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Abstract: In order to facilitate sketch recognition, most online existing works assume that people will
not start to draw a new symbol before the current one has been finished. We propose in this paper a
method that relaxes this constraint. The proposed methodology relies on a two-dimensional dynamic
programming (2D-DP) technique allowing symbol hypothesis generation, which can correctly segment
and recognize interspersed symbols. In addition, as discriminative classifiers usually have limited
capability to reject outliers, some domain specific knowledge is included to circumvent those errors due
to untrained patterns corresponding to erroneous segmentation hypotheses. With a point-level
measurement, the experiment shows that the proposed novel approach is able to achieve an accuracy of
more than 90 percent.

Keywords: on-line sketch recognition, electric circuit diagram, dynamic programming

1 Introduction

Sketches are widely used in engineering and architecture fields, especially for the early design phases
[1]. This is mainly due to the fact that a sketch is a convenient tool to catch rough ideas, so that the
designers can focus more on the critical issues rather than on the intricate details [2]. The problem is that

although it seems so quick and intuitive for humans to recognize sketches, it is really a great challenge
2



for the computer [3].

A difficult task in sketch recognition is to have a good balance between the drawing freedom and the

complexity of recognition. Generally, the more freely a system can endure, the more difficult sketch

recognition will be. Consequently, for the sake of simplicity, most of the existing online recognition

techniques are based on the assumption that people will not start to draw a new symbol before the

current one has been finished. Obviously this is not always the case. One of the greatest advantages of

sketch-based interface is that it provides a natural and free interaction platform. Therefore, it is a

significant attempt to try solving the situation with interspersed symbols.

Like speech or text recognition, sketch recognition itself is domain dependent [3]. Domain knowledge

to some extent can help recognition. Sketch recognition focuses on the localization and recognition of its

constitutional components; the problem is that although isolated symbol recognition has been studied for

many years, it still suffers in correctly rejecting outliers. Consequently, recognition based only on

symbolic similarity is prone to errors. In this paper, we include contextual constraints to help to solve

this problem. Here, constraints refer to the connectivity requirement of symbols, and we introduce a

tolerant connectivity evaluation strategy.

This contribution is an extension of the work introduced in [4]. The dataset used for validating the

proposed method has been extended from ten to fifteen subjects, with a total number of one hundred

thirty sketches instead of eighty-seven. Furthermore, we have reformulated the problem statement and

introduced the solution from a theoretical point of view. Additional experiments have also been

conducted to assess the sustainability of a cost function combining pattern recognition information with

soft contextual cost, which is a key point of the proposed framework.



The remainder of the paper is organized as follows. Section 2 provides a review of related works.

Section 3 formulates sketch recognition as a dynamic programming problem. The details of our

approach are presented in section 4, followed by the experimental results in section 5. Finally,

conclusion and proposed future works are drawn in section 6.

2 Related Works

As mentioned before, many efforts have been done concerning the recognition of isolated symbols

that are segmented explicitly by pausing [5] or by switching between different input modes [6]. For

example, Rubine [7] proposed an 11-dimension feature vector to describe a single stroke. Works in [2, 8]

are analogous, except that stroke segmentation is included, so they can recognize symbols made of

multiple strokes. More research on isolated symbol recognition can be found in [9].

In order to make sketch-based interaction more free and natural, researchers are working on the

automatic parsing and recognition of continuous streams of strokes. Sezgin and Davis [10] made full use

of different people’s drawing styles to improve both efficiency and performance; Costagliola and

Deufemia [11] proposed an LR (Left Right) based sketch parsing strategy; Sim-U-Sketch [12, 13] is a

sketch-based interface that depends on a hierarchical “mark-group-recognize” sketch understanding

architecture; Gennari et al. [14] employed ink density and stroke characteristics to enumerate candidate

symbols; Alvarado and Davis [15] developed a parsing approach based on dynamically constructed

Bayesian networks. However, although all these works aim at developing automatic recognition

techniques, few of them have addressed the problem of dealing with interspersed symbols. Most of the

existing researches are based on the assumption that symbols will not be drawn temporally overlapping

each other, which is not always the case. Although Sezgin and Davis [16] extended their approach to



recognize interspersed symbols, it still exists a high dependency on the drawing order of strokes. Also,

as it concerns only temporal patterns, no spatial or geometric constraint is incorporated. Thus, it is

difficult to distinguish symbols that have the same constituent elements but with different structures,

such as two horizontal lines and a vertical capacitor.

