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Abstract

The state-of-the-art modified quadratic discriminant
function (MQDF) based approach for online handwrit-
ten Chinese character recognition (HCCR) assumes that
the feature vectors of each character class can be mod-
eled by a Gaussian distribution with a mean vector and a
full covariance matrix. In order to achieve a high recog-
nition accuracy, enough number of leading eigenvectors
of the covariance matrix have to be retained in MQDF.
This paper presents a new approach to modeling each
inverse covariance matrix by basis expansion, where ex-
pansion coefficients are character-dependent while a com-
mon set of basis matrices are shared by all the character
classes. Consequently, our approach can achieve a much
better accuracy-memory tradeoff. The usefulness of the
proposed approach to designing compact HCCR systems
has been confirmed and demonstrated by comparative ex-
periments on popular Nakayosi and Kuchibue Japanese
character databases.

Keywords: online handwriting recognition, pattern
classification, covariance modeling, MQDF.

1. Introduction
By now, it has been confirmed by several research

groups that a state-of-the-art performance can be achieved
for online handwritten Chinese character recognition
(HCCR) by using so-called 8-directional features [3, 4, 5]
and modified quadratic discriminant function (MQDF)
[11] to construct a character classifier. Although some
online HCCR products for mobile phones (e.g., [7]) have
used multiple-prototype-based (MP-based) classifier (e.g.
[10]) due to its light memory requirement [8], researchers
have been exploring different ways of reducing the mem-
ory requirement of MQDF-based classifiers, hoping to de-
ploy it in handheld devices with limited memory. A recent
interesting experimental study was reported in [13] which
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was a straight-froward application of the relevant model
compression techniques originally described in [10, 8, 9].
In this paper, we explore another possibility for designing
compact HCCR systems based on the concept of struc-
tured covariance modeling.

In the past several years, much progress has been made
to improve covariance modeling for Gaussian-mixture
continuous-density hidden Markov model (CDHMM)
based automatic speech recognition (ASR). For example,
in [16, 17], a so-called extended maximum likelihood lin-
ear transformation (EMLLT) model was proposed, where
the inverse covariance (a.k.a precision) matrix of each
Gaussian is constrained to be in a subspace of the space of
symmetric matrices spanned by a set of rank-one matrices
shared by all the Gaussians. In [1], a precision constrained
Gaussian (PCG) model was proposed as an extension of
EMLLT model by relaxing the basis from symmetric rank-
one matrices to symmetric full-rank matrices, although a
term called SPAM (subspace precision and mean) model
was used to refer to this modeling technique. An inde-
pendent work of PCG model was also reported in [19].
More general SPAM models, where separate constraints
can be imposed on the precisions and means, were devel-
oped later ([2] and references therein). All of the above
approaches can be viewed as special cases of a general
model called subspace constrained Gaussian (SCG) mix-
ture model as discussed in [2]. A similar attempt was also
made in [18] to discuss the above ideas in a more general
perspective. Encouraged by the promising results for dif-
ferent ASR applications, in this paper, we adopt one of
the above mentioned modeling techniques, namely PCG
model and study its effectiveness for HCCR with a hope of
identifying a good approach to designing a compact Chi-
nese handwriting recognizer.

The rest of the paper is organized as follows. In sec-
tion 2, we briefly describe our baseline MQDF-based on-
line HCCR system. In section 3, we present our proposed
PCG model (referred to as PCGM hereinafter) and its
maximum likelihood (ML) training procedure for online
HCCR. In section 4, we evaluate and compare the perfor-



mance of our PCGM approach with that of the state-of-
the-art MQDF-based approach. The paper is concluded in
section 5 with a brief discussion on future works.

2. MQDF-Based Baseline System
Given a handwriting sample, our baseline system first

extracts a D-dimensional raw feature vector z using the
procedures described in [3, 4, 5]. To reduce the com-
putational complexity and storage requirement, z will be
transformed into a lower dimensional feature space using
a D × d transformation matrix W , i.e., x = WT z. This
transformation matrix W can be obtained by linear dis-
criminant analysis (LDA) (e.g., [10]).

