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Abstract

We propose a framework of graph based tools for the segmentation of microscopic
cellular images. This framework is based on an object oriented analysis of imaging
problems in pathology. Our graph tools rely on a general formulation of discrete
functional regularization on weighted graphs of arbitrary topology. It leads to a set
of useful tools which can be combined together to address various image segmen-
tation problems in pathology. To provide fast image segmentation algorithms, we
also propose an image simplification based on graphs as a pre processing step. The
abilities of this set of image processing discrete tools are illustrated through auto-
matic and interactive segmentation schemes for color cytological and histological
images segmentation problems.

Key words: Cytological and histological images, Pathology, Weighted graphs,
Image processing tools, Discrete regularization, Fast image processing, Automatic
and interactive segmentation schemes.

1. Introduction

During the last decade, pathologists and biologists have witnessed of major ad-
vances in computer hardware and software technologies. The first major impact
of these technologies was in the management of text information and has led to
medical knowledge management systems. Nowadays, traditional knowledge man-
agement systems in the medical field, predominantly focus on medical knowledge
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and problem solving like diagnosis, prognosis, therapy planning, image processing
with image classification, and teaching or practical medical knowledge. Among
all these fields, image processing systems have become a very promising one. The
main reason is that the advances in imaging technologies have led to an important
increase of the manipulation and use of digital images.

In recent years, computer aided image processing and analysis systems have
played a significant part in quantitative pathology. Pathologists traditionally make
a diagnostic decision by viewing a specimen and measuring various diagnostically
important attributes of an isolated object such as size, shape, darkness, color and
texture. This is a complex process. Digital images can be analyzed to extract fea-
ture information, processed to be enhanced, archived to help diagnostic efforts or
transmitted to facilitate the communication between pathologists. These compo-
nents can be integrated within information management systems to make the basis
for a work-station for diagnosis. Image processing techniques are of special interest
for pathologists because they can be more reliable than classical assessment by eye
screening using poorly defined criteria that cannot be reliably reproduced. Such
imaging technologies are likely to improve the productivity and diagnostic ability
of pathologists. In particular, the detection of the rare cellular cancer events is a key
problem to address. However, to perform quantitative analysis directly on images,
quantitative data have to be extracted from the latter. To this end, it is inevitable to
perform image segmentation interactively or automatically. Once trying to assist
the pathologist in his work, massive quantities of data have to be processed and
evaluated, an automation of the segmentation step is absolutely necessary to take
care of the reproducibility of the results, barring therefore the problem of heavy
work load for human experts.

In microscopic cellular imaging, the objective of segmentation is the extrac-
tion of cellular or tissue components. This problem is a difficult problem due to the
large variations of the features present in such structures. There are several strate-
gies for segmenting images in literature. For instance, methods based on histogram
analysis, pixel classification, morphological operators or Partial Derivative Equa-
tions (PDEs) approaches can be mentioned. Their performances depend largely
on the type of images to be processed and on a priori knowledge relative to the
object features. PDEs and morphological segmentations are very popular meth-
ods for segmenting medical images. PDEs based methods are very effective tools
which enable to perform a lot of different image processing tasks under an unified
formalism. Malladi and Sethian [1], have proposed a geometrical model based on
PDEs for filter and segment histological images [2]. Many other PDEs based res-
olution schemes have been presented so far in literature (see for instance [3, 4],
and references therein for more details on variational methods). Moreover, recent
data sets analysis and machine learning methods have been developed. They are
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based on graph Laplacian diffusion processes and have been used to perform data
sets classification [5, 6], dimensionality reduction [7] or interactive image segmen-
tation based on label diffusion methods [8, 9]. If we consider an image as a set
of pixels, graph Laplacian classification is difficult to use, due to the great mass of
data to analyze. Then, a data reduction or image simplification can be performed
to provide a faster resolution [10]. Indeed, microscopic image processing is mainly
required for quantitative analysis of masses of images and the used image process-
ing methods have to be fast and with few parameters for an easy model selection.
This is not really the case with PDEs. Alternatively, unregularized methods have
been proposed [11]. Morphological methods are also very popular for processing
microscopic images [12] with an object oriented approach (i.e. a priori knowledge
on the objects to extract is used).

In this work, we use our recently proposed discrete regularization framework
based on weighted graph [13] to address the image segmentation problem. This
framework is inspired by continuous regularization and data dependent function
analysis methods. It provides a common formulation for a wide range of applica-
tions in various domains. In this paper, we focus on microscopic cellular image
segmentation and classification problems. Microscopic cellular image segmenta-
tion is an application dependent task and no general scheme can be given. There-
fore, we propose a set of graph based tools to address cellular extraction problems.
These tools constitute a framework. Within this framework, a large variety of oper-
ations can be performed, combined or derived to produce a specific segmentation
scheme for a given problem. This framework leads to a family of linear and non
linear filters, and provides label based diffusion processes for image automatic and
interactive segmentation. One strong specificity of the proposed framework is to
use graphs as a discrete modeling of images at different levels (pixels or regions)
and different component relationships (grid graph, proximity graph, etc.). Working
on graphs of arbitrary structure, our framework leads to a set of flexible tools for
image segmentation, image regularization or clusters extraction. To provide a fast
segmentation scheme, we also propose a discrete image simplification inspired by
an approach based on the generalized Voronoi diagram [14]. This simplification
scheme can be viewed as an image/graph reduction. The main purpose of this pa-
per is not to solve a particular class of cytology or histology problems but to show
how, with our graph based tools, we can provide particular schemes to address
several classes of problems in microscopic images segmentation.

