Classification Accuracy

Dataset subset size JRIP PART J48

water 2 9 83.33 83.07 84.61

water 3 11 82.30 82.05 81.79

cleveland 7 55.54 57.91 58.92

glass 7 65.42 68.69 69.15

heart 7 77.40 77.03 81.11

ionosphere 11 90.00 90.00 90.00

olitos 16 69.16 71.67 69.16

wine 11 94.38 93.82 94.38
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Unlike DM-TRS, CFS has no tunable parameters which means that it can be quite
difficult to compare the results of Tables 3–7 with those obtained here. It would
be easy just to pick the optimal result for DM-TRS and state that the approach is
better based on those performance figures. Two different approaches have therefore
been adopted. The first approach is to obtain a mean for all of the subset sizes and
classification values for DM-TRS for all values of τ and compare these with CFS.
The second is to compare CFS and DM-TRS by finding a subset size in the results
for DM-TRS that is comparable to that obtained by CFS and use the associated
classification figures. So, if CFS has a subset size of 10 for a particular dataset, find
a subset of identical or similar size in the DM-TRS results in Table 7 and use this
to compare classification accuracy.

Table 11
Average Subset size and Classification Accuracy for DM-TRS

Dataset subset size JRIP PART J48

water 2 7.75 84.29 83.32 84.16

water 3 8.50 82.94 81.15 80.83

cleveland 5.50 53.49 52.61 54.54

glass 3.5 60.80 62.61 61.88

heart 8 78.79 78.34 79.63

ionosphere 5.75 87.87 68.83 87.93

olitos 6 62.91 63.76 64.58

wine 4.75 91.07 92.38 93.49

The results for CFS when compared with the mean values for DM-TRS demon-
strate that the DM-TRS method has a clear advantage in terms of subset size. The
only exception perhaps is the result for the heart dataset, however if Table 7 is ex-
amined, it can be seen that DM-TRS is capable of reducing this value to 4. The
mean classification values for DM-TRS although not as clear as those for subset
size show that the difference in classification accuracy between both approaches is
less than 8% even in the most extreme cases e.g. olitos and glass. It must be remem-
bered however that the figures are mean values, and that DM-TRS outperforms CFS
in many of the examples for individual values of τ .

The second approach to comparing CFS with DM-TRS uses information which is
derived from Tables 3–7, perhaps most apparent is the fact that DM-TRS on the
whole selects subsets which are more compact than those selected by CFS. The
classification values tell a similar story, however some values are lower than those
obtained by CFS. The reason for this is related to the fact that suboptimal results
must be chosen in order to find a way to compare this approach with CFS, e.g.
the glass dataset shows comparable classification results to the values recorded in
Table 12 as it does in Table 4 and Table 7 but with a subset size of only 5. Thus

26



Table 12
Closest Comparable Subset size and Classification Accuracy for DM-TRS

Dataset subset size JRIP PART J48

water 2 8* 85.38 82.30 87.43

water 3 11 83.59 78.98 81.80

cleveland 8* 50.54 50.84 54.54

glass 5 61.93 66.82 68.70

heart 8* 81.85 80.74 82.63

ionosphere 8* 85.93 87.82 87.82

olitos 8* 59.17 60.84 67.50

wine 5* 96.06 94.94 96.62
* - Denotes subset whose size was not identical to that obtained by CFS but
represents the closest available value

it achieves greater reduction in dimensionality yet retains the classification ability,
and easily outperforms CFS.

4.7.3 Consistency-based Feature Selection

Consistency-based feature selection [5] employs a consistency measure for objects
in a dataset. Consistency is measured by comparing the values of a given feature
set over a set of objects. There are three steps necessary to calculate the consistency
rate for a set of objects: a) Consider two objects where the feature values of both
are identical but their respective decision feature classes are not, e.g object1 ={1
0 1 a}, and object2 = {1 0 1 b}, (where a 6= b) in this case objects 1 and 2 are
said to be inconsistent; b) The inconsistency count for an object is the number of
times objects with the same feature values appear in the dataset minus the largest
number amongst different decision feature classes, e.g. for n objects with identical
decision feature values for which o1 objects belong to the d1 decision feature class,
o2 to the d2 decision feature class, and o3 to the d3 decision feature class, and
d1 + d2 + d3 = n Assume that d2 is the greatest of all three, the consistency
count can be calculated as: n − d2; c) The consistency rate can then be calculated
by summing the consistency counts for the number of groups of objects of given
feature values of a subset, divided by the total number of objects.

The FS approach used in this consistency-based method employs a greedy stepwise
subset generation technique similar to that of DM-TRS. Again, as with CFS, this
method has no tunable parameters, and must be compared with DM-TRS in the
same manner as that employed in the previous subsection.

