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Abstract

In this paper we present a comparative evaluation of four popular interactive seg-
mentation algorithms. The evaluation was carried out as a series of user-experiments,
in which participants were tasked with extracting one hundred objects from a com-
mon dataset: twenty-five with each algorithm, constrained within a time limit of
two minutes for each object. To facilitate the experiments, a “scribble-driven” seg-
mentation tool was developed to enable interactive image segmentation by simply
marking areas of foreground and background with the mouse. As the participants
refined and improved their respective segmentations, the corresponding updated
segmentation mask was stored along with the elapsed time. We then collected and
evaluated each recorded mask against a manually segmented ground-truth, thus al-
lowing us to gauge segmentation accuracy over time. Two benchmarks were used
for the evaluation: the well-known Jaccard index for measuring object accuracy,
and a new fuzzy metric, proposed in this paper, designed for measuring bound-
ary accuracy. Analysis of the experimental results demonstrates the effectiveness
of the suggested measures and provides valuable insights into the performance and
characteristics of the evaluated algorithms.
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1 Introduction

Image segmentation is a critical component in many machine vision and infor-
mation retrieval systems. It is typically used to partition images into regions
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that are in some sense homogeneous, or have some semantic significance, thus
providing subsequent processing stages high-level information about scene
structure. The diverse requirements of systems that use segmentation have
led to the development of segmentation algorithms that vary widely in both
algorithmic approach, and the quality and nature of the segmentation pro-
duced. Some applications simply require the image to be divided into coarse
homogeneous regions, others require rich semantic objects. For some applica-
tions precision is paramount, for others speed and automation.

The importance and utility of image segmentation has resulted in extensive
research and numerous proposed approaches, both automatic and interactive.
Indeed, so numerous are the proposed techniques that selecting an optimal
algorithm for a particular application has become an arduous and time con-
suming task. Consequently, research into methods for evaluating the quality of
image segmentation algorithms has recently been recognized as an important
topic. Several such segmentation evaluation benchmarks have been proposed:
Ge [1], McGuinness [2], and Jiang [3] (et al.) all discuss systems and bench-
marks for supervised evaluation, that is, evaluation with respect to a ground-
truth reference, and Zhang et al. [4] review unsupervised evaluation methods.
All of these methods, and indeed the vast majority of segmentation evalua-
tion research to date, have however, been focused exclusively on automatic
segmentation; comparatively little attention has been dedicated to evaluating
interactive segmentation.

Automatic segmentation algorithms are effective solution for applications,
such as multimedia indexing and retrieval, that require quick, coarse, region-
based segmentation. Some applications, however, require accurate semantic
objects. When such objects are necessary fully-automatic segmentation is
typically impossible; some high-level information is needed to traverse the
“semantic-gap” between homogeneous regions and perceived objects.

Interactive segmentation algorithms® provide a solution to this by invoking
the aid of a human operator to supply the high-level information needed to
detect and extract semantic objects through a series of interactions. Typically,
operators mark areas of the image as object or background, and the algorithm
updates the segmentation using the new information. By iteratively providing
more interactions the user can refine the segmentation. The goal of interactive
segmentation is thus to provide a means of accurately extracting semantic
objects from an image quickly and accurately.

In this paper we focus on evaluating the performance of interactive segmenta-
tion algorithms via extensive user experiments. To this end, we have developed
a complete framework for performance evaluation and benchmarking of inter-

1 Also referred to as semi-supervised or semi-automatic segmentation algorithms



active segmentation algorithms on natural images. The main contributions of
the paper are as follows: First, a software platform designed for hosting and
evaluating different segmentation algorithms in a uniform environment. The
platform currently includes four state-of-the-art interactive segmentation algo-
rithms, and has been made available for public download from our website 2.
Second, a ground-truth dataset created specifically for evaluating interactive
segmentation. The dataset consists of 100 objects from natural images with
accompanying descriptions, and has also been made available on-line. Third,
we propose and investigate two measures appropriate for evaluating interac-
tive segmentation, including a new benchmark specifically designed to mea-
sure boundary accuracy against a ground-truth. We compare the suggested
measures with other potential measures and demonstrate their effectiveness.
Finally, we evaluate and compare four popular interactive segmentation algo-
rithms and demonstrate their performance and characteristics.

