
Pattern Recognition 42 (2009) 710 -- 717

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.e lsev ier .com/ locate /pr

Choosing the kernel parameters for support vector machines by the inter-cluster
distance in the feature space

Kuo-Ping Wu, Sheng-DeWang∗

Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, ROC

A R T I C L E I N F O A B S T R A C T

Article history:
Received 25 February 2007
Received in revised form 19 August 2008
Accepted 28 August 2008

Keywords:
SVM
Support vector machines
Kernel parameters
Inter-cluster distances

Determining the kernel and error penalty parameters for support vector machines (SVMs) is very
problem-dependent in practice. A popular method to deciding the kernel parameters is the grid search
method. In the training process, classifiers are trained with different kernel parameters, and only one
of the classifiers is required for the testing process. This makes the training process time-consuming.
In this paper we propose using the inter-cluster distances in the feature spaces to choose the kernel
parameters. Calculating such distance costs much less computation time than training the corresponding
SVM classifiers; thus the proper kernel parameters can be chosen much faster. Experiment results show
that the inter-cluster distance can choose proper kernel parameters with which the testing accuracy of
trained SVMs is competitive to the standard ones, and the training time can be significantly shortened.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The support vector machines (SVMs) [1] have been highly con-
cerned in recent years. The training algorithms of SVMs try to find the
optimal separating hyperplane by maximizing the margin between
the hyperplane and the data and thus minimizing the upper bound
of the generalization error. Delivering promising results makes the
SVMs extensively applicable in many information processing tasks,
including data classification, pattern recognition and function esti-
mation. SVMs are ordinarily used as binary classifiers that separate
the data space into two areas. The separating hyperplane is not ex-
plicitly given. It is represented by a small number of data points,
called support vectors (SVs). However, the real data are often linearly
inseparable in the input space. To overcome this, data are mapped
into a high dimensional feature space, in which the data are sparse
and possibly more separable. In practice, the mapping is also not
explicitly given. Instead, a kernel function is incorporated to sim-
plify the computation of the inner product value of the transformed
data in the feature space. That is, choosing a kernel function implies
defining the mapping from the input space to the feature space.

As the data distribution may change in different feature spaces,
the performance of an SVM depends on the kernel largely. However,
there is no theoretical method for determining a kernel function and
its parameters. Also, there is no a priori knowledge for setting the
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kernel parameter C. A straightforward way for model selection
is the grid search algorithm [2]. It trains SVMs with all desired
combinations of parameters and screens them according to the
training accuracy. Ancona et al. use the receiver operating char-
acteristic (ROC) curve for selecting better parameter combinations
[3]. The genetic algorithms (GAs) are also applied to SVM param-
eter search [4–8]. With some possible parameter combinations as
the initial population, the GAs update the population by crossover
and mutation operations to keep or generate the better combi-
nations according to the performance of the resulted SVMs. The
simulated annealing techniques can also be applied to ensure that
the global optimum of parameter combinations can be found [9].
These methods select the best parameter combination from the
population evolved generation by generation, thus requiring to
train many SVMs. However, with a sample size l, the training time
complexity of each SVM is experimentally shown to be O(l)−O(l2.2)
[10,11], or even can be O(l4) in worst case [12]. Therefore, methods
for choosing a parameter combination from a population are still
time-consuming. To conquer this, some heuristics are proposed to
choose kernel parameters by calculating some kinds of indexes.
Debnath and Takahashi create an index for identifying appropriate
kernel parameters by analyzing the principle components of data
in the feature space [13]. This method requires a non-automatic
criteria to choose `a good set of kernel parameters'. Bi et al. pro-
pose using the relationship of boundary points in the feature space
to select a suitable � for Gaussian kernels [14]. Their method
operates for several iterations, and the time complexity of each
iteration is O(l2). Such indexes often have computational complex-
ity about the same to the SVM algorithms, resulting in very little
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actual computation time saving in comparison to training an SVM for
choosing the kernel parameters. Much SVM-related research work
treats the kernel parameters and the penalty parameter C in differ-
ent ways. Changing the kernel parameters is equivalent to selecting
the feature spaces, and tuning C is corresponding to weighting the
slack variables, the error terms. Therefore, the meanings of tuning
the kernel parameters and tuning C are different. In fact, C has no
intuitive meaning of the geometry, and most of the researches are
concentrated on tuning the kernel parameters.