The rest of this paper is organized as follows. In Section 2 we study and at-
tempt to model microscopic imaging problems. We describe in Section 3 the set
of graph based tools by formulating the discrete regularization framework, the im-
age simplification by discrete energy partition and the label propagation approach.
Section 4 shows applications for color cytological and histological image segmen-
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tation in pathology. It also describes segmentation schemes (combining the above
mentioned graph based tools) to perform specific segmentation tasks and compare
a particular scheme with other methods. Finally, Section 5 summarizes this paper
and proposes future works.

2. Modeling of microscopic imaging problems in pathology

Pathology is roughly composed of two sections: cytology and histology. For
both these sections, the visual inspection of cellular specimens and histological
sections through a light microscope plays an important part in clinical medicine
and biomedical research.

2.1. Color cytology

Cytology literally means the study of cells. It studies morphological features
of human body fluid cells which are put on a glass slide and stained. The study
of the modification of the main cellular components (nucleus and cytoplasm) is
the ground of the cytological study. The morphological features of cells are visu-
ally evaluated by cytotechnologists and cytopathologists and these features involve
several notions including size, shape, color, texture and topography. The interac-
tion between nucleus and cytoplasm is also of interest: the position of the nucleus
in the cytoplasm, the nucleus-cytoplasm area ratio, the position of nucleols in the
nucleus, the color and the granularity of the cytoplasm. Figs. 1(a) to 1(c) present
several different cytological images from different body fluids with different stain-
ings and magnifications.

2.2. Color histology

Histology is defined as the anatomical study of the microscopic structure of
tissues. In a clinical setting, histology is used to analyze disease states at a cel-
lular level by means of light and/or electron microscopy, histochemistry and im-
munochemistry. Histology studies cells which are grouped in big and complex
structures: tissues. The latter cannot be only characterized by the properties of
individual cells such as color staining intensity or expression of specific proteins
but also by the geometric arrangement of cells and by the topographic relationships
between cells. Figs. 1(d) to 1(f) present several histological images from different
organ tissues with different stainings and magnifications.

2.2.1. Image object oriented modeling
As discussed above, image processing methods are of high interest to provide

Image Decision Guided Systems (IDGS) to perform prognostic, diagnostic and
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(a) (b) (c)

(d) (e) (f)

Figure 1: Body fluids images with different stainings and magnifications. First row: color cytological
images. Second row: color histological images. (a) gynecology (Papanicolaou, ×20). (b) hematology
(H&E, ×100). (c) DNA (Feulgen, ×63). (d) breast (Immuno-staining, ×33). (e) breast (Feulgen,
×33). (f) colon (High magnification, ×66).
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early detection of cancer [15]. For the case of problems in pathology, image pro-
cessing can be used for several tasks: quantification of a cellular content (DNA,
proteins, color), recognition and sorting of cellular types, extraction of cellular
groupings or clusters and of their topographic relations. In terms of image process-
ing problems, the objectives concern segmenting or analyzing objects at different
levels: cellular or cellular grouping level. Any cytological or histological images
have common properties and can be described by an image object oriented model-
ing [16]. First of all, the images have to be acquired in color. This is essential to
follow the exact visual way the pathologist follows to evaluate microscopic images.
For a microscopic image, one can always divide it in two parts: the background and
the rest of the image, namely the objects to be extracted. The background is always
close to a given color and is usually homogeneous even if some debris or artifacts
can occur (some mucus for instance). The rest of the image is composed of the ele-
ments of interest for the pathologists. In this work, we use an image object oriented
modeling of the elements of an image: they can be classified and characterized in
terms of size, shape, color and texture. The objectives of the segmentation can ap-
pear at two object levels: cellular or cellular grouping. For each one of these levels,
different configurations can be established. At the cellular level, one can find iso-
lated, touching or overlapping cells. At the cellular grouping level, one can find
groupings (groups of cells) or clusters (groups of groupings). The cellular group-
ing level can be seen as an upper level of the cellular level: Cells ⊂ Groupings ⊂
Clusters. Fig. 2 summarizes this image object oriented modeling of microscopic
imaging problems in pathology. Before trying to conceive any image segmentation
technique, a pool of representative images has to be built to have a modeling of
the problem which is as close as possible to reality. Once this data base has been
constructed, a segmentation strategy can be conceived.

3. Graph based segmentation framework

Image segmentation, in particular the case of microscopic cellular images, is
an application dependent task and no general scheme or rule can be applied. In this
work, we propose a set of graph based tools to address the microscopic cellular im-
age segmentation problems. One strong specificity of these tools is to use graphs
of arbitrary topology as a discrete modeling of images at different levels. It leads to
a set of flexible methods that can be combined or derived to produce a specific seg-
mentation scheme for image segmentation, image regularization or clusters extrac-
tion. In the sequel, after recalling basic definitions on graphs, we present our dis-
crete regularization framework. From this framework, a label propagation method
for image automatic or interactive segmentation is derived. Moreover, based on the
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Figure 2: Object oriented modeling of microscopic imaging problems in pathology.

generalized Voronoi diagram, a discrete pre-segmentation approach is proposed to
simplify images and to allow faster segmentation methods.

3.1. Graphs as a discrete modeling of images

3.1.1. Preliminaries on graphs
A graph is a structure used to describe a set of objects and the pairwise relations

between those objects. The objects are called vertices and a link between two
objects is called an edge. A weighted graph G=(V, E,w) is composed of a finite
set V={u1, . . . , uN} of N vertices, a set of edges E⊂V×V , and a weight function
w:V×V→IR+. An edge of E, which connects two adjacent neighbor vertices u and
v, is noted (u, v). In the rest of this paper, the notation v∼u means that vertex v is an
adjacent neighbor of vertex u. We assume that the graph G is simple, connected and
undirected (see in [17] for details on these notions). This implies that the weight
function w is symmetric i.e. w(u, v)=w(v, u) if (u, v)∈E and w(u, v)=0 otherwise.