The remainder of the paper is organized as follows. In section 2 we review
each of the algorithms that were chosen for the evaluation. In section 3 we
discuss the measures selected for evaluation, and formulate a new benchmark
for measuring object boundary accuracy. In section 4 we discuss the user ex-
periments, including details of the participants involved and the software and
tools used. We present the interactive segmentation tool we developed to host
the various algorithms, the dataset and ground-truth we used for the exper-
iment, and our experiment setup and deployment strategy. In section 5 we
analyze the results of the experiment, validate the selected evaluation mea-
sures, and demonstrate which algorithms performed best. Finally, in section
6 we present our conclusions and potential future work.

2 Algorithms

Different segmentation algorithms are often created with different application
domains in mind, and thus suited to different tasks. For example, some algo-
rithms, such as active contours [5] and other similar approaches [6], are most
effective at extracting regions of interest from medical images. Other algo-
rithms, such as GrabCut [7], are designed for photo-editing applications and
extracting objects from photographs of natural scenes. Due to the disparity
of intended application, one cannot expect an algorithm designed for, say,
biomedical image analysis to be equally effective when applied to a different
domain, such as photo-manipulation.

Our evaluation focuses on interactive segmentation techniques appropriate for
object extraction from photographs and natural scenes. Specifically, we only

2 http://kspace.cdvp.dcu.ie/public/interactive-segmentation/



Table 1
Algorithmic approaches to interactive segmentation

Method Example Algorithm

Thresholding Simple gray-scale thresholding

Region Growing Seeded Region Growing™ [8]

Classifiers Simple Interactive Object Extraction” [9]
Graph and MRF Models Interactive Graph Cuts” [10]

Hierarchical / Split & Merge Interactive Segmentation using Binary Parti-
tion Trees™ [11,12]

Deformable Models Active Contours (Snakes) [5]

*Algorithms selected for the evaluation

evaluate algorithms whose interactions can be modelled by pictorial input on
an image grid [21]; we do not consider interactive segmentation algorithms
based on parameter tuning or other forms of interaction. By narrowing our
focus thus, we evaluate algorithms that are more directly comparable; the
intention being a consistent and fair evaluation, albeit on a smaller subset of
the available algorithms.

We chose four algorithms for the evaluation. The algorithms we selected pro-
vide good coverage of the various underlying algorithmic approaches used by
current methods in the literature for object extraction from natural scenes.
Table 1 gives a broad classification of interactive segmentation methods re-
ported in the literature, along with sample algorithms that implement these
methods. The asterisked algorithms are the ones we selected for evaluation.
Note that we do not consider algorithms based on thresholding or deformable
models, as the former cannot be adapted in a straightforward way to picto-
rial input, and the latter tends to perform better on medical images than on
natural scenes. It is also worth noting that there are two other algorithmic
approaches to interactive segmentation not listed in Table 1: artificial neural
nets and atlas guided approaches (see Pham et al. [13]). Their adoption has,
however, principally been confined to biomedical image analysis, so we do not
consider them further.

In the following subsections, each selected algorithm is reviewed briefly. For
further details, readers are directed to the cited publications.

2.1 Seeded Region Growing

The seeded region growing algorithm, proposed by Adams and Bischof [8] is
a simple and computationally inexpensive technique for interactive segmen-



tation of images in which the relevant regions are characterized by connected
pixels with similar color values. Although it does not have any statistical, opti-
mizational or probabilistic mathematical foundation, and suffers from certain
limitations, it has gained popularity due to its speed and simplicity of imple-
mentation.