Hammond and Davis proposed a sketching language LADDER [17]. However, their approach can

only describe regular shapes without too much detail, and it is highly dependant on the recognition

accuracy of the low level primitives. Our system performs well even when symbols are drawn with

over-traced strokes. Saund et al. [18] solved the sketch recognition problem from a perceptual

perspective. Gestalt theory is introduced, which argues that human performs domain-independent

groupings to locate salient objects. However, it is more suitable for the clustering of texts instead of

diagrams.

Domain-specific knowledge is essential in designing a robust sketch recognition system, and it has

been widely used in image [19] and video [20] understanding, as well as the recognition of handwritten

zip codes [21]. A variety of circuit recognition systems [12~15] have utilized connectivity constraints to

help to improve performances. However, in most previous works, connectivity constraints are defined as

binary heuristic rules, where a threshold is defined to test whether or not the required connectivity is

fulfilled. Since sketches are imprecise in nature, binary connectivity evaluation is prone to errors. Again,

due to the moderate rejecting capability of most symbol classifiers to the outliers, we believe that by

combining connectivity evaluation with parsing strategy it will greatly help to solve such problems.



In this paper, sketch recognition is formulated as a two-dimensional dynamic programming problem
to process the situations with interspersed symbols. Also, a tolerant connectivity function is proposed to
improve both the efficiency and the performance.

3 Problem Formulation

Dynamic programming is a powerful tool that can be used to solve planning and decision-making
problems [22], and it has been applied to a wide variety of problem domains. The definition of a
dynamic programming scheme usually requires the following points:

(1) Divide the problem into several stages

(2) Identify several possible states at each stage

(3) Make decisions to change the starting state of this stage and continue to its ending state, which
will also be the starting state of the next stage
Note that the decision made on each state will affect the state for the next stage. In each stage, a
decision that achieves a reward closer to the maximum or minimum total reward is desirable

(4) Define a recursive relationship between the value of the decision at the stage and the previously

found optima, i.e. the optimal decision function contains itself in its definition

]Fk*(Sk) = Opt{Vk (Skﬂuk) +]F/:+1(Sk+1)} 1

where s; represents the starting state of the K® stage, u; represents the decision made in the K" stage, Ve
denotes the transition cost from s; to s;41, f; denotes the function for finding the optimal decision, and
opt is the optimal value (maximum or minimum) among all of the u; which optimizes f;.

To automatically extract symbols from a freeform sketch, this paper proposes the formulation of the

problem with the following Dynamic Programming notations:



(1) stages: number of symbols in the sketch, which is unknown and varies in our application

(2) state at a stage: defined as an ordered pair (S,V), where S denotes the set of segments extracted
after preprocessing, and V represents the set of recognized segments, which is a subset of S

(3) decision: the newly recognized symbol (V’-V), V’ being a superset of V, which comes from
hypothesis H;

(4) the sketch recognition task can be formulated as

f(S,@)=0
f(S,V)= f(S,V)+cost, (V' -V); V OV OS 2

An on-line sketch is basically a sequence of strokes, where a stroke is a sequence of points starting
with a pen-down and ending with a pen-lift. Before carrying out the recognition stage itself, each stroke
is separated into segments that correspond to perceptual graphical primitives. This is done by an
over-segmentation preprocessing step, which assumes that each of the resulting segments belongs to at
most one symbol. As a consequence, a symbol is a group of segments that corresponds to a specific label
in a domain, such as a resistor or a capacitor in an electric circuit diagram. Sketch recognition starts
from (S,®), where no symbol has been recognized. Each time a group of segments is added, a new
symbol is recognized and f'is updated with the recognition cost of (V’-V) (details of how such cost is
computed will be illustrated in section 4.3). The different combinations of segments correspond to
different sequences of costs, yielding to different f values. The bigger the cost is, the less likely a true
symbol it is. Therefore, the aim of sketch recognition is to find the optimal division {#;} that minimizes

the final cost [4], as shown below:

arg min f(8,S) 3)