Let H(V) be the Hilbert space of real valued functions on the vertices of a
graph. Each function f :V→IR of H(V) assigns a real value f (u) to each ver-
tex u∈V . The function f forms a finite N-dimensional space and can be thought
as a column vector f=[ f (u1), . . . , f (uN)]T . By analogy with functional analysis
in continuous spaces, the integration of f over the graph, is noted

∫
V f=

∑
V f .

Similarly, let H(E) be the Hilbert space of real valued functions defined on the
edges of the graph. These two spaces are endowed with the usual inner products:
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〈 f , g〉H(V)=
∑

u∈V f (u)g(u) with f , g∈H(V), and 〈F,G〉H(E)=
∑

u∈V
∑

v∼u F(u, v)G(u, v),
where F,H∈H(E).

3.1.2. Representation of images by graphs
Any discrete domain can be modeled by a graph. In image processing, this

structure is commonly used to represent digital image. In machine learning com-
munity, graphs are usually used to represent data sets and relationships between
data points. Many typical structures can be quoted:

• Grid graphs [18] which are natural structures corresponding to the defini-
tion of digital images: vertices represent pixels and edges represent pixel
adjacency relationship.

• Region Adjacency Graphs (RAG) [19] which provide very useful and com-
mon ways of describing the structure of a picture: vertices represent regions
and edges represent region adjacency relationship.

• Proximity graphs [20], for instance the k-nearest neighbor graph, where each
vertex is associated with a set of k close vertices depending on a similarity
criterion. For a given vertex u∈V , if we consider all the vertices V\{u} as
the vertex u neighborhood then the associated proximity graph is the fully
connected graph.

Graph structures are extremely useful and occur naturally while processing digital
images. A graph can be associated with any color image representation accord-
ing to the definition of a distance or a similarity. In that case, processing images
is reduced to processing graphs. The weight function measures the similarity be-
tween two vertices of the graph. When w(u, v)→0, the two vertices u and v are
dissimilar. To weight a graph, the following standard Gaussian weight function
can be used. For two vertices u, v∈V and an edge (u, v)∈E, the edge weight is
w(u, v)= exp(−| f (u)− f (v)|22/σ

2) where σ is a scaling parameter living on the data
and depends on the application, and |.|2 is the L2-norm. The topology of the graph
depends on the problem under consideration: grid graphs for image simplifica-
tion/segmentation, region adjacency graphs for image segmentation/analysis. In
this paper, the proposed experiments are performed with different graph topologies
to show the flexibility and the behavior of our graph based tools.

3.2. Discrete tools on graphs
In this Section, we introduce our discrete tools on graphs. These tools consti-

tute a set of methods and provide a large variety of operations. These operations
can be combined to formulate microscopic cellular image segmentation or classifi-
cation schemes.
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3.2.1. Discrete regularization
Discrete operators on graphs. Let us recall some basic definitions. We consider
that a graph G=(V, E,w) and a function f∈H(V) are given. The weighted difference
operator d:H(V)→H(E) of a function f on an edge (u, v) linking two vertices
u, v∈V is defined as

d( f )(u, v)=
√

w(u, v)
(
f (v)− f (u)

)
. (1)

This operator leads us to define the directional derivative of f , over an edge (u, v),
as ∂v f (u)=d( f )(u, v). Then, the weighted gradient operator ∇w f (u) is defined as

∇w f (u)=(∂v f (u):v∼u)T=(∂v1 f (u), . . . , ∂vk f (u))T ,

This operator corresponds to the local variation of the function f at the vertex u
and measures the regularity of f in the adjacent neighborhood v1, . . . , vk of the
vertex u. Hence, the L2-norm of the weighted gradient operator is

|∇w f (u)|2=
[∑

v∼u

(
∂v f (u)2)]1/2=[∑

v∼u

w(u, v)
(
f (v)− f (u)

)2]1/2 .
Then, the weighted p-Laplace operator ∆p

w f (u) at vertex u is defined as

∆
p
w f (u)=

∑
v∼u

γ(u, v)
(
f (v)− f (u)

)
where γ(u, v)=w(u, v)

(
|∇w f (u)|p−2

2 +|∇w f (v)|p−2
2

)
.

(2)

Clearly, in the case where p=1 and p=2, we have the definitions of the standard
graph curvature ∆1

w f=κ f and graph Laplace ∆2
w f=∆ f operators. More details on

these definitions can be found in our previous works [13, 21].

Discrete regularization framework. To regularize a function f 0∈H(V) using the
p-Laplacian (Eq. (2)), we consider the following general variational problem on
graphs:

min
f∈H(V)

{
Ew( f , f 0, λ, p)=Rw( f , p) +

λ

2
| f− f 0|22

}
. (3)

The first term, Rw( f , p), is the regularizer and is defined as, with 0<p<+∞:

Rw( f , p)=
1
p

∑
u∈V

|∇w f (u)|pp=
1
p

∑
u∈V

[∑
v∼u

w(u, v)
(
f (v)− f (u)

)2] p
2
. (4)

The second term is the fitting term. λ≥0 is a fidelity parameter called the Lagrange
multiplier which specifies the trade-off between the two competing terms. Both
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terms of Ew in Eq. (3) are strictly convex function of f [18]. By standard arguments
in convex analysis, this optimization problem has a unique solution for p=1 and
p=2 which satisfies, for all u∈V:

∂

∂ f (u)
Ew( f , f 0, λ, p)=∆p

w f (u)+λ
(
f (u)− f 0(u)