The seeded region growing technique requires as input a set of seed points
that have been grouped into n disjoint sets S = {S; : 0 < j < n}, where
n is the number of desired regions in the segmentation. For simple object-
background segmentation, as in our case, n = 2, giving two sets of seed pixels:
S for the object seeds and Sy for the background seeds. At each step, a single
pixel adjacent to the object or background seeds is selected and is added to
the corresponding seed set. The pixel is chosen to be the one with minimum
distance to the average color of the pixels in S or Sy. The algorithm iterates
thus until all pixels have been grouped.

In their paper, Adams and Bischof use simple gray-level differences and aver-
ages for computing color distances and means. In our implementation we used
the more perceptually uniform CIELUV color space [14] (assuming the D65
reference white as the illuminant), as it was observed to improve performance
in our experiments.

2.2 Interactive Graph Cuts

The interactive graph cut algorithm, proposed by Boykov and Jolly in [10], for-
mulates the interactive segmentation problem within a MAP-MRF framework
[15], subsequently determining a globally optimal solution using a fast min-
cut/max-flow algorithm. Due to the algorithm’s speed, stability and strong
mathematical foundation, it has become popular and several variants and ex-
tensions have been proposed. The “GrabCut” algorithm [7] and the “Lazy
Snapping” algorithm [16] are two such variants developed by Microsoft. We
used the original algorithm in our experiments.

The algorithm operates by minimizing a cost function that captures both
the hard constraints provided by user interactions, and the soft constraints
expressing the relationships between pixels in the spatial and range domains
of an image. If L = {L,, | p € P} is an object-background labelling of an image
P (i.e. a segmentation), the energy of the labelling can be expressed as the
cost function:

E(L) = Z Dy(Ly) + Z Voa(Lp, L) (1)

peEP (p.9)EN

where D,() is a data penalty function, V,,() is an interaction potential and
N is the set of all pairs of neighboring pixels. The data penalty function rep-
resents a set of hard constraints that control which pixels are required belong



to the object or background, and is derived from the user interactions. The
interaction potential is used to encourage spatial coherence between similar
neighboring pixels.

To minimize (1), the image and user interactions are combined into a weighted
undirected graph. The graph is constructed by adding a node for each pixel
in the image, then connecting each node to its neighbor with a weighted edge
reflecting the similarity between the pixels (the interaction potential). Each
node in the graph is also connected to two special terminal nodes using a
weighted edge reflecting the user interactions (the data penalty function).
Using this graph, an optimal minimization of (1) can be found efficiently
using min-cut/max-flow algorithm described in [17].

Boykov and Jolly also describe a mechanism to encourage disconnected regions
with similar grey-level histograms to be automatically combined. We did not
use this mechanism in our implementation.

2.3 Simple Interactive Object Fxtraction

The simple interactive object extraction algorithm, described in [9], uses the
pixels marked by the user to build a color model of the object and background
regions. It then classifies the pixels in the image as either object or background
based on their distance from this model. The algorithm has recently been
integrated into the popular imaging program GIMP as the “Foreground Select
Tool”.

The algorithm assumes a feature space that correlates well with human per-
ception of color distances with respect to the Euclidean metric. As such, the
first step in the method is to transform the image color into the CIE-Lab space
[14].

Once the image has been transformed into an appropriate color space, the next
step is to generate a color signature [18] for the known object and background
pixels indicated by the user markup. Using the generated color signatures,
represented as a weighted set of cluster centres, the unknown image pixels
are then classified as foreground or background according to the minimum
distance to any mode in the foreground or background color signatures. The
result is a confidence matrix, consisting of a value between zero and one,
zero denoting background, one denoting foreground. In the final stage of the
algorithm, the confidence matrix is smoothed and regions disconnected from
the largest object are removed.



Table 2
The evaluated algorithms and their abbreviated names

Abbreviated Name  Algorithm

SRG Seeded Region Growing

IGC Interactive Graph Cuts

SI0X Simple Interactive Object Extraction

BPT Interactive Segmentation using Binary Partition Trees

2.4 Interactive Segmentation using Binary Partition Trees

The binary partition tree algorithm, initially proposed in [11], and later ex-
panded and improved in [12], transforms a hierarchical region segmentation
into an object-background segmentation by using the user interactions to split
and merge regions in the tree. The algorithm can be adapted to use any au-
tomatic segmentation technique that can be tailored to produce hierarchical
output in the form of a binary partition tree, in which the root node represents
the entire image, and nodes lower down the tree represent regions at increasing
levels of detail, with the leaf nodes being the individual image pixels. In our
implementation we use the RSST [19] based algorithm suggested by Adamek
et al. in [20].