Let’s use {Cj |j = 1, · · · ,M} to denote the set of
M character classes, and X = {xji|j = 1, · · · ,M ; i =
1, · · · , nj} to denote the set of training feature vectors.
Assume that feature vectors from the same character class
Cj can be modeled by a Gaussian distribution with a mean
vector µj and a full covariance matrix Σj . By setting the
(k + 1)-th to d-th eigenvalues of Σj as a class-dependent
constant δj , a so-called modified quadratic discriminant
function (MQDF) can be defined as follows [11]:

gj(x; Θj)
M= −1

2
{

k∑
l=1

log ρjl + (d − k) log δj

+(
1

ρjl
− 1

δj
)p2

jl +
1
δj

d2
E(x, µj)} (1)

where Θj = {µj , {ρjl}k
l=1, {vjl}k

l=1, δj}, ρjl is the l-th
leading eigenvalue, vjl is the corresponding eigenvector
of Σj , pjl = (x − µj)T vjl, dE(x, µj) is the Euclidean
distance between µj and x, k and δj are two control pa-
rameters. In practice, setting δj as the average of (k+1)-th
to d-th eigenvalues works well.

Although other alternatives exist (e.g., [12]), we used
the penalized (or regularized) ML training for estimating
MQDF parameters Θj : µj is simply taken as the sam-
ple mean µj of the training feature vectors from class Cj ,
while Σj is estimated as follows (e.g., [12]):

Σ̂j = (1 − γ)Σj + γ
1
d

tr(Σj)I (2)

where Σj is the sample covariance matrix of the training
feature vectors from class Cj , I is an identity matrix, and
γ is a control parameter which can be optimized via cross-
validation by using a development set.

In recognition stage, an unknown feature vector x will
be classified as the class with the maximum discriminant
function value as follows:

x ∈ Cj if j = arg max
l

gl(x; Θl) . (3)

This is known as the maximum discriminant decision rule
for pattern recognition.

3. PCG Model and ML Training Procedure
3.1 Precision Constrained Gaussian Model

In our precision constrained Gaussian (PCG) model,
we assume that feature vectors of each character class
Cj follow a Gaussian distribution, i.e., p(x|Cj) =
N (x;µj ,Σj), where mean µj has no constraint imposed,
while precision matrix Pj = Σ−1

j lies in a K-dimensional
subspace spanned by a set of basis matrices Ψ = {Sk|k =
1, · · · ,K} which are shared by all the character classes.
Consequently, the precision matrix Pj can be written as

Pj
M=

K∑
k=1

λj
kSk (4)

where λj
k’s are class-dependent basis coefficients and K

is a control parameter [1]. It is noted that the basis ma-
trices Sk’s are symmetric and not required to be positive
definite, but Pj’s are required to be symmetric and pos-
itive definite. Therefore, the set of PCG model parame-
ters, Θ = {Θtied,Θuntied}, consists of a subset of tied
parameters Θtied = Ψ and a subset of untied parame-
ters Θuntied = {µj ,Λj ; j = 1, · · · ,M}, where Λj =
(λj

1, · · · , λj
K)T . The total number of parameters of our

PCG models is Kd(d+1)/2+M(K +d), which is much
smaller than that of MQDF models, i.e., M(k+1)(d+1),
if K is small compared with both M and d(d + 1).

In recognition stage, the following log likelihood func-
tion for unknown feature vector x is used as discriminant
function

gj(x; Θ) M=
1
2

log det(
Pj

2π
) − 1

2
(x − µj)T Pj(x − µj) . (5)

The same maximum discriminant decision rule as in Eq.
(3) can then be used for character classification. The com-
putational complexity can be reduced if we evaluate the
R.H.S. of Eq. (5) as follows:

gj(x; Θ) = bj + xT lj +
K∑

k=1

λj
kfk

where

bj = log det(
Pj

2π
) − 1

2
µT

j Pjµj ,

lj = Pjµj

which can be pre-computed and cached, and the
“quadratic feature” fk = −1

2xT Skx only need be com-
puted once for each feature vector x because it can be
shared for all Gaussians.

In the following subsection, we describe in detail an
ML training procedure for estimating PCG model param-
eters from training data. Although we do benefit and bor-
row certain ideas from previously published works, the
overall training procedure is different from any of the ML
training procedures reported in literature.



3.2. ML Training Procedure
Given the set of training samples X , the objective

function of ML training is defined as the following log
likelihood function of the PCG model parameters Θ:

L(Θ|X ) =
M∑

j=1

nj∑
i=1

log p(xji|Cj ,Θ)

=
M∑

j=1

nj{log det(Pj) − tr(ΣjPj)

−(µj − µj)
T Pj(µj − µj)} . (6)

The ML training problem then becomes the following
constrained optimization problem:

Θ∗ = arg max
Θ

L(Θ|X ) (7)

subject to ∀j,
K∑

k=1

λj
kSk Â 0 .