)
=0 . (5)

Equation (5) can be viewed as the discrete analogue of the Euler-Lagrange equa-
tions. Using the p-Laplacian formulation (Eq. (2)) in Eq. (5), the optimization
problem solution is also the solution of the following system of equations. For all
u∈V , (

λ+
∑
v∼u

γ(u, v)
)

f (u)−
∑
v∼u

γ(u, v) f (v)=λ f 0(u) ,

To approximate the solution of the minimization (3), we can linearize this system
of equations and use the Gauss-Jacobi method to obtain the following iterative
algorithm: 

f (0)(u)= f 0(u)

f (t+1)(u)=
λ f 0(u)+

∑
v∼u
γ(t)(u, v) f (t)(v)

λ+
∑
v∼u
γ(t)(u, v)

,
(6)

where γ(t)(u, v) is the γ function (in Eq. (2)) at the iteration step t. At each iter-
ation of the algorithm, the value of f at step (t+1), for a vertex u, only depends
on two quantities: the original value f 0 and the sum of weighted local variation
of the existing values in the neighborhood of u. By using different formulations
of w and different values of p, a family of linear and non linear filters is obtained.
Indeed, when p=2 and w(u, v)=1 one obtains the linear diffusion on graphs. When
p=1 and w(u, v)=1 one recovers the TV digital filter [18]. The reader can note that
this isotropic regularization corresponds to the weighted discrete transcription of
the regularization functional in the continuous case. The interest reader can refer
to [13, 21] for more details on the formulation and the connections with other for-
malisms. Moreover, in [22], we have extended this discrete isotropic regularization
to a discrete anisotropic regularization framework for image and data processing.

Image filtering. Through the values of the p parameter, the discrete regularization
(5) describes a family of linear and non linear filters. This image filtering/denoising
can be viewed as an image simplification that can ease a seed extraction step. Fig. 3
shows a non linear (p=1) filtering on noisy cytological and histological images
represented by an 8-adjacency grid-graph. This image filtering enhances image
components, as shown in Figs. 3(b) and 3(d) as compared to original ones in
Figs. 3(a) and 3(c). We have the same effect on the gradient images, Figs. 3(f)
and 3(h) as compared to Figs. 3(e) and 3(g).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Color cytological and histological image filtering. (a) and (c) original images. (b) and (d)
their filtered image (non linear filtering with p=1). (e) and (g) gradient images from original ones.
(f) and (h) gradient images from filtered ones.

3.2.2. Discrete energy partition
Recent interactive image segmentation approaches have become increasingly

popular in the image processing community. They reformulate image segmentation
tasks into semi-supervised classification approaches by label propagation methods.
They are usually based on image pixel diffusion strategies. Thus, if we consider
large images, these methods are difficult to apply due to the great mass of data to
analyze. To avoid this computational restriction and to provide a fast image seg-
mentation, we propose to use a simplified version of the image in place to work
with the pixel based representation. One possible representation is to construct
a fine partition of the image and to consider neighborhood relations between the
obtained regions. Many methods have been proposed to construct image fine parti-
tion in literature. For instance, see [23] for methods based on graph cuts algorithm
or [24] for the ones based on morphological operators. In this work, we propose
to use a graph based method inspired by an approach based on the generalized
Voronoi diagram [25]. This method can be viewed as an image simplification or
a graph reduction. This data reduction can lead to further faster algorithm conver-
gence and to fast image processing schemes.

We consider a graph G=(V, E,w) to be given. Let f∈H(V) be a function defined
on V and PG(u, v) be the set of paths connecting two vertices u, v∈V . A path ρ(u, v)
is a sequence of vertices (u1, . . . , um) such as u=u1 and v=um with (ui, ui+1)∈E and

11



i=1, . . . ,m−1. We define the pseudo-metric δ:V×V→IR to be:

δ(u, v)= min
ρ∈PG(u,v)

m−1∑
i=1

d( f )(ui, ui+1)

= min
ρ∈PG(u,v)

m−1∑
i=1

√
w(ui, ui+1)

(
f (ui+1)− f (ui)

)
,

(7)

where d f is the difference equation defined in (1).
Given a set of K seeds S={si}⊆V , where i=1, . . . ,K, the energy δS :V→IRn

induced by the metric δ for all the seeds of S can be expressed as

δS (u)=min
si∈S
δ(si, u) ∀u∈V ,

The influence zone z (also called Voronoi region) of a given seed si∈S , is the set of
vertices which are closer to si than to any other seeds with respect to the metric δ.
It can be defined, ∀ j=1, . . . ,K and j,i, as

z(si)=
{
u∈V : δ(si, u)≤δ(s j, u)

}
.

Then, the energy partition of G, for a given set of seeds S and a metric δ, is the set
of influence zones Z(S , δ)=

{
z(si),∀si∈S

}
.

For a given graph G, to find the energy partition corresponds to seek a minimal
cost path over G. Among the graph algorithms dedicated to this shortest path
problem, the Dijkstra algorithm can be applied. Using Fibonacci heap structure,
the amortized time complexity to obtain such partition is O(E+VlogV).

Let G=(V, E,w) be the grid graph associated to a given image f where each
vertex u of V corresponds to a pixel of f . With these definitions, from a set of
seeds which constitutes a set of source vertices and a pseudo-metric, we can obtain
the exact energy partition which considers the total variation of d f along a path
with w(u, v)=1. Then, the energy partition of G represents an approximation of the
image by assigning a model for each influence zone of Z (where each zone corre-
sponds to an obtained image region). A simple model can be a mean or a median
value of each influence zone. Finally, the Region Adjacency Graph (RAG) can be
constructed by considering the dual representation (the Delaunay graph [26]) of the
obtained energy partition where each vertex of the RAG corresponds to an image
region and the edges the region adjacency relationships.