To transform the tree into an object-background segmentation, the algorithm
proceeds as follows. In the first stage, the leaf nodes of the tree are assigned
labels according to the pixels marked by the user as object and background.
The second stage involves propagating the labels upward toward the root of the
tree. Each marked leaf node is propagated toward the root node, labelling each
intermediate node with the same label, until a conflict occurs when a parent
node has already been labelled differently by the current node’s sibling during
a previous propagation stage. In this situation, the parent node is marked as
conflicting and the algorithm proceeds to the next leaf node. This is repeated
for every marked leaf in the tree. In the third stage of the algorithm, each non-
conflicting labelled node is visited, and its label propagated to any unlabeled
child nodes in the subtree.

At this stage in the algorithm, certain subtrees may yet remain unlabeled,
being judged “too different” with respect to the regions defined by the user
markup. The original technique for filling these unlabeled regions, proposed
in [11], contains a flaw [12]. As an alternative approach [12] proposes labelling
each unclassified region with the label of an adjacent but previously classified
region. If there are several such regions, the one with the shortest distance is
chosen. Adamek suggests using the Euclidean distance between the average
colors of the regions in CIELUV space to compute this distance.



3 Evaluation

In this section we will discuss the methods and measures used for the eval-
uation. To effectively evaluate interactive segmentation, we need to consider
three criteria [21]:

Accuracy: the degree to which the delineation of the object corresponds to
the truth,

Efficiency: the amount of time or effort required to perform the segmenta-
tion, and

Repeatability: the extent to which the same result would be produced over
different segmentation sessions when the user has the same intention.

This section is concerned with measuring accuracy; efficiency and repeatability
are considered in section 4 and 5. Nevertheless, it is important to note that for
interactive segmentation the criteria are highly related. In particular, accuracy
and efficiency are interdependent: given more time users can usually produce
more accurate segmentations.

Table 2 contains abbreviated names for each of the previously described algo-
rithms that, for brevity, will be used in the subsequent sections.

3.1 Human Factors

Interactive segmentation is sufficiently different from automatic segmentation
to warrant a distinct approach to its evaluation. The most important differ-
ence between automatic and interactive segmentation algorithms is, of course,
that interactive segmentation algorithms require a human operator. The in-
teractions provided by this operator usually have a pronounced affect on the
resulting segmentation: good markup is usually needed to find a good segmen-
tation. Clearly this is to be expected - if the interactions did not have such
a profound affect on the result, they could be provided automatically, thus
eliminating the need for human supervision.

The introduction of this human operator in the segmentation procedure re-
quires several considerations. The nature of the image regions that human op-
erators typically extract is different from those extracted by automatic meth-
ods. Humans typically desire more complex and meaningful semantic objects:
a tree, a car, a person or a face. Fully automatic algorithms, however, typi-
cally only parse images into regions of homogeneous color or texture, which
may or may not correspond to a semantic object. Also, for many applications,
such as photo-editing, people require very precise objects. For instance, if we
wish to replace the background in an image, the segmented boundary of the



object of interest needs to be highly accurate for the effect to be convincing.
The required accuracy for this kind of application is higher than that usually
required by applications that use automatic segmentation, such as multimedia
indexing and retrieval.

The necessity for accurate semantic objects has direct consequences for eval-
uation. The accuracy requirement means that the measures we use to gauge
performance must be sufficiently sensitive to any noticeable variation in ob-
ject boundary precision. The need for semantic objects means unsupervised
evaluation techniques [4] and measures of empirical goodness are inappropri-
ate: the features that characterize good semantic objects are decidedly more
difficult to measure without ground-truth than those that characterize good
homogeneous regions.