Examining the results in Table 14 and comparing them with those of Table 11 it is
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Table 13
Subset size and Classification Accuracy results for consistency based FS

Dataset subset size JRIP PART J48

water 2 14 84.35 85.60 83.58

water 3 11 83.84 82.56 81.02

cleveland 9 54.54 55.21 56.22

glass 7 65.42 71.96 64.48

heart 10 78.88 74.04 78.88

ionosphere 7 89.56 88.69 89.56

olitos 11 67.50 65.00 68.33

wine 5 90.43 97.19 97.12

clear that like CFS, the subset sizes obtained for consistency-based FS are greater
than the average result obtained using DM-TRS. The classification results show
similar performance to CFS with some insignificant increases or decreases with
respect to certain datasets, but overall comparable to DM-TRS.

4.7.4 ReliefF

ReliefF [19] is an extension of Relief [18] but which has the ability to deal with
multiple decision classes. In ReliefF each feature is given a relevance weighting that
reflects its ability to discern between the decision class labels. The first threshold,
specifies the number of sampled objects used for constructing the weights. For
each sampling, an object x is randomly chosen, and its ‘nearHit’ and ‘nearMiss’
are calculated. These are x’s nearest objects with the same class label and different
class label respectively. The user has to supply a threshold which determines the
level of relevance that features must surpass in order to be finally chosen.

ReliefF is typically used in conjunction with a feature ranking method employed
for the selection of features. In this experimental comparison, the number of near-
est neighbours for feature estimation was set to 10, and the other parameter ReliefF
requires namely sigma or the influence of nearest neighbours was set to 2. The num-
ber of features to select was applied according to the optimal subset sizes obtained
for DM-TRS.

The classification results obtained show that despite the improved search method
employed by ReliefF, the DM-TRS classification accuracies are comparable with
little difference or even a small increase in most cases for DM-TRS.
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Table 14
Subset size and Classification Accuracy results for ReliefF

Dataset (predefined) subset size JRIP PART J48

water 2 5 83.33 84.61 84.10

water 3 5 83.84 81.02 81.53

cleveland 2 58.24 58.21 53.87

glass 3 68.22 68.69 65.42

heart 4 78.50 77.77 78.51

ionosphere 7 86.02 87.82 86.52

olitos 5 65.00 70.03 65.00

wine 4 91.00 93.82 89.87

4.7.5 Wrapper FS employing J48

Although DM-TRS is a filter type FS method, it is interesting to compare it with
wrapper-based FS techniques also. Having recognised this, a comparison of the
performance of DM-TRS with that of C4.5 [33] which is one of the well known
wrapper methods is presented here.

To compare these two approaches meaningfully, the 8 datasets were divided into
training and test data respectively. This was accomplished by removing half of the
objects from the original data at random and using this data as ‘test’ data whilst
the remainder is used as ‘training’ data. The results illustrated in Table 15 show the
classification accuracies recorded having performed FS on the ‘test’ data.

Table 15
Subset size and Classification Accuracy results for consistency based FS

C4.5 Wrapper DM-TRS

Dataset JRIP PART J48 JRIP PART J48

water 2 90.76 91.28 89.74 90.88 91.65 90.10

water 3 83.84 81.02 81.53 88.71 84.61 86.67

cleveland 51.67 47.65 53.60 52.03 54.05 56.67

glass 78.50 74.76 82.24 79.86 74.76 83.85

heart 75.37 76.86 77.61 77.03 77.77 80.27

ionosphere 86.08 85.21 84.34 90.63 92.45 94.44

olitos 61.66 71.66 63.33 65.33 71.78 65.00

wine 88.76 88.76 87.64 96.62 96.62 92.13

One would expect that the wrapper should outperform any filter method in terms
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of classification accuracy as the validation step is carried out using a classifier. The
results demonstrate however that this is not strictly the case, and DM-TRS shows
a clear increase in classification accuracy over the wrapper method. The increase
is small and in some cases in the order of a few percent, but the wrapper method
has an extremely high computational overhead. This means that execution times
are considerably affected as a result.

5 Conclusions

Comparison of both TRS and DM-TRS has shown that there is often much infor-
mation to be extracted from the boundary region of tolerance rough sets. Careful
selection of the tolerance threshold value is important, as decreasing this value ob-
viously allows further relaxation of the membership of objects to tolerance classes.
If this value is relaxed excessively, there may be no information or insufficient
boundary region information available, for the DM-TRS method to be effective. It
should be stressed however that if this stage has been reached, much information
has already been lost and the TRSM alone will perform poorly in any case.

Classification accuracy results have been shown to be similar to those of TRS,
and in some cases the DM-TRS method has even shown an increase whilst also
simultaneously demonstrating a reduction in dimensionality. Where a decrease has
been observed in relation to TRS, in the majority of cases it has been small and, as
discussed previously, the actual decrease is not significant as it is usually as a result
of fewer features having been selected.

When comparing DM-TRS to the more traditional FS methods, it is clear that DM-
TRS offers many performance improvements particularly in terms of dimension-
ality reduction. Comparison with the CFS [13] and consistency-based FS [5] in
particular demonstrate this. When compared with the wrapper approach it is also
apparent that DM-TRS also has a significant contribution in terms of classification
accuracy.