To segment a microscopical image, a classical method is to use a region grow-
ing approach starting from seeds (such as a watershed for instance). Identically,
our discrete energy partition can be used as a segmentation method. To obtain a set
of seeds, several methods can be used. In image processing a common approach
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is to use the image local extrema (minima or maxima) in a fixed search window.
Other schemes, based on machine learning approaches have also been proposed to
extract the initial seeds [12, 27, 28].

Image simplification for fast segmentation. Figure 4 illustrates the application of
graph based energy partition to simplify cytological and histological images repre-
sented by an 8-adjacency grid graph. In the proposed example, we use both local
image minima and maxima as the initial set of seeds. This example shows the ef-
ficiency of the discrete energy partition approach to simplify the original images
while also respecting the image components. One can note the significant data re-
duction. The original image (Figs. 4(a) and 4(d)) have 134 400 components (image
pixels). After applying our method, the obtained number of influence zones corre-
sponds approximatively to less than 5% of the original ones (Figs. 4(c) and 4(f)).
The reconstructed images Figs. 4(c) and 4(f) are obtained from the corresponding
partition where the pixel values of each region of the partition are replaced by the
mean pixel color value in the original image of its regions. Finally, as shown by
the energy images (Figs. 4(b) and 4(e)), our method has the ability to respect ob-
ject structure by preserving edge information. The computing time to obtain the
energy partitions in Fig. 4 is about 1 sec. including the time to compute the image
extrema. The computation is performed on a standard Linux computer equipped
with quadri 2.4 GHz Intel Xeon processors and 16 GB of RAM.

In Section 4, we will show the application of discrete energy partition to seg-
ment cellular components.

3.2.3. Discrete semi-supervised clustering
Numerous automatic segmentation schemes have been proposed in literature

and they have shown their efficiency. But, sometimes, automatic segmentation re-
sults are not accurate when images are more complex. Meanwhile, recent interac-
tive image segmentation approaches have been proposed. They reformulate image
segmentation tasks into semi-supervised classification approaches by label propa-
gation strategies [8, 9, 29]. Other applications of these label diffusion methods can
be found in [30, 5]. Our previously presented discrete regularization framework
(Section 3.2.1) can be naturally adapted to address this learning problem for semi-
supervised segmentation. The adaption of our regularization framework leads to a
clustering method. In the sequel, we use the terms of semi-supervised classifica-
tion and segmentation as the same procedure but additional computation steps must
be performed to obtain final results. Indeed, a final classification is obtained by a
class membership probabilities estimation. To obtain the final image segmentation,
a labeling of connected image components must be performed.
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(a) 134 400 pixels (b) Energy image (c) 7 132 zones (95% of reduction)

(d) 134 400 pixels (e) Energy image (f) 2 691 zones (98% of reduction)

Figure 4: Discrete energy partitions on cytological and histological images. (a) and (d) original im-
ages of size 480×320. (b) and (e) energy images. (c) and (f) reconstructed images from influences
zones with region mean color as model; the specified value corresponds to the number of final influ-
ence zones and to the percentage of reduction as compared to the original image The partition images
computing time is about 1 sec. including seeds extraction step.

Problem formulation. Let V={u1, . . . , uN} be a finite set of data, where each data ui

is a vector of IRm. Let G=(V, E,w) be a weighted graph such as data are connected
by an edge of E. The semi-supervised clustering of the set V consists in grouping
the set V into k classes where the number of k classes is given. For this, the set V
is composed of labeled and unlabeled data. The objective is then to estimate the
unlabeled data from labeled ones.

Let C={ci}i=1,...,k be the set of initial labeled vertices and let V\C be the initial
unlabeled vertices (the whole set of vertices except the labeled ones). This situation
can be modeled by considering k initial label functions (one per class) f 0

i :V→IR,
with i=1, . . . , k. For a given vertex u∈V , if u is a initially labeled then

f 0
i (u)=

+1, if u∈ci

−1, otherwise .
(8)

If u in initially unlabeled (i.e. u∈V\C) then f 0
i (u)=0. Then, the vertex cluster-

ing is accomplished by k regularization processes by estimating resultant function
fi:V→IR for each ith class. Using our proposed discrete regularization framework,
this is formalized as follows:

min
fi∈H(V)

{
Rw( fi, p)+λ2 | fi(u)− f 0

i (u)|22
}
,
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where the first term Rw( fi, p) is the one defined in Eq. (4). We use the discrete
diffusion process (Eq. (6)) to compute each minimization. At the end of the label
propagation processes, the class membership probabilities can be estimated and
the final classification can be obtained for a given vertex u∈V by the following
formulation. For all i∈1, . . . , k, we have

argmax
i

{
fi(u)/

∑
i

fi(u)
}
.

Any other formulations can be used (for instance see [31]). To obtain a final im-
age segmentation, a connected image components labeling can be performed on
classified elements.

Fast semi-supervised image segmentation. Image semi-supervised segmentation
are usually based on image pixel diffusion strategies. The drawback of this method
is that when the considered image is large, the label propagation method is ineffi-
cient due to the great mass of data to analyze. To avoid this computational problem,
we propose to simplify the image (i.e. to reduce the graph structure) by applying
our discrete energy partition method (Section 3.2.2). Fig. 5 illustrates the pro-
posed label propagation method. It shows segmentation of cytological image into
3 classes (nuclei, cytoplasm and background) with different graph structures. This
example compares the computation time and the segmentation results between a
pixel based grid graph and two region based proximity graphs (the RAG and the
fully connected graph). It also shows the robustness of our approach regarding the
initial user input. For the cases of proximity graphs, the computing times include
the graph construction itself. Moreover, due to the size of proposed example, the
computing time for the energy partition construction can be ignored. All the results
are obtained with a standard Linux computer equipped with quadri 2.4 GHz Intel
Xeon processors and 16 GB of RAM.