It is easy to derive that the optimal µ∗
j is just the sample

mean µj , and the rest of parameters can be optimized by
solving the following new optimization problem:

(Ψ∗,Λ∗) = arg max
PjÂ0

L(Λ;Ψ) (8)

where

L(Λ;Ψ) =
M∑

j=1

nj [log det(Pj) − tr(ΣjPj)] (9)

and Λ = {Λj ; j = 1, · · · ,M}.
An overall ML training procedure to solve the above

problem is summarized in Algorithm 1, and the details of
three main components of the algorithm are described in
the following three subsections, respectively.

3.2.1. Initialization

To ensure that our overall procedure works, we need
to first specify initial basis matrices Ψ(0) and basis coeffi-
cients Λ(0) such that every precision matrix is positive def-
inite. The following procedure, which is a slightly modi-
fied version of the relevant approach described originally
in [19], works well in practice:

Step 1: Normalize covariance matrices
First each sample covariance matrix Σj is normal-
ized as follows:

Φj = (det Σj)
1
d (Σj)−1 .

It is noted that in [19], Σj is normalized as Φj =
(det Σj)(Σj)−1, which does not work well in our
HCCR application here.

Algorithm 1: Overall ML Training Procedure
Input:

A set of training samples X .
Output:
{µj , λ

j
k, Sk} which optimize the objective function

in Eq. (6).
Step 1: Initialization

Estimate {µj};
Initialize basis matrices Ψ and basis coefficients Λ
(section 3.2.1).

Step 2: Alternate Optimization of Λ and Ψ
for t = 0, · · · , T do

Optimization for basis coefficients Λ (section
3.2.2):

Λ(t+1) = arg max
PjÂ0

L(Λ;Ψ(t)) ; (10)

Optimization for basis matrices Ψ (section
3.2.3):

Ψ(t+1) = arg max
PjÂ0

L(Λ(t+1); Ψ) . (11)

Step 3: Output Parameters

Step 2: Initialize basis matrices Ψ

• Arbitrarily choose K symmetric matrices
from {Φj} as the initial basis matrices
S1, · · · , Sk.

• Assign each Φj to a cluster with Sc(j) as its
centroid:

c(j) = arg min
k

d(Sk,Φj)

where

d(Sk,Φj) = tr(Φ−1
j Sk) + tr(ΦjS

−1
k )

is used as the distortion function.

• Re-calculate the centroid for each cluster as
the average of all the Φj’s allocated to this
cluster. Consequently, each Sk is positive def-
inite.

• Repeat the above two sub-steps until some
stopping criteria are satisfied.

Step 3: Initialize basis coefficients Λ
Each basis coefficient is initialized as follows:

λj
k ← tr(ΦjSk) .

Because both Φj and Sk are positive definite, λj
k >

0. Consequently, every precision matrix Pj is sym-
metric and positive definite.



3.2.2. Optimizing Untied Parameters Λ

For the optimization problem in Eq. (10), once the set
of basis matrices Ψ is fixed, different sets of basis coeffi-
cients Λj for different character classes are independent.
Therefore, the original optimization problem can be fur-
ther divided into M sub-problems, each amounts to find-
ing an optimal Λ∗

j to maximize the following objective
function:

Lj(Λj) = log det(Pj) − tr(ΣjPj) (12)

while maintaining the positive definiteness of Pj .
Because of the concavity of the function log det(·) and

the linearity of the tr(·) function, the Hessian of the above
objective function Lj(·) is always negative definite, pro-
vided Pj is positive definite [6]. We propose to use New-
ton’s method with line search [15] to solve the above con-
strained optimization problem. Because the Hessian ma-
trix of objective function is negative definite everywhere,
our algorithm is guaranteed to converge to the global op-
timum Λ∗ from any arbitrary initial Λ(0). The detailed
procedure is described as follows:

Step 1: Calculate gradient and Hessian matrix

∇Lj = (tr(ΞjS1), · · · , tr(ΞjSK))T ,

Hpq = −tr(SpP
−1
j SqP

−1
j )

where Ξj = P−1
j −Σj , Hpq is the (p, q)-th element

of the Hessian matrix H = ∇2Lj(Λj) .

Step 2: Calculate search direction
Given the gradient and Hessian matrix at current po-
sition, the search direction for Λj is

∆Λj = −H−1∇Lj

where ∆Λj = (∆λj
1, · · · ,∆λj

K)T . Given this di-
rection, the update direction of Pj can be obtained
as

Rj =
K∑

k=1

∆λj
kSk .