There are some aspects of the DM-TRS method which require further investigation
such that the classification accuracy performance could be improved. In particular
the investigation as to why the DM-TRS shows such a significant fall in classifica-
tion accuracy for the olitos dataset when compared with PCA. The reason for this
may be related to the way in which PCA manages to capture information that is not
approximated well by the DM-TRS method. However the TRS method also shows
similar results, and this may have more to do with the TRSM as an approach to
dealing with data than the DM-TRS approach itself.

The experimental work detailed in this paper did not take advantage of any op-
timisations that would improve the performance of DMRSAR further. One such
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proposed optimisation would be the level of participation of the distance metric. In
the current approach both the dependency and distance metrics are allowed equal
participation for the selection of subsets. Preliminary work indicates however that
smaller subsets can be obtained by weighting the participation of each of the met-
rics.

Future work would include a re-evaluation of how the mean lower approximation,
is formulated. Implementation of a more accurate representation of the lower ap-
proximation would also mean that distances of objects in the boundary region could
be more accurately measured.

The significance measure which is employed for DM-TRS is basic, and considers
the complete boundary region as a single significance value which is expressed as
membership of a unary fuzzy set. Through the re-definition of this as a number of
fuzzy sets, the boundary region could be quantified more accurately by expressing
membership in terms of weights of objects in the boundary in relation to distance
from the lower approximation. As well as this fuzzification, the relationship of
objects in the boundary region is another area which requires investigation. Exam-
ining the correlation of objects and their individual distances, using for instance
fuzzy-entropy [20], [25] it may be possible to qualify the individual objects and
their information value in relation to the lower approximation.

Other areas worthy of investigation include the distance metric itself and also the
application area of the approach. For the worked example described in this paper
a Euclidean distance metric is employed. Metrics such as Hausdorff distance, el-
lipsoid distance, and others could also be considered. Additionally, the distance
metric-assisted tolerance rough set approach is equally applicable to other areas
such as clustering, and rule induction.
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Appendix A - Datasets

This appendix has a short summary of each of the datasets that were used in exper-
imental evaluation.

water 2 and water 3

These datasets have been generated from the data collected during daily sensor
measurements in a urban waste water treatment plant. The original dataset has been
divided into two datasets; one dataset with a decision feature which has a binary
class, and one dataset which has a decision feature with 3 classes. Both datasets
have 39 conditional features which are both real-valued and noisy. The objective is
to classify the operational state of the plant in order to predict faults. This should
be achieved by examining the state variables of the plant sensor data at each stage
of the treatment processes.

cleveland

This data has been compiled from a list of patients who were suspected of being
at risk from heart disease. The decision feature refers to the risk of heart disease in
the patient and is integer valued from 0 (no-risk) to 4(high-risk). The 14 conditional
features are both integer and real-valued and consist of categories such as age, sex,
chest pains, location of pain, etc. The integer-valued features are coded categories
(e.g. male/female = 0/1 etc.)

glass

This study of classification of types of glass was motivated by criminological inves-
tigation. Glass which is recovered at the scene of a crime can be used as evidence
if it can be correctly identified. This dataset has six types of glass which can be
defined in terms of their oxide content (e.g. Fe, Na, etc.). The dataset has 10 condi-
tional features some of which are continuously valued and others which are integer
valued. The single decision feature has seven classes numbered 1-7 which relate to
the application of the glass (vehicle, domestic, etc.), and the manufacturing process.

heart

This data is from the same family of datasets as ‘cleveland’ (see above). It is also a
heart disease dataset and contains similar data to that previously mentioned, how-
ever the data source is European rather than north American.

ionosphere

This dataset comprises of data that was collected by a radar system in north Amer-
ica. In terms of structure the dataset consists of 34 conditional features and a single
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decisional feature. All conditional features are continuous and real-valued, whilst
the decisional feature is binary (‘good’/‘bad’). The radar targets are free electrons
in the ionosphere - ‘Good’ radar returns are those which show evidence of some
structure in the ionosphere. Whilst ‘Bad’ returns are those which do not; their sig-
nals pass through the ionosphere.

olitos

This data has been collected from olive oils which have been produced in four
different areas of Italy which have a Protected Denomination of Origin (PDO). The
idea is to try to classify the oils relative to chemical and physical characteristics.
The dataset consists 25 conditional features which are real-valued and a decision
feature which has four classes, each relating to one of the areas of production.

wine

The data contained in this dataset are the result of a chemical analysis of wines
which are grown in a region of Italy but derived from three different vineyards.
The analysis determines the quantities of 13 constituents (e.g. alcohol level, malic
acidity, hue, etc.) found in each of the three types of wines. All 13 conditional
features are continuous/real-valued. The single decisional feature is divided into
three crisp values, which relate to the vineyards mentioned previously.
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