Fig. 5(h) is the semi-supervised segmentation result obtained from the initial
labels (Fig. 5(d)) and an 8-adjacency grid graph as original image (Fig. 5(a)) rep-
resentation. One can observe the number and the precise location of the initial
labels, in particular the necessary labels between the two cells. Fig. 5(b) is a sim-
plified version (98% of reduction) of the original image (Fig. 5(a)) obtained by
our discrete energy partition approach. Fig. 5(c) is a reconstructed image from the
partition. The same method has been used to obtain such image in Section 3.2.2
with Fig. 4 by using mean color model. With this simplified version, we construct
two proximity graphs associated with this image: the RAG and the fully connected
graph. (The RAG is constructed as described at the the end of the Section 3.2.2).
Fig. 5(i) shows the segmentation result obtained from the RAG with the same ini-
tial labels (Fig. 5(e)) as in the grid graph case. We can observe that the two results
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(Fig. 5(i) and Fig. 5(h)) are similar but in the RAG based segmentation case, the
computation time is significantly reduced. Figs. 5(j) and 5(k) show the segmenta-
tion result obtained from the fully connected graph. If we consider an image as a
set of pixels, it is clear that this approach can not be applied due to the computation
time. But, if we consider the simplified version of images, this method becomes an
efficient one and we can quote interesting properties to use this structure.

• The graph contains all the image information in the weighted edges and
therefore the regularization process only needs a minimal number of iter-
ations to reach the algorithm convergence.

• A minimal number of labels is needed to obtain correct results as compared
to the case of the grid graph or of the RAG. In Figs. 5(f) and 5(g), only
one nucleus and one cytoplasm are marked, and there is no separating label
between the two cells.

• An interesting property is that the objects can be quickly labeled in the same
class, even if they are not spatially adjacent or close. In Figs. 5(j) and 5(k),
the two main nuclei and cytoplasm are segmented even if there are no initial
labels. Moreover, the label diffusion process has also found the two pieces
of cytoplasm on the left and the piece of cells on the top-left corner of the
image.

Moreover, these two examples show the robustness of our approach. Indeed, Figs. 5(j)
and 5(k) show similar results with two different user input labels (Figs. 5(f)and 5(g)).

4. Microscopic cellular imaging applications

In this Section, we illustrate the abilities of the presented graph based methods
to address color cytological and histological segmentation problems. In the sequel,
various schemes are proposed to extract cellular components in such images. These
schemes are obtained by combining the previously described discrete tools together
or in addition with classical approaches (such as morphological operation or fuzzy
clustering). They are also performed either automatically or interactively (i.e. user
guideline segmentation).

All the following results are obtained with a standard Linux computer equipped
with quadri 2.4 GHz Intel Xeon processors and 16 GB of RAM.

4.1. Color cytology applications

In this Section, we consider color cytological images. All the images, in the
next applications, are from serous cytology. The images are from a database of
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(a) 27 512 pixels (b) 639 zones (98% of reduction) (c) Reconstructed image

(d) Original+Labels (e) Original+Labels (f) Original+Labels (g) Original+Labels

(h) t=50 (11 sec.) (i) t=5 (<1 sec.) (j) t=2 (<1 sec.) (k) t=2 (<1 sec.)

Figure 5: Semi-supervised image segmentation with p=2, λ=1, t iterations for different graph topolo-
gies and user input strokes. First row: (a) original image of size 152×181, (b) discrete energy par-
tition image, (c) reconstructed images from partition (mean color model). Second row: user input
labels. Third row: original image with the obtained segmented regions superimposed: cytoplasm
(red), nuclei (green) and regions boundaries (black); the segmentation is performed with the spec-
ified iteration steps t and the corresponding computation time. The images (h), (i), (j) and (k) are
respectively obtained from label images (d), (e), (f) and (g). Graph topologies used to obtain results
(h) grid graph associated with original image, (i) region adjacency graph (RAG) associated with
simplified image, (j) and (k) fully connected graph associated with simplified image.

17



digitized cells images, collected from pleural and peritoneal effusions with differ-
ent pathologies [15]. In this class of images, the cytoplasm and the nuclei are
respectively colored in green and blue. Both cytoplasm and nuclei have to be seg-
mented. We have the following object organization in an image: Image = ((Cells =
(Nucleus ⊂ Cytoplasm)) ∪ Background). In the sequel, all the schemes are based
on our discrete tools. We propose both automatic and interactive segmentation
approaches.

4.1.1. Automatic color cytological image segmentation by discrete energy parti-
tion (Methodology: image filtering by regularization + seeds extraction and
classification + segmentation by discrete energy partition)

Figure 6 shows an automatic color cytological image segmentation by discrete
energy partition. First, the image (represented by an 8-adjacency grid graph) is
simplified by regularization with p=2. This corresponds to a linear diffusion on a
grid graph. The aim of this image simplification is to ease the seeds extraction. On
this simplified image, the minima of the gradient image are extracted (Fig. 6(b)).
The gradient is computed with the Di Zenzo formulation [32]. Minima are then
classified in three classes by a fuzzy c-means clustering. These three classes re-
spectively correspond to the nuclei (Fig. 6(c)), the background (Fig. 6(d)), and
the cytoplasm (Fig. 6(e)). Using these labeled minima as vertices sources, a lo-
calization is performed by discrete energy partition which leads to the complete
segmentation of the image (Fig. 6(f)).