In this paper we propose using one of the cluster validation mea-
sures as the data separation index to predict possible good choices
of the SVM parameters. The index shows the degree the data are
separated in the feature space defined by the parameters and the
corresponding kernel function. The experiment results, presented in
Section 4, show that the parameter combinations with higher val-
ues of the cluster validation index can have high testing accuracy
in most cases. The computational complexity of computing the data
separation index is O(l2), while the actual computation time is much
shorter than training many SVMs for selecting one kernel param-
eter combination. Good parameter combinations can be fast deter-
mined by the separation index since calculating such index costs
much less computation time than using a grid search method to train
an SVM.

2. SVMs and kernel selection

The SVM is designed for binary-classification problems, assum-
ing the data are linearly separable. Given the training data (xi, yi),
i = 1, . . . , l, xi ∈ Rn, yi ∈ {+1,−1}, where the Rn is the input space,
xi is the sample vector and yi is the class label of xi, the separating
hyperplane (�, b) is a linear discriminating function that solves the
optimization problem:

min
�,b

〈�,�〉

subject to yi(〈�, xi〉 + b)�1, i = 1, . . . , l, (1)

where 〈., .〉 indicates the inner product operation. The minimal dis-
tance between the samples and the separating hyperplane, i.e. the
margin, is 1/‖�‖.

In order to relax the margin constraints for the non-linearly sep-
arable data, the slack variables are introduced into the optimization
problem:

min
�,�,b

〈�,�〉 + C
l∑

i=1

�i

subject to yi(〈�, xi〉 + b)�1 − �i, i = 1, . . . , l, �i�0. (2)

This leads to a soft margin SVM that is generally discussed and ap-
plied. The resulted classifier is called the 1-norm soft margin SVM,
and C is the penalty parameter of error. The decision function of the
classifier is

sign

⎛
⎝∑
xi:SV

yi�i〈xi, x〉 + b

⎞
⎠ . (3)

In practice, since the real data are often not linearly separable
in the input space, the data can be mapped into a high dimensional
feature space, in which the data are sparse and possibly more sep-
arable. The mapping is often not explicitly given. Instead, a kernel
function is incorporated to simplify the computation of the inner
product value of the transformed data in the feature space.

When using a function � : X → F to map the data into a high
dimensional feature space, the decision function of the classifier
becomes

sign

⎛
⎝∑
xi:SV

yi�i〈�(xi),�(x)〉 + b

⎞
⎠ . (4)

The mapping � is not given explicitly in most cases. Instead, a kernel
function K(x, x′) = 〈�(x),�(x′)〉 gives the inner product value of x
and x′ in the feature space. Choosing a kernel function is therefore
choosing a feature space and the decision function becomes

sign

⎛
⎝∑
xi:SV

yi�iK(xi, x) + b

⎞
⎠ . (5)

The generally used kernel functions are

• linear: K(x, x′) = 〈x, x′〉;
• polynomial: K(x, x′) = (�〈x, x′〉 + r)d, � >0;

• radial basis function (RBF): K(x, x′) = e−�‖x−x′‖d , � >0;
• sigmoid: K(x, x′) = tanh(�〈x, x′〉 + r).

For certain parameters, the linear kernel is a special case of RBF
kernels [15]. Also, the sigmoid kernel behaves like the RBF kernel
[16]. When the data are linearly inseparable, a non-linear kernel
that maps the data into the feature space non-linearly can handle
the data better than the linear kernels. As the polynomial kernel re-
quires more parameters to be chosen, the RBF kernel is a reasonable
first choice of kernel function [17]. When using the RBF kernel, the
parameters 〈d, �〉 should be set properly. Generally d is set to be 2.
Thus the kernel value is related to the Euclidean distance between
the two samples. � is related to the kernel width.

To apply SVM on a multi-class classification problems, the prob-
lem can be divided into sub-problemswhich are binary-classification
problems. The often suggested implementations for SVM multi-class
classification are the one-against-rest method [18], the one-against-
one method [19] and the directed acyclic graph SVM (DAGSVM) [20].
For an n-class classification problem, the one-against-rest method
constructs n SVM models with each one separating a single class
with all the other classes, while the one-against-one method con-
structs n(n − 1)/2 classifiers where each one classifies two classes
only. The training phase of DAGSVM is identical to the one-against-
one method, while the trained classifiers are organized into a rooted
DAG in its testing phase and thus the testing phase can be faster
than one-against-rest method. Lin et al. [2] showed that the one-
against-one method performs best and can be trained faster than
the one-against-rest method.