4 Proposed Approach

4.1 Flow chart

There are two opposite kinds of strategies to perform online sketch recognition. One is called
immediate feedback, which means once a stroke is drawn, sketch recognition will start. The advantage
of such strategy is that users can view the recognition results in real time. But it will, to some extent,
distract the user during the design task [23]. Again, due to the lack of complete drawing context, such
methods always need to place constraints to the drawing style of some specific symbol. In this paper, we
adopt another strategy, namely lazy feedback, which means recognition starts only after the whole
sketch has been finished. The global context can help to increase the performance and decrease the
ambiguity, and at the same time it does not interfere with the user. Furthermore, this strategy is well
suited for digital pen and paper solution, where no immediate feedback is available for the user. The
drawback of this strategy is that the user is no longer in the loop, therefore, errors produced somewhere
can propagate elsewhere in the remainder of the sketch.

As our approach is based on a Dynamic Programming strategy, it includes both top-down and

bottom-up process. Fig. 1 presents the flowchart of our system, which consists of the following 5 parts:

¢ strokes

| Preprocessor |

| Hypothesis Generator |

¥

§| Symbol Recognizer |§

Top-down

v

| Constraint Recognizer |

| Decision Maker |" Bottom-up
¥ result

Fig. 1. Flow chart of 2D-DP based sketch interpretation.



®  Preprocessor: preprocessor is used to divide strokes into small segments, so as to provide for a

more natural drawing environment by allowing users to vary the number of pen strokes used to

create a symbol.

® Symbol hypothesis generator (SHG): SHG lists all the possible combination of segments. Each

group of segments is called a symbol hypothesis (SH).

® Symbol Recognizer (SR): SR provides, in addition to the label of each hypothesis, a recognition

score that will be used to define the recognition cost.

® Constraint Recognizer (CR): CR provides the contextual likelihood for each hypothesis, i.e. the

connectivity cost.

® Decision maker (DM): DM organizes all the SHs, and selects the one that minimizes the decision

function.

4.2 Preprocessing

We introduce an HMM-based stroke segmentation technique to divide strokes into individual lines

and circular arcs that closely match the original input. This is done using the approach described in [24].

The HMM model is designed to describe an arbitrary stroke composed of lines and circular arcs. Local

direction and local curvature information are selected as features to define the observations. We assume

that they are produced by an underlying sequence of states. Segmentation is therefore achieved by

searching the state sequence that best explains the observations. Once the optimal state sequence is

identified, the segments are readily available from transition points between specific states. Finally, a

postprocessing is carried out to merge small and overlapped segments. Also, a scaling factor s is

computed. This value is useful in handling spatial related computation so that the latter stages are not



dependant on the specific coordinate system resolution used to record the sketch. It is computed from

the histogram of the distances between consecutive extrema points in both x and y. In our application,

this value is roughly equals to the height of the resistors.

4.3 Top-down process

4.3.1 Symbol hypotheses generation

2D-DP is employed to generate symbol hypotheses. The difference between 1D-DP and 2D-DP is

presented in Fig. 2. With respect to the grouping of segments, 1D-DP can only merge temporally

consecutive segments together, namely the indexes of segments belonging to the same symbol are

continuous. Consider H, in Fig. 2 (left) for example, it is composed of stroke segments {S, Sg, So, S0},

where the subscripts indicate the temporal order. Such a hypothesis could be handle with 1D-DP. On the

other hand, with 2D-DP, it is also possible to generate hypothesis like H; in Fig. 2 (right), which is made

up of {S4, Ss, Sg, So}. Here, the subscripts are discontinuous.

Symbol hypotheses
Symbol hypotheses

>

\/

S7 . Sl() . S4 SS .SX S‘) .
Stroke segment indexes — in temporal order Stroke segment indexes — in temporal order
Fig. 2. An illustration of the difference between 1D-DP (left) and 2D-DP (right).
If it is not allowed to draw a new symbol before the current one has been finished, 1D-DP can solve

the problem properly. But in practice, we found that this is not always the case. Consider the transistor
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in Fig. 4b, which is composed of segments {S,, S3, Ss, S7, Ss}, with pure 1D-DP it would not be possible

to recover such a symbol.

With such an approach the number of possible SHs grows exponentially with respect to the number of

segments. To control and limit the number of SHs, we have defined four constraints based on the

observation of the structural characteristics of electric circuit diagrams and on the experimental results.

They allow to prune invalid hypotheses. They are:

1) Maximum number of stroke segments: N,.