3.2  BEvaluation Measures

As unsupervised evaluation techniques are inappropriate for interactive seg-
mentation, we will use supervised evaluation. This necessitates the creation of
a ground-truth dataset for the evaluation. Further details of the ground-truth
dataset we developed are discussed in section 4.2, however, we will discuss
one aspect in this section, as it is pertinent to the evaluation measures we
develop. The creation of a pixel accurate ground truth is, in general, impos-
sible for natural images; alpha blending of pixels along the edges of objects
make the true border position unattainable with absolute certainty. Our per-
formance measures therefore need to balance the need for sensitivity to border
variation with the inherent uncertainty in the boundary pixels of objects in
the ground-truth.

Aside from the imprecise nature of the object border pixels, it is also intu-
itively desirable for any measure we use to penalize a small imprecision near
the object border less than, say, a large hole or missing piece of the object. Fur-
thermore, as the objective of interactive segmentation is typically to extract
some perceived object from a scene, our evaluation measures should reflect in
some sense, the perceived accuracy of the segmentation i.e., there should be a
correlation between measured accuracy and perceived accuracy.

Additionally, it is also valuable to have an evaluation measure that is easy
to interpret and compare. As such, it is desirable for any measure we use to
be appropriately normalized in the interval [0..1]. For consistency, we define
all employed measures as similarity functions (performance indicators): values
closer to 1 indicate a better segmentation.



(a) (b) (c)

Fig. 1. The internal border pixels of two similar objects (a), (b), and the pixels
they have in common (c). The binary Jaccard accuracy measure Ap is only 0.1.
The fuzzy Jaccard measure for the same objects Ap is 0.85 when the bandwidth
parameter o = 4.

3.8 Boundary Accuracy

We now develop a means of measuring object boundary accuracy against a
ground-truth. Let v € Z? be any pixel inside the ground-truth object, and
Go = {v} be the set of all of these pixels. Similarly, define My to be the
set of all pixels in the machine-segmented object. Gz and Mp denote the
complements of these sets. Let Ny be the standard set of 8-neighbors of any
x € Z2. The internal border pixels for the ground-truth object are defined as
the set Bg, and for the machine-segmentation, the set B), as follows:

BG:{X:XEGo/\NxﬂGB#@} (2)
BM:{XZXEM(Q/\NXQMB#@} (3)

Given the above definition of the border pixels, we could compute a measure
of the accuracy of the border pixels as follows:

o |BG ﬂ B]\,,[’

Ap = |Be U By

(4)

Note that the value Ap is equivalent to the well known Jaccard index [1].
Unfortunately, due to the previously discussed ambiguity in the positions of
the boundary pixels in the ground-truth, the value of Ag will typically be
excessively low. This is demonstrated in Figure 1. The object borders in 1(a)
and 1(b) seem to be reasonably similar. Nevertheless, Figure 1(c) shows that
the binary overlap between the pixels is quite small, resulting in a Jaccard
index Ap = 0.1. An additional problem is that small imprecisions near the
object borders are penalized in equal measure to holes or missing pieces of the
object.

To adapt the Jaccard index so that it is more appropriate for our purposes,
we need to introduce some tolerance to error near the border pixels. A natural
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(c)o=4 (d)o=6

Fig. 2. Representation of the fuzzy membership function for different bandwidth
parameters o = {1,2,4,6}

way of accomplishing this is to extend the definition of our sets of border
pixels Bg and By using fuzzy-set theory [22] so as to capture the intrinsic
uncertainty in the edge positions.

Of course, the degree of uncertainty, or tolerance, needs to be specified. Hence,
it is necessary to introduce a parameter that quantifies the uncertainty, which
we will denote ¢. Using this bandwidth parameter, we propose to “fuzzify”
the border pixel sets using the following Gaussian form:

202

% = arg min |[x — y]| (6)

Be(x) = exp (—HX_XHQ> (5)

The fuzzy set for the border of the machine segmentation By is similarly
defined. The above definition effectively sets Bg(x) = 1 for all x € Bg with
values decreasing with the Euclidean distance of x from B at a rate controlled
by the bandwidth parameter o. Moreover, the exponential function causes the
value of Bg(X) to approach zero for pixels that are a large distance from the
border. This effect can be interpreted to mirror the saturation that has been
observed in the human visual system: it is easier for us to quantify small errors,
but more difficult for larger ones. A representation of the function for different
bandwidth parameters is shown in Figure 2.