3. Inter-cluster distances in the feature space

Generalization is the ability that a trained model predicts the
target value of an input sample which is not in the training set.
Many indexes can be used to assess the generalization ability. The
validation accuracy is a straightforward one and easy to be used. For
example, the training process of the grid search shown in List 1 uses
the validation accuracy to indicate the generalization ability of the
classifier to the validation data. When using the grid search method
which is shown in List 1 for training an SVM, the training data and
each 〈C, kernel parameter〉 combination are used for an SVM model.
The model is then used to classify the validation data. The parameter
combination that results in a model with best validation accuracy
is picked as the best choice of the problem. The testing accuracy is
acquired by applying the corresponding SVM model on the testing
data. The specific C and kernel parameter values form a grid in the
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〈C, kernel parameter〉 parameter space, and the grid search method
exhaustively search the grid to find a best combination. Obviously,
the wider or the finer the search space is, the more possibility the
grid searchmethod find the best parameter combination. In addition,
when the validation data are not available, k-fold cross validation
can be used to acquire the validation accuracy [17]. Training with
k-fold cross validation, the training data are partitioned into k sets.
Each set is used as the validation data once, while the rest data are
used as the training data. The training process repeats k times for
the k validation data sets and the average validation rate is used to
choose the parameter combination. In addition to the training and
testing samples, the validation samples are reserved for validating
the trained model to see whether the model over-fits the training
samples. Therefore, it reflects the generalization ability of the model
to unknown data.

List 1: Using the grid search method to choose a desired classifier.

for each 〈C, kernel parameter〉 combination
train a classifier with the training data
use the classifier to classify the validation data

pick the classifier with highest validation accuracy for testing
process usage

There are some other SVM-related indexes that can estimate the
generalization ability. Takahashi [21] used the ratio of the numbers
of SVs to the training samples as an index. This suggests a useful
index as Mij/SVij for the classifier of classes i and j, where Mij is the
number of training data and SVij is the number of SVs. Phetkaew
[22] proposed using the SVM margin to identify a classifier that
causes wrong classifications. As the margin decreases, the distance
between the nearest two samples from different classes decreases
too, raising the degree of confusion between the two classes. These
indexes require the information of the trained classifiers, so they are
as time-consuming as the grid search is. Similar to that the margin
stands for, our previouswork [23] proposed a separation indexwhich
indicates the separation of two classes in the feature space. The
index is derived from inter-cluster distances (�4) which was used
by Bezdek for unsupervised data clustering. Bezdek and Pal [24]
mentioned several inter-cluster distance measures (�i). They are the
measurements of the distance between two clusters. A larger inter-
cluster distance value implies a pair of more separated clusters. In
our application, we consider the two classes as two labeled clusters.
The inter-cluster distances in the sample space can be

�1(X+,X−) = min
x+∈X+
x−∈X−

d(x+, x−), (6)

�2(X+,X−) = max
x+∈X+
x−∈X−

d(x+, x−), (7)

�3(X+,X−) = 1
l+l−

∑
x+∈X+
x−∈X−

d(x+, x−), (8)

�4(X+,X−) = d( ¯x+, ¯x−) = d

(∑
x+∈X+x+
l+

,

∑
x−∈X−x−
l−

)
, (9)

�5(X+,X−) = 1
l+ + l−

⎛
⎝ ∑
x+∈X+

d(x+, ¯x−) +
∑

x−∈X−
d(x−, ¯x+)

⎞
⎠ , (10)

where X+ and X− are positive and negative classes, l+ and l− are
sample sizes of X+ and X−, and ¯x+ and ¯x− are the class means
of X+ and X−. �1, �2 and �3 are the shortest, the longest and the
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Fig. 1. Artificial data representing the relationship between the class location and
the class mean location. The data of +1 class are the same in both figures. However,
the data of −1 class in (a) are shifted in (b) by adding the vector (1,−1) to each
sample.

average distance between two samples from different classes. �5 is a
combination of �3 and �4, and �4 is the distance between two class
means and is less affected by noises than �1 − �3 are. Referring to
Fig. 1, as the classes more separate away, the distance between class
means increases. Thus �4 can indicate the class separation robustly.