The structures of electric symbols are known in advance, thus the number of segments constituting a

symbol is limited.

2) Maximum distance between segments: D,,,,.

All the segments that compose a symbol should lay nearby one to the others. So a maximum distance

can be used as a constraint in finding valid symbols. In order to make the algorithm adapted to different

drawing styles, it is defined in relationship with the scaling factor s defined in section 4.2.

3)  Maximum number of time-jumps: N,.

When the subscripts of two consecutive segments of a hypothesis are discontinuous, it is considered

as a time-jump. For instance, hypothesis H; in Fig. 2 (right) has one time-jump. We have in our work

limited this value to N, =2, this value encompasses all symbol drawings that we encountered in the

sketches that have been freely collected in our database.

4) Maximum overlap ratio: R,,.

In a regular electrical sketch two symbols should not overlap significantly. Consequently, when an

extra segment is overlapping a current hypothesis, this hypothesis should be discarded. The overlap ratio

11



refers to the overlap area normalized by the area of the symbol hypothesis. It is defined in Eq. (4), where

A denotes a stroke segment, H denotes a symbol hypothesis, and B denotes the bounding box.

_Area(B,18y) x100%

Roverlap (A’H) Area (BH) (4)

Normally, a large overlap ratio means that the two parts should be merged into one symbol. Consider
the hypothesis {S,, S3, Ss5, Ss} in Fig. 4b, as it overlaps with segments S; and Ss, it is consequently
regarded as an invalid hypothesis and is discarded.

4.3.2 Symbol recognition

The second stage of the top-down process is the recognition of symbols. Connectors are processed
differently from general circuit components like resistors, transistors, etc. A first classifier checks if the
SH is a connector, if it is not the case then a second classifier recognizes the SH as a circuit component.
The recognition of connectors is based on the least-square-fitting error (LSFE), and the recognition of
circuit components is handled by a neural network classifier (NNC).

The neural network classifier in our experiment is a standard multi-layer perceptron (MLP), which is
trained with a training set that incorporates not only a number of genuine samples but also many
pseudo-synthetic samples that are generated from the previous ones [25]. The recognizer accounts for
the variations in hand-drawn sketches and allows symbols to be drawn using any number of strokes
drawn in any order. Also, it is insensitive to the size. However, the recognizer is sensitive to the
orientation. Since the same symbol in different orientation may require different connectivity constraints,
and connectivity evaluation is used in our approach to aid recognition. Consequently, for example,
horizontal capacitors and vertical capacitors belong to two different classes in our classifier.

Obviously, the cost function plays an important role in DP based algorithms. In the proposed approach,

12



the cost of recognizing a hypothesis H as a symbol of class L has been defined as a linear combination of
two costs (see Eq. (5)). In this relationship, cost; z(H) is the intrinsic symbol resemblance cost and
cost;, «(H) takes into account the connectivity requirements of the symbol. w is a weighting factor that is
used to balance between the two costs. The setting of the weight can be based on the level of expertise of
the user. As an example, a user familiar with the design of circuit diagrams will sketch quickly. Thus, s/he
is more likely to produce imprecise but suitably related strokes, which should suggest to overweight

costy g With respect to cost;, c.

cost, (H) =cost, ,(H)+wxcost, .(H) )

The recognition cost cost; x is defined as below:

0 L #connector"& H NH(L)
cost, ,(H)=1LSFE(H)~-s, L ="connector"& H [VH(L) (6)
00 H NH(L)

Where VH(L) denotes the set of plausible hypotheses of the symbol of class L, i.e. hypotheses with
acceptable LSFEs or class probability distribution provided by the NNC. Based on the discussions in
section 3, DP will try to find the set of symbols that minimize the overall cost in Eq. (3). Thus, if the
recognition costs for all symbols are positive, DP will try recognizing as few symbols as possible, which
is not desirable. Here, s,' is used to get negative costs for perfect connectors, so as to encourage the
system to find as many symbols as possible.

For non-connectors, if the class probability is large enough, the proposed label is supposed to be the

correct one, and it will be used to define the connectivity cost, as explained in section 4.3.3. Concerning

' This offset was determined experimentally by collecting sample circuit sketches from several users, and comparing the perfectly
drawn connectors with those that were not.
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the recognition cost costy , it is set to be zero. This is because the absolute score of the winning output

of the NNC is not so reliable. In this case, only the connectivity costs will guide the 2D-DP, but they are

computed based on the label proposed by the NNC.