Step 3: Line search
Given the search direction ∆Λj , a line search mod-
ule is invoked to find an optimal step size α, such
that

φj(α) = Lj(Λj + α∆Λj) − Lj(Λj)

= log
det(Pj + αRj)

det Pj
− α tr(RjΣj)

is maximized. We can evaluate efficiently the func-
tion φj(α) and its first/second order derivative by
using the fact

log
det(Pj + αRj)

det Pj
=

d∑
p=1

log(1 + α wj
p)

where wj
p is the p-th eigenvalue of P

− 1
2

j RjP
− 1

2
j .

At the same time, the positive definiteness con-
straints can also be checked efficiently by using
the following fact: if 1 + α wj

p > 0 for all p and
Pj Â 0, Pj + α Rj will also be positive definite. It
is also deserved to point out that φ′′

j (α) < 0 for all
α ∈ dom φj , where dom φj = [0, αmax), and

αmax =

{
+∞, if wj

p ≥ 0 , for all p ,

maxp
−1
wj

p
otherwise .

The procedure to optimize φj(α) is as follows:

• If αmax = +∞, it can be shown that
lim

α→+∞
φ′

j(α) < 0. Combining with the con-

tinuity of φ′
j(α) and φ′

j(0) > 0 (since the
search direction is an ascent direction), we can
deduce that there must exist an α∗ ∈ (0,+∞)
such that φ′

j(α
∗) = 0. Such an optimal α∗ can

be found as follows:

Step 3.a: α0 ← 0, t ← 0.

Step 3.b: αt+1 ← αt −
φ′

j(αt)

φ′′
j (αt)

. If αt+1 < 0,

arbitrarily choose αt+1 from (0, αt). 1

Step 3.c: t ← t + 1; goto step 3.b until
‖φ′

j(αt)‖ ≤ ε for some small ε > 0.

• If αmax < +∞, it can be shown that
lim

α→αmax−
φ′

j(α) < 0. Following the same

argument of the case where αmax is infi-
nite, it can be seen that there exists an α∗ ∈
(0, αmax) such that φ′

j(α) = 0. Similarly, this
optimal point can be found as follows:

Step 3.a: α0 ← 0, t ← 0.

Step 3.b: αt+1 ← αt −
φ′

j(αt)

φ′′
j (αt)

. If αt+1 < 0,

arbitrarily choose αt+1 from (0, αt). If
αt+1 > αmax

2, arbitrarily choose αt+1

from (αt, αmax).
Step 3.c: t ← t + 1; goto step 3.b until

‖φ′
j(αt)‖ ≤ ε for some small ε > 0.

Step 4: Update untied parameters

Λj ← Λj + α∗∆Λj

where α∗ is the optimal α found by line search mod-
ule.

Step 5: Repeat Steps 1 - 4 Nuntied times.
1This makes sense, since αt+1 < 0 implies that φ′

j(αt) < 0 (be-
cause αt > 0 and φ′′

j (αt) < 0). Combining with the fact φ′
j(0) > 0,

we can deduce that there exists an α∗ ∈ (0, αt) such that φ′
j(α

∗) = 0.
2This implies that φ′

j(αt) > 0. Combing with the fact
lim

α→αmax−
φ′

j(α) < 0, there must exist an α∗ ∈ (αt, αmax) such

that φ′
j(α

∗) = 0.



3.2.3. Optimizing Tied Parameters Ψ

Although other options exist (e.g., [19, 2]), we use
Polak-Ribiere Conjugate Gradient (PR-CG) method [15]
to solve the optimization problem in Eq. (11). The de-
tailed procedure is described as follows:

Step 1: t ← 0.

Step 2: Calculate gradient

Gt
M= ((∇S1L)T , · · · , (∇SK

L)T )T

=
M∑

j=1

nj(λ
j
1(vec Ξj)T , · · · , λj

K(vec Ξj)T )T

where Ξj = P−1
j − Σj , vec is an operator on sym-

metric matrices defined as vector containing the el-
ements of the upper triangular portion with the di-
agonal scaled by 1√

2
, i.e.,

vec(X) = (
X11√

2
, X12,

X22√
2

, X13, · · · ,
Xdd√

2
)T .

Step 3: Calculate search direction using PR-CG
Using Polak-Ribiere conjugate gradient method, an
ascent search direction St can be found by using Gt

and Gt−1, where St is defined as follows:

St = ((vec∆S1)T , · · · , (vec∆SK)T )T ,

and ∆Sk is the update direction of Sk.

Step 4: Line search
Using the similar strategy as we described in section
3.2.2, the line search module is invoked to find an
optimal α∗, i.e,

α∗
t = arg max

PjÂ0
L(Λ;Ψt + α∆Ψt) − L(Λ;Ψt) ,

where ∆Ψt is the update direction of Ψt.

Step 5: Update tied parameters

Ψt+1 ← Ψt + α∗
t ∆Ψt .