According to the previous work [23], the distance values can be
calculated in the feature space with the L2-norm and the kernel func-
tion incorporated. The kernel function gives the inner product val-
ues of vectors in the feature space. Therefore, the distance between
two samples in the feature space can be evaluated by applying the
L2-norm on the mapped data as the following equation:

d(�(x),�(y)) =
√

|�(x) − �(y)|22
=
√

�(x) · �(x) − 2�(x) · �(y) + �(y) · �(y)

=
√
K(x, x) + K(y, y) − 2K(x, y). (11)

Eq. (11) can be used to calculate �1 −�3 in the feature space. We
can also calculate the distance value �4F , which corresponds to the
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distance measure �4 in the feature space:

�4F (X+ ,X−)

= d(x̂+ , x̂−)

=
√

|x̂+ − x̂−|22

=

√√√√∣∣∣∣∣
∑

x+∈X+ �(x+)

l+
−
∑

x−∈X− �(x−)

l−

∣∣∣∣∣
2

2

=

√√√√√
∑

x+i∈X+
x+j∈X+

K(x+i , x+j)

l2+
+

∑
x−p∈X−
x−q∈X−

K(x−p , x−q)

l2−
−

2
∑

x+m∈X+
x−n∈X−

K(x+m , x−n)

l+l−
, (12)

where ˆx+ and ˆx− are the class means of the mapped X+ and X− data.
Similarly, �5F can be

�5F (X+,X−)

= 1
l++l−

⎛
⎝ ∑
x+∈X+

√
|�(x+)− ˆx−|22+

∑
x−∈X−

√
|�(x−)− ˆx+|22

⎞
⎠ , (13)

where

|�(x+) − ˆx−|22 =
∣∣∣∣∣�(x+) −

∑
x−∈X−�(x−)

l−

∣∣∣∣∣
2

2

= K(x+, x+)+

∑
x−p∈X−
x−q∈X−

K(x−p, x−q)

l2−
−
2
∑

x−n∈X−K(x+, x−n)

l−
. (14)

Calculating these indexes are with O(l2) computational complexity.
Since these indexes are related to inter-cluster distances, they can
represent the separation degree of the classes and thus can estimate
the classifier generalization ability.

List 2: Using the distance index to choose a desired classifier.

for each kernel parameter combination
calculate the preferred distance index with the training data

with the kernel parameter combination which leads to best
separation index

for each C
train a classifier with the training data

pick the classifier with highest validation accuracy for test-
ing process usage

The SVM algorithms look for the separation hyperplane with
which the class data are separated. Since the validation accuracy is
an estimation of classifier generalization ability, it can be substituted
by using the separation indexes as the heuristics to choose the kernel
parameters. Because the kernel functions are involved in calculating
the index values, the kernel parameters can be chosen according to
the index values. Only the penalty parameter C should be chosen
by the validation process, and the time needed for the training pro-
cess for different kernel parameters can be saved. The corresponding
training process is listed in List 2. For each kernel parameter com-
bination, a value of the desired separation index is calculated. The
largest separation index value likely implies the most separation of
the two classes in the feature space, and the corresponding kernel
parameter combination is selected. With the selected kernel param-
eter combination, for each penalty parameter C value, an SVMmodel
is trained and verified. Then, the C which results in an SVM model
with the highest validation accuracy and the kernel parameters se-
lected by the separation index value form the parameter combina-
tion for the classification problem. The training time of the proposed
method is composed of the calculation time of all separation index
values and the SVM models training time for one kernel parameter
combination and all C values.

4. Experiments and results

In our experiments, we use the data sets a1a–a5a and w1a–w5a
[25] as the binary-class classification problems, and the modified
dna, satimage and letter data sets originally from the Statlog collec-
tion [26] as the multi-class classification problems. Note that data
sets a1a–a5a and w1a–w5a are actually random subsets of Adult and
Web databases [25], so there are in fact two real binary-classification
problems tested in the experiments. However, we apply the grid
searchmethod and the proposedmethod on each data set separately.
Therefore, for each data set, the testing accuracy and the correspond-
ing parameters are acquired as for an independent real problem.
Since a series of data sets is formed by different sizes of data from a
real problem, the training times of the same series of data can show
the time complexity of the training processes. For the multi-class
data sets, the original training data [26] are scaled to be in [−1, 1]
and are partitioned into training and validation data sets [2]. Thus
the multi-class data sets contain training, validation and testing data
now. The specifications of these data sets are listed in Table 1.