Details about how cost;, ¢ is computed will be explained in the next section.

4.3.3 Connectivity cost computation

The simple requirement of symbol recognition is that the recognizer should return relatively high

class probability for hypotheses that correspond to true symbols. Similarly, it should return relatively

low probability for hypotheses that do not correspond to symbols. In fact, it is not as easy as it sounds.

Many of the hypotheses that are passed to the recognizer are pseudo-symbols, either containing

segments from multiple symbols or do not contain all the segments of a symbol. The problem lies on

that discriminative classifiers usually have limited capability to reject outliers.

An example is presented in Fig. 3. On the left side (Fig. 3a) the hypothesis corresponds to a true

current source symbol and the NNC provides a class probability of 0.9994. In Fig. 3b where the current

symbol is mis-grouped with a vertical connector, the recognizer still provides a probability as high as

0.9236 with the same label. Consequently, according to Eq. (6), both hypotheses will have a cost;

equals to 0. However, the cost; ¢ should make the difference between these two hypotheses: it should be

higher in the second case because the connectivity constraint of having a vertical connector on both

sides of a vertical current source is not satisfied.

14



class probability for a class probability for a

vertical current source

=0.9236

vertical current source

=0.9994

(a) (b)
Fig. 3. Examples reporting the limitation of the symbol classifier.
We use connectivity constraints to guide recognition. The connectivity costs computation is based on

a continuous function defined as follows:

where 7 is the number of required

cost, (H)=1n xi(di/s),{

connectivities for a symbol of class L

Concerning our application, d; refers to the distance from the endpoint of a connector to the bounding
box of the circuit component, and 7 is the number of required connectivity constraints. The value of n
should be 2 for connectors, since there should be at least two symbols connected with both ends.

The constant distance s, introduced in section 4.2, acts as a normalization factor, which aims at
making the connectivity evaluation independent of the size of the diagram. We believe that the space
between symbols is correlated to the size of the symbols, i.e. users who would like to draw big symbols
will also more likely leave a big space, and vice versa. Therefore, a non-adaptive distance can result
either in under-grouping segments of big symbols, or over-grouping segments from small symbols. Such
an approach has already been successfully implemented in text line scale evaluation.

Based on the prior knowledge of electric circuit diagram design, we have defined thirteen kinds of
connectivity constraints, such as those requiring two horizontal connectors connected on left and right

sides, like horizontal capacitors composed of two parallel vertical line segments, and those asking for

15



three connectors, like transistors etc. Although the connectivity constraints employed are tailored for

circuit diagrams, other domains are likely to have similar constraints, such as flow charts, UML

diagrams, finite state machine and etc. For example, in UML diagrams, classes are always connected

with association relations. Therefore, our approach can be easily adapted to those applications.

4.4 Bottom-up process

In the bottom-up process, all valid hypotheses are combined together to lead to a decision. A solution

must fulfill the following two conditions:

(1) segments are not shared by different hypotheses;

(2) all segments are covered.

The example given in Fig. 4 will allow to explain how the bottom-up process is carried out. Fig. 4a

gives the original drawing, where the numbers indicate the drawing order of the 5 strokes; Fig. 4b is the

preprocessing result: 8 segments are present, and Fig. 4c displays the recognition result: a transistor has

been recognized.

2 j 52 o 5 Tran
1 . 51 -
ﬁ 1 55
S8 |sg
(a) (b) ()

Fig. 4. An example of the interspersed symbol.

Table 1 lists part of the hypotheses generated during the top-down process. Here, each hypothesis is

represented by setting up a correspondence between the segments of the sketch and a binary vector. If a

segment is present in a hypothesis, a 1 occupies the corresponding bit position; otherwise a 0 occupies
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that position. Consider the hypothesis of Hg, it means a combination of {S,, S3, Ss, S¢}. Also, the cost for

each hypothesis is reported.

Table 1 Hypotheses generated for Fig. 4b during the top-down process.