4.1.2. Automatic color cytological image segmentation by label propagation on
a MST (Methodology: image simplification by discrete energy partition +
seeds extraction and labeling + segmentation by label diffusion processes)

Figure 7 shows an automatic color cytological image segmentation by label
propagation on MST. First, from the original image (Figs. 7(a)) we compute a sim-
plified image by discrete energy partition (Fig. 7(b)) and construct the Minimum
Spanning Tree (MST). A MST is a well-known structure in graph theory and gives
a connected graph with no cycles and it is also sparse (for N data points, it has
only N − 1 edges). We use the discrete energy partition set of seeds as initial labels
of our label diffusion approach. Seeds are classified into 3 classes by a classical
k-means algorithm (based on region color features). Result of this seeds classifica-
tion is shown in Fig. 7(c). One can note that this classification is not perfect and
some nuclei seeds have been classified as cytoplasm ones. Figs. 7(d), 7(e), 7(f),
and 7(g) show respectively the obtained regions maps and the regions boundaries
for different values of λ parameter of the proposed label diffusion algorithm. When
λ is positive value, the label diffusion is highly oriented by initial labels. When the
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(a) Color cytology image (b) Gradient minima (c) Nuclei minima

(d) Background minima (e) Cytoplasm minima (f) Segmented image

Figure 6: Automatic color cytological image segmentation based on 8-adjacency grid graph and
discrete energy partition. (a) original image. (b) gradient minima. (c), (d), and (e) nuclei, background
and cytoplasm minima classified with a fuzzy clustering. (f) segmentation result with found region
boundaries superimposed in red.

19



(a) 26 000 pixels (b) 936 zones (96% of re-
duction)

(c) Original + Labels

(d) Segmentation λ=1 (e) (f) Segmentation λ=0 (g)

Figure 7: Automatic cytological segmentation by label diffusion processes based on a MST and
λ parameter. (a) original image. (b) energy partition reconstructed image with region mean color
as model. (c) original image with labeled seeds superimposed; the seeds were classified by k-means
(k=3) algorithm. (d) and (f), obtained regions map with the specified λ parameter. (e) and (g) original
image with the obtained regions boundaries superimposed in white.

λ parameter is null, the algorithm has the ability to modify initial labels classifica-
tion. Fig. 7(f) shows label modification effects on classification results. Bad initial
cytoplasm labels are changed to background label and conversely. This interesting
property resides in the graph topology and in our label diffusion formulation. One
can note that there are differences between a simple region merging algorithm and
our automatic classification scheme. Indeed, the proposed method does not need
any merging criterion to assign a label to a region: it is implicitly done by the
weighted graph representation. Moreover, our method does not need any stopping
criterion: the final result is obtained when the algorithm reaches convergence.

4.1.3. Interactive color cytological image segmentation by label propagation on a
fully connected graph (Methodology: image simplification by discrete en-
ergy partition + segmentation by user labels diffusion processes)

Figure 8 shows an interactive color cytological image segmentation by label
propagation on a fully connected graph. First, from the original image (Fig. 8(a))
we compute a simplified image by discrete energy partition. With this simplified
image (Fig. 8(b)) we construct the fully connected graph. As previously mentioned
in the example Fig. 5, the fully connected graph provides interesting properties for
label propagation: a minimal number of user initial labels is needed, as shown in
Fig. 8(c) where only one nucleus is marked; and a fast fully nonlocal propagation
where the graph topology allows a non spatially adjacent labeling, as shown in
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(a) 40 788 pixels (b) 1 148 zones (97% of
reduction)

(c) Original+Labels (d) Segmentation

Figure 8: Semi-supervised cytological image segmentation based on fully connected graph. (a)
original image of size 198 × 206. (b) reconstructed energy partition image with mean color from
original image. (c) original image with initial labels superimposed. (d) original image with the
obtained regions superimposed (red for the cytoplasm, blue for the nuclei, and white for regions
boundaries).

Fig. 8(d) where all the nuclei are finally segmented.

4.2. Color histology applications

Classical color histological images contain background and cellular objects.
The segmentation problem of this class of images consists in extracting clusters
of abnormal nuclei. These clusters contain nuclei which have been colored or not
by a chemical marker. In all the next applications, the images are from a database
of breast tissues digitized images, collected from different pathologies and marked
with a Ki67 marker. We have the following organization in a color histological
image: Image = (Background ∪ Nuclei ∪ ((Marked Nuclei ∪ Unmarked Nuclei) ⊂
Clusters)

4.2.1. Automatic color histological image segmentation with image simplification
by regularization (Methodology: image filtering by regularization + clusters
extraction and classification)

Figure 9 shows an automatic color histological image segmentation with im-
age simplification by regularization on two images. To extract clusters of abnormal
cells, the image (represented by an 8-adjacency grid graph) is simplified by regu-
larization with p=1. This corresponds to a non linear diffusion on a grid graph. As
for color cytology, gradient minima are classified in two classes by fuzzy cluster-
ing and a localization is performed (Figs. 9(b) and 9(f)). Once clusters of abnormal
cells have been extracted, the corresponding regions in the image are the only ones
used for further analysis. In these regions, a simplification by regularization is per-
formed (with p=2 and w(u, v)=1) and a residual analysis of the simplified image is
accomplished to extract nuclei. Residual analysis consists in seeking zero-crossing
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: Automatic segmentation of two color histological images. (a) and (e) original color his-
tological images. (b) and (f) clusters extraction. (c) and (g) clusters’ nuclei. (d) and (h) clusters’
marked nuclei.

zones of the difference between the original image and the simplified one (this pro-
vides an approximation of the Laplacian). Extracted zones constitute seeds and a
localization is then performed by discrete energy partition (Figs. 9(c) and 9(g)).
Once these nuclei inside the clusters have been extracted, a fuzzy clustering is per-
formed to split them in two classes: marked and unmarked (Figs. 9(d) and 9(h)).