We use LIBSVM [27] to train the SVM models. The sub-sampled
binary-class data sets, the scaled and partitioned multi-class data
sets and the software are downloaded from the LIBSVM web site.
The downloaded binary-class data sets a1a–a5a and w1a–w5a con-
tain only training and testing data. As mentioned in Section 3,
k-fold cross validation can be used to acquire the validation accu-
racy for such data sets for general usage. A fivefold cross validation
[4,6] method is used in our experiments when training the SVM
models for choosing the kernel parameters for the binary-class
data sets. With fivefold cross validation, a training data set is
divided into five subsets of equal size. Each subset is used one time
for validating the model trained with the rest four subsets. There-
fore, for each data set and each parameter combination, five SVM
models are trained with the five reduced, overlapped subsets to
acquire the corresponding average validation accuracy. Since all the
multi-class data sets we download contain training, validation and
testing data, it is not necessary to apply the k-fold cross validation
when training SVM with these data set. For the multi-class data
sets, the general training process and the one-against-one method
is used to solve the classification problems. The validation data
are used in the training phase to validate the generalization abil-
ity of each SVM model which is trained with all the training data,
and in the testing phase the testing data are used for evaluating
the testing accuracy. When applying the proposed method on a
multi-class case, the distance values of all pairs of classes are calcu-
lated and added together for each kernel parameter combination.

Table 1
The specifications of these data sets

Data set # of classes # of features # of training data Testing accuracy (%)a

Adult 2 123 32 562 89 [25]
a1a 2 123 1605 –
a2a 2 123 2265 –
a3a 2 123 3185 –
a4a 2 123 4781 –
a5a 2 123 6414 –

Web 2 300 49 749 96 [25]
w1a 2 300 2477 –
w2a 2 300 3407 –
w3a 2 300 4912 –
w4a 2 300 7366 –
w5a 2 300 9888 –

dna 3 180 1400 95.9 [26]
letter 26 16 10 500 93.6 [26]
satimage 6 36 3104 90.6 [26]

aThe testing accuracy values are the highest ones reported in the source
references.
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Table 2
Testing accuracy (%) and training times (s) with the grid search method and the proposed indexed method

Data set Grid search Proposed method

Chosen 〈C, �〉 Testing accuracy (%) Training time (s) Chosen 〈C, �〉 Testing accuracy (%) Training time (s) Speed-up (times)

a1a 〈22, 2−5〉 84.40 3315.3 〈22, 2−4〉 83.89 81.3 40.8
a2a 〈25, 2−6〉 83.83 6535.3 〈21, 2−4〉 84.34 161.0 40.6
a3a 〈25, 2−7〉 84.51 12717.1 〈20, 2−4〉 84.31 308.8 41.2
a4a 〈25, 2−8〉 84.62 28924.6 〈20, 2−4〉 84.55 704.1 41.1
a5a 〈25, 2−9〉 84.45 51736.8 〈21, 2−4〉 84.49 1259.0 41.1
w1a 〈24, 2−4〉 97.83 6458.9 〈24, 2−4〉 97.83 154.6 41.8
w2a 〈24, 2−5〉 98.12 12627.5 〈24, 2−4〉 98.05 297.3 42.5
w3a 〈27, 2−7〉 98.30 24874.2 〈23, 2−4〉 98.32 570.0 43.6
w4a 〈25, 2−6〉 98.48 74027.5 〈24, 2−4〉 98.38 1234.5 60.0
w5a 〈25, 2−6〉 98.60 194603.0 〈22, 2−4〉 98.53 2179.6 89.3
dna 〈23, 2−6〉 94.69 4096.3 〈23, 2−6〉 94.69 288.0 14.2
letter 〈23, 22〉 97.00 327668.6 〈26, 2−1〉 96.19 6406.5 51.1
satimage 〈24, 20〉 90.40 10039.9 〈27, 2−2〉 89.10 647.2 15.5

Table 3
Testing accuracy (%) and training times (s) with the grid search method and the proposed indexed method, using only onefold training process

Data set Grid search Proposed method

Chosen 〈C, �〉 Testing accuracy (%) Training time (s) Chosen 〈C, �〉 Testing accuracy (%) Training time (s) Speed-up (times)

a1a 〈27, 2−11〉 84.33 660.6 〈21, 2−4〉 83.73 34.8 19.0
a2a 〈20, 2−3〉 84.11 1291.3 〈21, 2−4〉 84.34 68.9 18.8
a3a 〈25, 2−7〉 84.51 2549.4 〈21, 2−4〉 84.32 134.3 19.0
a4a 〈23, 2−9〉 84.29 5762.2 〈20, 2−4〉 84.55 303.1 19.0
a5a 〈27, 2−7〉 84.16 10235.9 〈22, 2−4〉 84.25 547.0 18.7
w1a 〈24, 2−4〉 97.83 1274.2 〈24, 2−4〉 97.83 78.0 16.3
w2a 〈24, 2−4〉 98.05 2503.5 〈24, 2−4〉 98.05 153.8 16.3
w3a 〈27, 2−7〉 98.30 4951.1 〈20, 2−4〉 97.73 301.9 16.4
w4a 〈26, 2−7〉 98.49 14193.2 〈22, 2−4〉 98.37 674.4 21.0
w5a 〈22, 2−4〉 98.53 40426.3 〈22, 2−4〉 98.53 1192.4 33.9