Segments

cost

S| S| S5 Sa | Ss | Se| S| Ss

H|1]0]00[0]0]O0]|0]cH)

H|{0]1]010[0]0]0]|0]cH)

Hy | 0]0]0 |1 [0]0]0]| 0] cH

Symbol

H|lo|lo|o]o|lo]|1]0]|0]cH
hypothesis

Hs |1 | 1]0]0]l0]|0]0]| 0] cH)
H;

Holo o |10 1]|0]|1]1]cH

H|lo|1|1]lo]1]|0|1]1]cH)

Holo| 1|1 [1]0]|1]0] 0] c@H

In the bottom-up process, H; is selected first. Based on condition (1), 2D-DP is going to select the one

that does not start with Sy, such as H,, and so on. After covering all segments, a solution of So_1 = {H,,

H,, Hs, H,, Hg} is achieved. So 2 = {H,, Hs, H;, H;} is another valid solution that can be obtained from

the table. Segment S,, which is recognized as a connector in solution So 1 under the hypothesis H,, is

actually not a true connector, yielding a large connectivity cost, and thus, based on Eq. (3), So_2 wins.

Below is the pseudo-code:

17



Initialize IS, RS = ®;R =0
for H, with B(H,,1) =1,
R =H,,RS.HS ={H,},RS.C =c(H,)
for H, with B\(H,) =1&B,(H; B) =4,
R =R +H ,RS.HSU =H,,RS.C +=(H )
if B,(R) =4
ISU =RS

return arg min IS[i].C
IS[i].RS

where
B(H,1) represents the bit denoting S, of H, Bo(H) represents the first bit position of H that is 0, and

B, (H) represents the first bit position of A that is 1.

5 Experimental Studies

In the experiments reported here, we defined nine electrical circuit components shown in Table 2,
which are interconnected with a tenth symbol, the connectors. These nine components are further
divided into 26 classes according to their orientations and different connectivity requirements. In order
to train the embedded NNC, a training database of such isolated symbols has been collected. It involved
eleven people who have drawn four to five symbols of each type, with more or less the same
applications. Finally, there are a total of 451 isolated symbols used to train the classifier. Even though
the training data is very few, the training that we use is able to cope with a limited number of samples,
because of its capability to generate additional samples with some basic geometrical transformations.
Unlike in works [14][16], this classifier is trained once for all. Based on an overall of 634 testing
samples collected from ten new different subjects, we achieved an average recognition rate of 97.32

percent with top-one accuracy.

18



Table 2 Electric circuit components used in our experiment.

Resistor Inductor Capacitor

AVATAV2RN A 1 1 A —

AC voltage DC voltage Current
E-grounding C-grounding Transistor

= | 7w | 7%

5.1 Diagram collection

Our goal for the evaluation was to test the performance of our system on hand-drawn circuit diagrams

that were drawn as freely as those people produce when drawing on paper. As there are no common

testing workbenches, we have collected our own database. To collect these sketches, we recruited fifteen

participants who are all engineering students and familiar with electric circuit diagrams. Note that only

one of them was also involved in the collection of isolated samples used for the NNC training. Each of

them was asked to copy schemes selected from two electrical textbooks. The subjects were not told

about how the system works. Samples were collected using the Anoto digital pen and paper. Due to the

sampling and drawing errors, at the end there were one hundred and thirty diagrams available, with a

total number of 2651 symbols. As the samples were drawn on paper, modification was not allowed.

However, if they were aware of any mistakes, they were asked to redraw a new one.

It is very interesting to notice that people draw quite differently. Some would like to start from the left

and work to the right, and others prefer to draw from top to bottom. Also, there were people who liked

to finish all the components first and then complement with all the connectors. Although most

19



participants drew symbol by symbol, they did draw interspersed symbols from time to time. Among all

the one hundred and thirty samples we collected, there are forty samples with interspersed symbols.

In addition to the data collection process, we have manually segmented, grouped and labeled the

sketches to define the ground truth.

5.2 Measurements

It is difficult to evaluate a sketch recognition technique. In most previous works, the evaluation is

performed on the percentage of symbols that is correctly located and recognized. To achieve that,

generally a hard decision is taken to decide whether a symbol is correctly located and recognized. We

did not adopt that measurement, as it suffers from ambiguities for symbols that are partially recognized,

as shown in Fig. 5.

miz—-labeled

Fig. 5. An illustration of the computation of symbol-level precision.
We use a point-level measurement to evaluate the performance of our recognition approach. Let us
define the set of sample points of symbol O as PO, and the set of points recognized as O to be PO', the

recognition accuracy of O will be defined by Eq. (8).

reg_acc(0) =| PO PO'|/| PO|x100% ®)

This definition is equivalent to the recall measure used in the retrieval systems. From a global point of
view, since every point belongs to a single class, therefore the recall is the same as the precision in our

application.