Step 6: t ← t + 1 .

Step 7: Repeat Steps 2 - 6 Ntied times.

4. Experiments and Results
4.1. Experimental Setup

In order to evaluate the capability and limitation of the
proposed PCG model for online HCCR, we conduct a se-
ries of experiments on the task of the recognition of iso-
lated online handwritten characters with a vocabulary of
2965 level-1 Kanji characters in JIS standard. The popu-
lar Nakayosi and Kuchibue Japanese character databases

[14] are used. The Nakayosi database consists of about
1.7 million character samples from 163 writers, and the
Kuchibue database contains about 1.4 million character
samples from 120 writers. We select randomly about 92%
samples from the Nakayosi database to form the train-
ing data set, 75% samples from the Kuchibue database
to form the testing data set, while the remaining samples
from both databases are used to form a development set
for tuning control parameters. By this partition, there are
704,650 samples in the training set, 229,398 in the devel-
opment set, and 506,848 in the testing set, respectively.

As for feature extraction, a 512-dimensional raw fea-
ture vector z is first extracted from each handwriting sam-
ple by using the procedure described in [4]. Then we
use the LDA transformation matrix W estimated from the
training data to transform z into a new feature vector x
of dimension 192 (e.g. [10]). All of our experiments
are conducted on these 192-dimensional feature vectors.
For MQDF-based classifier, control parameters k is cho-
sen according to the available memory resource while γ is
set to fine-tune the performance on development set. The
performance of MQDF-based classifiers become saturated
when k ≥ 50. For PCG model, training basis coefficients
using Newton’s method with line search is quite effective:
the objective function converges in 3 or 4 iterations. Op-
timizing basis matrices is relatively slow. In our imple-
mentation, we perform 20-50 iterations to optimize basis
matrices. The number of overall training iterations (i.e. T
in step 2 of algorithm 1) is set to 10.

4.2. Experimental Results
Table 1 gives a comparison of recognition accuracies

(in %) of PCGM and MQDF approaches along with the
corresponding memory requirements for storing the re-
spective model parameters. In estimating the “worst-
case” memory requirement, we assume that a 4-byte
floating point number is used to represent each model
parameter and advanced model compression techniques
such as those described in [10, 8, 9, 13] are not used.
In Table 1, PCGM(K) means that the precision matri-
ces are constrained to lie in a K-dimensional space (c.f.
Eq. (4)) while MQDF(k) means that k leading eigenval-
ues/eigenvectors are used in Eq. (1).

Several observations can be made from Table 1: 1)
When the memory resource is very stringent, the perfor-
mance of MQDF-based classifier degraded severely (e.g.,
MQDF(1/2/3)), while PCGM achieves relatively high ac-
curacy, say 98.19% using only 4.8MB memory. This
fact suggests that PCGM could be very useful in design-
ing compact handwriting recognizers; 2) Given gradu-
ally increased memory resource, the PCGM performance
approaches quickly to the performance limit of MQDF-
based classifier while consuming much less memory. This
may suggest that most of the variability of precision matri-



Table 1. Comparison of recognition accuracies (in %)
of PCGM and MQDF along with the corresponding
memory requirements (in MB) for storing the respec-
tive model parameters.

Methods Test Accuracy Memory (MB)
PCGM(32) 98.19 4.80
PCGM(64) 98.46 7.41
PCGM(128) 98.65 12.66
PCGM(160) 98.68 15.29
MQDF(1) 97.17 4.37
MQDF(2) 97.52 6.55
MQDF(3) 97.84 8.73
MQDF(10) 98.47 24.01
MQDF(20) 98.62 45.84
MQDF(50) 98.71 111.33

ces can be captured by a set of well-trained basis matrices.

5. Conclusion and Future Work
In this paper, we present a new approach to designing

compact handwritten Chinese character recognizers using
PCG model. From the above experimental results and
discussions, it is clear that PCGM-based approach offers
great flexibilities in striking for a good tradeoff between
the recognition accuracy and memory requirement, there-
fore could be a good candidate for designing a compact
online HCCR system. Ongoing and future works include

• Re-do the above experiments on a much larger Chi-
nese handwriting corpus with a much larger vocab-
ulary;

• Study minimum classification error (MCE) training
to further improve the performance of PCGM-based
classifier;

• Compare the performance of “product-level” imple-
mentations of the most promising approaches with
some known good “tricks” implemented.

It is our hope that a good solution can be identified for im-
plementing a high-performance online Chinese handwrit-
ing recognizer on mobile platforms after the completion
of the above studies. We will report the results elsewhere
once they become available.
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