We use the RBF kernel with d = 2, � ∈ [2−20, 2−19, . . . , 220]. C is set
with the values [2−7, 2−6, . . . , 27]. According to Refs. [2,17,23] and
our observation, we assume the chosen values can cover a range of
the parameter search space which lead to a high validation accuracy.
As mentioned in Section 3, �i can be the separation indexes and can
be calculated in the feature space. According to our tests, �4F (�4 in
the feature space) performs well in most cases. Therefore, we only
present the results of the training process in List 2 with �4F to show
the proposed method works.

Table 2 shows the training time and testing accuracy of the SVM
with the grid search method and the proposed method with �4F . For
the proposed method, the training time is the sum of the time for
calculating the �4F values for all kernel parameter combinations and
the time for training SVMs for all C with the `best' kernel parameter
combination chosen according to the �4F values. According to the
testing results, the SVMs trained by the proposed method with �4F
perform about the same as those models chosen by grid search do
when using RBF kernels. Meanwhile, as the kernel parameters are
decided by calculating the corresponding distance indexes but not by
training all the SVMmodels, the total training time includes only the
computation time of the distance index and the SVM training time for
deciding a proper C. Since it is not necessary to train models for the
kernel parameters other than the ones chosen by the heuristics, the
training time can be significantly shortened. As we use 41 candidates
of � in our experiments, the training process can be sped up from
14 to about 90 times. If a finer grid for searching the parameters
is used, more candidates of the kernel parameters are required to
be validated and the proposed method would speed-up the training
process more.

The training time of the proposed method is composed of the in-
dex calculation time for the kernel parameters and the SVM model
training time for choosing C. When k-fold cross validation is used,

only the SVM model training time for choosing C is affected because
�4F is the distance between twomeans and does not require a redun-
dant validation and average process. It could be concerned that, for
the binary-class data sets, since fivefold cross validation are used for
training, more SVM models are trained and more training time are
spent, while the separation index is calculated only once and thus
the speed-up is enlarged. To see how the training time is affected by
changing the fivefold validation to fivefold validation, we conduct
the following experiments for the binary-class data sets with only
onefold training process is involved. Table 3 lists the results when
the grid search method and the proposed method are applied on the
binary-class data sets with only one of the fivefold training process is
involved. That is, here we assume that 20% of the downloaded train-
ing data of the binary-class data sets are validation data, and the rest
80% of data are used for training once. The general training and vali-
dation process is applied on each binary-class data set only one time
for each parameter combination. It is the same way how we gen-
erate the experiment results of the multi-class data sets in Table 2,
except that the validation data are randomly partitioned from the
original training data by us now. As predicted, the training time of the
grid search method is about five-time decreased in comparison with
the fivefold cross validation case. The SVM model training time for
choosing C of the proposed method is shorten, similarly. However,
calculating �4F for 80% of training data would cost about 64% of time
for calculating �4F for all the training data. As a result, calculating
�4F in the current cases cost relatively more time than in the fivefold
cases, and the training time speed-up in the current cases will not
as high as in the fivefold cases. However, the proposed method can
still speed-up the training process of the binary-class data sets from
16 to about 30 four times. Referring to Table 2, the multi-class cases
are sped up from 14 to 50 one times by the proposed method. With-
out k-fold validation, the proposed method speeds up the binary and
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multi-class cases similarly. However, the parameters chosen by the
grid search method without k-fold validation can be quite different
to the parameters chosen with k-fold validation (see the chosen pa-
rameters of a1a in Tables 2 and 3). Also, the parameters chosen by
the grid search method without k-fold validation of a series of data
sets can be quite different (see the chosen parameters of a1a and a2a
in Table 3). When there is no validation data available, using k-fold
validation can acquire the average performance of k models trained
with a parameter combination without over-fitting the training data.
In addition, since all the k subsets are used as the validation data,
the sub-sampling bias can be avoided. In order to acquire more sta-
ble results, the fivefold cross validation process on the binary-class
data sets is used in the following experiments.