20



In order to have the estimation to be size-independent, the recognition accuracy for a class L is
denoted as the macro-average accuracy of all the n samples in class L, as shown in Eq. (9). This is

different from the micro-average where every point would have the same weight in the evaluation.

rec_acc(L) =1/nx z rec_acc(O,), where label(O,) =L )

i=1
Let us consider the example presented in Fig. 5. Here, part of the resistor is mis-classified as a vertical

connector (stroke in yellow). The recognition accuracy of the resistor is computed as the number of

points located in red divided by the number of points located in both yellow and red.
5.3 Experimental results and discussions

We conducted three experiments.

Exp.1: Global system as described before, i.e. the strokes are first sent to the HMM-based
preprocessor, and then the resulting segments are taken as the input of the 2D-DP algorithm. The
computation function of costs is exactly the same as shown in Eq. (5), namely both the recognition cost
and the connectivity cost will affect the decision of sketch recognition.

Exp.2: In this experiment, the strokes are manually segmented into segments. Therefore, no
preprocessing and no segmentation error are included. This experiment is used to evaluate the
percentage of errors produced by symbol recognition and connectivity evaluation.

Exp.3: The difference between Exp.1 and Exp.3 is that in Exp.3 only the recognition cost will guide
the decision of 2D-DP, i.e. for the hypothesis whose connectivity constraint is fully addressed, the
cost, «(H) in Eq. (5) is set to be zero. In other words, we use binary connectivity evaluation in Exp.3.

This experiment is used to test the effectiveness of our tolerant connectivity evaluation.

21



An example demonstrates the differences between the three experiment results (see Fig. 6). Here,

different kinds of components are displayed in different colors. Concerning the proposed approach (see

Fig. 6a), there exist three recognition errors. First, the vertical capacitor is mis-classified as two

connectors (displayed in blue). This is a limitation of our approach, since our parser interprets a sketch

from two aspects: symbol recognition and connectivity constraints. If the two poles are too close to each

other, the connectivity costs for labeling them as two connectors will be very low; at the same time,

suppose they are almost perfect line segments, yielding a lower recognition cost (or LSFE), then 2D-DP

will prefer to recognize them as connectors instead of a capacitor, which would be perfect in case of a

retracing of a connector. The second error is due to the NNC, which confused an inductor with a resistor.

Also, error happens because of the mis-segmentation of strokes, as the segment point is not located

exactly as it is in the ground truth (refer to the vertical connector connected with the AC-voltage). The

result obtained by using the ground truth segmentation is analogous (see Fig. 6b), except that there is no

stroke segmentation error. With respect to Exp.3 (see Fig. 6¢), the two transistors are separated into

several parts. This is because only the recognition cost will affect the decision of DP, and for perfect line

segments the costs are negative (refer to section 4.3.2), hence it will try to achieve as many connectors

as possible.
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Fig. 6. Illustration of the recognition results of experiments 1-3.

Several cases can cause recognition errors. Errors will occur when segments belonging to different

symbols are mis-grouped together in the preprocessing stage; or if the symbol classifier provides a

wrong label or when the symbol is wrongly scribed and mis-sampled, as the required connectivity is not

satisfied. However, it is really a difficult task to figure out the percentage of errors attributed to each

step.

Table 3 lists the results of the three experiments. Here, all the values on the right side of each kind of

components are the recognition accuracy for that class, as defined in Eq.9. Similarly, the Average is

computed as the macro-average accuracy of all the symbols, namely the sum of the recognition accuracy

of all the symbols divided by the number of the symbols, which is different from the mean of the above

values in the table. In this table, our approach (Exp.1) has achieved an average class-level recognition

accuracy of more than 90 percent. The performance is better when the true segmentation is provided to

the system (Exp.2) since it reaches 94.1 percent, and conversely it drops to only 83.8 percent when only

hard connectivity constraints are used (Exp.3). When observing the performances at the class level,

capacitors, transistors and ac-voltages appear to be the most difficult symbols to extract. In terms of
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ac-voltage, errors are mostly caused by the NNC, as it is difficult to separate some ac-voltages from

currents. With respect to capacitors, if the user tends to draw the two poles too close to each other, our

connectivity evaluation may fail. It is analogous with respect to the earth groundings.