4.2.2. Interactive color histological image segmentation by label diffusion pro-
cesses on a RAG (Methodology: image filtering by regularization + image
simplification by discrete energy partition + segmentation by user labels
diffusion processes)

Figure 10 shows an interactive color histological image segmentation by label
propagation on a RAG. This application illustrates the advantage of user guideline
segmentation. When images become much more complex, automatic segmentation
results are not always accurate and a user’s correction becomes necessary to obtain
the desired result. In this application, first we filter the original image (Fig. 10(a))
by regularization on an 8-adjacency grid graph to ease the seeds extraction for the
discrete energy partition method. The image filtering result is shown in Fig. 10(b).
With this simplified image, we perform our discrete energy partition to obtain a sig-
nificant reduced version of the original image (Fig. 10(c)). A RAG is constructed
with this reduced image where each vertex corresponds to an influence zone with
region mean color as model. Our label diffusion process is performed with this
graph and the initial user labels (Fig. 10(d)). The obtained segmentation is shown
in Fig. 10(e). One can note that the segmentation is not correct, the initial labels
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(a) 405 150 pixels (b) Filtered image (c) 2 068 zones (99% of reduc-
tion)

(d) Original+Labels (e)

(f) Additional labels (g)

Figure 10: Semi-supervised (interactive) color histological image segmentation with pre-processing
step. (a) original image of size 555×770. (b) filtered image from original. (c) image of reconstructed
energy partition with mean color from filtered image. (d) original image with initial labels superim-
posed. (e) original image with the obtained regions superimposed (green for the clusters and black
for clusters boundaries). (f) user additional labels. (g) original image with the obtained final regions
superimposed (green for the clusters and black for clusters boundaries).

are not enough precise to separate the clusters. Fig. 10(f) shows the user addi-
tional labels to correct the segmentation and Fig. 10(g) shows the corrected final
classification result.
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Table 1: Global classification rates and comparison with Dumont et al. approaches [33].
Pixel based Subwindow based Our scheme

R0 95.93% 96.39% 98.41%

4.3. Comparisons with others methods

In this Section, we compare one of our proposed schemes with other segmen-
tation methods proposed by literature. The chosen scheme is the fast interactive
image segmentation. This scheme is compared with the following methods.

• Two approaches based on K-means and Bayesian classifications proposed
by Lézoray et al. [12].

• Two approaches based on pixel and subwindow random tree classifications
proposed by Dumont et al. [33].

For more details on these methods, the interested reader can refer to the corre-
sponding articles.

The test set is composed of ten images from serous cytology [12]. Cells are
colored by the international standard coloration of Papanicolaou. Two classes are
considered : nuclei pixels and other pixels. Figure 11 shows three examples of the
test set with the expert manually segmented ground truth (second row) and the seg-
mentation results of our interactive scheme (third row). To compare classification
schemes, we use four common classification rates based on well classified pixels.
Tables 1 and 2 show classification rate comparisons between our interactive scheme
and two pixel based schemes relying on random decision trees proposed by [33]
and two classification models (K-means and Bayesian) proposed by [12]. Best ac-
curacies are face bolded. Classifications rates R0, R1, R2 and R3 are expressed as
follows

R0=
number of pixels well classified
number of pixels of the image

R1=
number of nuclei pixels well classified
number of nuclei pixels of the image

R2=
number of background pixels well classified
number of background pixels of the image

R3=(R1+R2)/2

Results in Table 1 show that our approach has the best classification accuracies
as compared to methods proposed by [33]. Table 2 presents classification accu-
racies per class for the three methods under consideration. Our approach clearly
outperforms K-means but is less accurate than Bayesian classification for nuclei
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Figure 11: Three examples of the test dataset images. First row: original images. Second row: expert
ground truth. Third row: segmentation results with our interactive scheme.

Table 2: Classification rates and comparison with Lézoray et al. approaches [12].
K-means Bayesian Our scheme

R1 88.7% 97.53% 92.31%
R2 98.65% 95.40% 99.15%
R3 93.67% 96.47% 95.73%
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pixels. These results can be interpreted as follows. One of the advantages of our
interactive scheme is that even if the segmentation is not correct, the user can mod-
ify his input labels until obtaining the desired results. The consequence is that we
can obtain better results as compared to an automatic scheme since rates are very
close. Regarding the background pixel and the nuclei pixel classification rates, one
can note that Bayesian tends to over segment the nuclei and our approach tends to
subsegment them.

5. Conclusion

In this paper, we have considered a framework of graph based tools for mi-
croscopic images segmentation. These discrete tools can be combined together or
in addition with classical approaches to formulate specific schemes for the seg-
mentation of a particular class of cellular images. Through specific strategies, we
have shown the efficiency of our methodology to address color cytological and
histological images segmentation problems in pathology. Moreover, the proposed
framework is sufficiently general to be applied to any type of microscopic im-
ages. We have proposed, on the one hand, efficient automatic and interactive user
guideline segmentation techniques; and, on the other hand, fast segmentation al-
gorithms via image simplification and/or graph topologies. The proposed discrete
tools use graphs as an underlying representation and a unified formulation. This
strong specificity implies that our graph based tools can be easily adapted to be
used with any type of discrete data which can be represented by a graph. Hence, it
leads to an interesting ongoing work: to use the same tools to analyze, categorize,
recognize the segmented cellular objects in huge image data bases.
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crete regularization for image, data filtering and clustering, Tech. Rep. hal-
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