Since the a1a–a5a and w1a–w5a data sets are subsets of the Adult
and Web data sets with different sizes, the stable speed-up ratio
suggests that both computing �4F and training SVMs have the same
time complexity. Considering the binary case, we only train 21 SVM
models for choosing the penalty parameter C. This corresponds to
about 5% sampling of the parameter search space. When using GA for
searching the parameter combination, a larger initial population or
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Fig. 2. Training time (in log2()) vs training sample size of the grid search method
and the proposed method of the sub-sampled data sets of Adult and Web.

Table 4
Testing accuracy (%) and training time (s) with the one-against-rest training strategy

Data set Grid search Proposed method

Chosen 〈C, �〉 Testing accuracy (%) Training time (s) Chosen 〈C, �〉 Testing accuracy (%) Training time (s) Speed-up (times)

dna 〈25, 2−7〉 93.0 7080.5 〈23, 2−6〉 93.51 604.9 11.7
letter 〈24, 21〉 94.56 1497206.6 〈26, 2−1〉 93.36 87567.7 17.1
satimage 〈23, 20〉 88.75 18848.1 〈25, 2−2〉 88.55 2499.4 7.5

Table 5
Testing accuracy (%) and training time (s) with the polynomial kernel

Data set Grid search Proposed method

Chosen 〈C, r, d〉 Testing accuracy (%) Training time (s) Chosen 〈C, r, d〉 Testing accuracy (%) Training time (s) Speed-up (times)

a5a 〈2−3, 20, 20〉 84.48 425756.7 〈2−7, 23, 22〉 78.82 1698.3 250.7
w5a 〈20, 20, 20〉 98.51 4954.3 〈2−7, 23, 22〉 97.8 473.1 10.5
dna 〈2−7, 22, 21〉 94.35 728.4 〈2−7, 23, 22〉 92.41 128.6 5.7
letter 〈2−2, 20, 22〉 95.32 10070.3 〈2−5, 23, 22〉 94.82 939.7 10.7
satimage 〈2−6, 22, 22〉 88.9 452.4 〈2−5, 23, 22〉 88.65 114.0 4.0

more generations may be helpful to find the better parameter com-
binations, thus requiring a higher sampling ratio of the parameter
search space.

Fig. 2 presents the growing of training time with respect to the
training sample size. As mentioned in Sections 1 and 3, training
an SVM and calculating �4F both cost O(l2). That is, reducing the
training sample size can significantly reduce the training time for
both methods. However, Fig. 2 shows that the training times of the
grid search method and the proposed method grow in a similar
way, while the grid search method costs more time. Therefore, both
methods can gain benefits on training time from a sub-sampling
strategy, and the proposed method can still run faster than the grid
search method on a sub-sampled data set. This results in a further
speed-up when practically using the proposed method with the sub-
sampling technique. As Table 2 shows, the proposed method chooses
similar kernel parameters for a series of data from the same problem.
That is, applying the proposed method on a properly sub-sampled
data set can find the kernel parameters similar to the ones with
the original data set. If the data set is sub-sampled with a size

√
l,

calculating �4F will cost O(
√
l
2
)=O(l). This technique is very feasible

for calculating the value of noise-resistant distance indexes such as
�3F − �5F , because such indexes are the means of distance values or
distance between classes means and are less affected by the sample
size.

As a reference, we also use the one-against-rest method and the
polynomial kernel in the following cases. For the three multi-class
problems, we use RBF kernels and the one-against-rest method to see
how the proposedmethod performswith different training strategies
with � and C being the same ones listed above. The results are shown
in Table 4. In this case, the SVMs generated by the proposed method
performs as good as the models generated by the grid search method
in testing accuracy. Although the proposed method still speeds up
the training process, the training time speed-up ratio decreases for
every data set. This may be due to the `rest' classes contain overlap
data, thus existing many redundant computations.