Table 3 Class-level recognition accuracy of the three experiments.

Class Exp. 1 Exp. 2 Exp. 3
Connector 90.61 95.04 91.09
Resistor 89.88 90.61 80.12
Inductor 95.21 97.43 91.79
Capacitor 86.51 89.51 27.62
Transistor 82.33 87.01 47.88
AC-Voltage 80.34 82.62 78.25
DC-Voltage 91.14 95.57 90.98
Current 93.99 98.43 95.03
E-grounding 89.12 96.45 42.50
C-grounding 94.80 96.31 93.62
Average 90.29 94.10 83.82

The recognition results of transistors vary among the three experiments. The reason is that in Exp.1,

some of the strokes are over-segmented into small line segments during preprocessing, resulting lower

LSFEs; also with respect to the binary connectivity evaluation, since only symbolic likelihood is useful

and the cost for perfect connectors are negative, therefore these line segments are more likely to be

recognized as connectors. Generally speaking, Exp.2 outperforms the other two. This is because it
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excludes the segmentation errors; moreover, the favorable segmentation results promote the recognition

of other symbols. In Exp.3, the performance decreased by 6.47 percent to 83.82 percent, and the

recognition results on capacitors, transistors and earth groundings are very low. All these indicate that

the tolerant connectivity constraint has a significant effect in increasing the recognition performance.

Table 4 illustrates the performance of our approach on the 15 different subjects. We achieved a best

recognition result of more than 95 percent for subject 2, and a worst result of 85 percent for subject 1.

Table 4 Recognition result of our approach on different subjects.

Average Average
Subject Recognition Subject recognition

accuracy accuracy

1 85.26 9 90.07

2 95.98 10 85.82

3 93.65 11 86.87

4 89.81 12 89.79

5 93.22 13 93.36

6 87.60 14 85.75

7 91.72 15 93.24

8 92.31 — —

One more issue is about the efficiency. All global searching algorithms will face such a problem. To

tackle this problem, we have introduced spatial and temporal constraints (see section 4.3) to help to

decrease the searching space. In addition, we have proposed a connectivity evaluation to be more
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efficient compared with other similar approaches. However, as we are working on different workbenches,

it is difficult to provide a more convictive evaluation. Currently, the average processing time for a

diagram as the example of Fig. 6 is about sixty seconds on a regular laptop.

6 Conclusion and future work

In this paper, sketch recognition task is formulated as a dynamic programming problem, and a circuit

diagram recognition system is implemented based on this approach. As we introduced two-dimensional

dynamic programming technique, our method can correctly locate interspersed symbols. Specifically, a

tolerant connectivity function cost is introduced, which seems to be well suited to the task of

recognizing free form sketches. With a point-level measurement, the experiment shows that the

proposed novel approach is able to achieve an accuracy of more than 90 percent. This assessment is

based on one hundred and thirty sketches featuring ten different kinds of electrical symbols.

We are currently collecting samples from other application fields, so as to have a better understanding

of when people would like to draw interspersed symbols. In our experiment, interspersing happened not

only for the drawing of transistors, but also for the drawing of ac-voltages, currents, and dc-voltages.

Observations suggest that people would like to draw the external circle first, then the connected

connector, and strokes inside the circle at last. In such cases, people left a symbol obviously unfinished

and returned later to finish it, which matches with the second drawing pattern underlying symbols drawn

with non-consecutive strokes in [26]. This is not the same as has been discussed in [10], where people

only draw transistors using interspersed symbols. We suggest that this is because, for one hand, there

were only 4 components: resistors, capacitors, transistors and batteries in [10], and on another hand, in

our experiment, participants were asked to copy diagrams according to the textbooks, whereas during
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the sample collection in [10], the textbook was removed. Whether or not interspersing happens more

frequently in copying compared with in designing requires further study.

The DP approach has been proved to have a good potential to solve the sketch recognition problem,

but the algorithm could be slow when the diagram is very large. Papadaki and Friderikos [27] have

presented an approximate dynamic programming (ADP) methodology for large-scale problems. Hence

how to develop a fast dynamic programming algorithm is another interesting topic for future study.
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