We also apply polynomial kernels on the a5a, w5a and the three
multi-class data sets (using the one-against-one strategy). The pa-
rameters are � = 1, r ∈ [0, 20, . . . , 23], d ∈ [20, . . . , 22]. The results are
shown in Table 5. As we use 15 parameter combinations, we expect
a 15 time speed-up for these cases. However, except the a5a case (an
extra high speed-up with testing accuracy degradation), the speed-
up is 5–10 times. The testing accuracy degradation of a5a shows that
the proposed method is still a heuristics. With proper kernels and
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Table 6
Comparing the training time (s) of different training tools in a reduced parameter search space

Data set LIBSVM SVMtorch

Grid search Proposed method Grid search Proposed method

Training time Training time Speed-up (times) Training time Training time Speed-up (times)

a1a 750.5 48.7 15.4 924.9 67.5 13.7
a2a 1462.5 97.4 15.0 1694.8 125.9 13.5
a3a 2841.1 182.7 15.6 3067.5 224.2 13.7
a4a 6410.0 421.9 15.2 7241.5 476.7 15.2
a5a 11473.6 741.4 15.5 17963.4 821.1 21.9
w1a 1688.9 71.9 23.5 2441.7 105.7 23.1
w2a 3312.3 133.3 24.8 4477.9 182.0 24.6
w3a 6472.3 241.7 26.8 8300.0 316.2 26.2
w4a 17704.9 496.5 35.7 28457.6 609.4 46.7
w5a 44617.8 851.4 52.4 55850.6 1015.6 55.0
dna (one-against-one) 1154.7 125.2 9.2 615.4 98.6 6.2
dna (one-against-rest) 2028.9 239.4 8.5 1049.7 192.1 5.5
letter (one-against-one) 30446.6 2682.7 11.3 36402.5 3536.1 10.3
letter (one-against-rest) 98956.6 20925.9 4.7 61960.8 21215.7 2.9
satimage (one-against-one) 1192.4 187.9 6.3 1480.5 236.2 6.3
satimage (one-against-rest) 2478.7 645.3 3.8 2113.4 672.1 3.1

distance measures, the proposed method is possible to give a fast
and good guess of kernel parameter combinations.

As mentioned in Section 3, the training time of the proposed
method is composed of the separation index calculation time and the
SVM training time. The proposed method can save the total train-
ing time because only one kernel parameter combination is used for
training the SVM models. Therefore, if the kernel parameter search
space is reduced, the speed-up of the proposedmethodwill decrease.
For example, if RBF kernel with � ∈ [2−5, 2−4, . . . , 25] are chosen
according to some a priori knowledge or pre-processing strategies,
the proposed method saves the SVM training time for 10� but not
for 40�, which implies that the speed-up is possibly to be about 10
times but not 40 times. Table 6 shows the training time and speed-
up when only � ∈ [2−5, 2−4, . . . , 25] are used. It is the central area of
the search space we previously used for RBF kernel, and � in this area
with certain C often leads to an SVM model with a high validation
accuracy. We also use another SVM training tool, named SVMtorch,
to see whether different training tools lead to significant change of
results. SVMtorch is reported to be fast for high input dimension and
large sample size problems [28]. It is available at Ref. [29]. Accord-
ing to our observation, SVMtorch runs faster than LIBSVM for some
parameter combinations, and is slower for some other parameter
combinations in our experiments. Table 6 do not show significant
difference between the two tools for the speed-up of the proposed
method. This may be due to the experiment design and the data
sets. As expected, the values of speed-up decrease when the search
space is reduced. However, the results in Table 6 do not take the
cost of reducing the search space into account. Actually, the pro-
posed method itself can be considered as a method that reduces the
search space into one kernel parameter combination. The selected
kernel parameter combination then can be the starting point or the
center for searching good kernel parameters. That is, the exhaustive
search of parameters can be performed in the priority area indicated
by the proposed method first. The results also imply that the pro-
posed method is suitable for a larger kernel search space, such as a
finer grid for exhaustive searching for better kernel parameters.

5. Conclusions

We propose calculating the inter-cluster distance in the feature
space to help determine the kernel parameters for training the SVM
models. The kernel parameters chosen by the proposed method can
result in SVM models that perform as good as the models chosen
by grid search method in testing accuracy. Calculating the distance

is a simple and a non-iterated process. As compared with train-
ing an SVM, which generally costs O(l2) training time with non-
deterministic iterations, the proposed index can be calculated much
faster than training SVMs. Thus, the training time for the proposed
method to obtain SVM models can be significantly shortened. With
properly chosen distance indexes, the proposed method performs
stable with different sample sizes of the same problem. As a result,
the time complexity O(l2) of calculating the index is possible to be
further reduced by the sub-sampling strategy in practical usage, and
thus the proposed method can work even the data size is large. Cur-
rently the penalty parameter C is not incorporated into the proposed
strategies, or else the training time might be further minimized. The
proposed indexes can also be used to suggest a starting point or a
searching center of the grid search process.
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