11



Given the above fuzzy sets of border pixels BG and B v, we can reformulate
the Jaccard index using fuzzy set theory as follows:

- zxmin(BG(x),gA;(X)) (7)

A = 3 max(Bo(x), Bar(x)

The above formulation is already normalized in the desired range [0..1], and
takes the value 1 only for an exact match. Like the binary Jaccard index, the
measure is symmetric, however, in contrast to the binary set formulation, close
matches are now penalized proportional to the bandwidth parameter o. Also
as sigma approaches zero, Ag approaches the binary Jaccard index.

3.4 Object Accuracy

When considering the entire region accuracy, as opposed to the accuracy of
the border, it is less important to “fuzzify” the evaluated sets. For regions,
small inaccuracies around the border tend to be offset by larger overlapping
areas, whereas for borders, the sets, even those very nearby spatially, may not
strictly overlap at all. As such, we employ the previously described binary
Jaccard index to measure the object accuracy. This is consistent with our
border accuracy measure, and also has the advantage of allowing the results
presented herein to be directly comparable with previous work in segmentation
evaluation, such as [1,3,24]. The object accuracy measure is given by:

_|Go N M|

A e Zol 1ol
27 1Go U Mo|

3.5 Choosing Sigma

The fuzzy boundary accuracy measure requires appropriate selection of a
bandwidth parameter o to regulate its sensitivity to error. The parameter
should be chosen to reflect the degree of uncertainty of the object border pix-
els in the ground-truth. If the bandwidth parameter is too small, the measure
becomes over-sensitive to inaccuracies in the ground-truth, and will not reflect
the perceived border accuracy. If the parameter is too large, the measure will
not be sensitive enough to capture noticeable differences in precision.

For our experiments we chose a bandwidth parameter o = 4. Using this value,
pixels with a Euclidean distance less than 3 from the boundary are considered
over 75% inside the boundary set, and pixels with a distance greater than 8

12



Table 3
Evaluation measures and their symbols

Ao Object accuracy (Jaccard index)

Ap Boundary accuracy (Fuzzy Jaccard index on border pixels)

Ap Binary boundary accuracy (Binary Jaccard index on border pixels)
Pr Precision

Re Recall

RZL Rand Index

are less than 15% inside. The value was chosen empirically, based on a simple
experiment. In the experiment, two different segmentations of the same object
were chosen, one with a higher perceived accuracy than the other. For the two
segmentations, the fuzzy boundary accuracy measure was computed using
increasing values of sigma. From the resulting series, o was chosen such that
the difference between the computed values was consistent with the perceived
difference in accuracy. The experiment was repeated several times with the
value 4 giving the most consistent result.

3.6 Other Measures

To validate the effectiveness of the selected measures, we also computed some
other popular measures for comparison, including precision, recall and the
Rand index [25]. The computed evaluation measures and the corresponding
symbols that will be used in the remainder of the text are shown in Table 3.

4 Experiment

In this section we discuss the evaluation experiment, detailing information
about the participants involved, the software and ground-truth used, and the
experiment setup and deployment strategy. To create an effective experiment
plan, we will refer again to the three evaluation criteria from the beginning of
section 3: accuracy, efficiency, and repeatability; all three have repercussions
for the experiment setup.

To effectively measure accuracy, the ground-truth must be as precise as pos-
sible; errors in the ground-truth directly affect the accuracy benchmarks. To
effectively measure efficiency, changes to the segmentation need to be recorded
as new refinements are added by the user over time. Accuracy and time are
dependent; accuracy needs to be viewed as a function of time. Furthermore,

13
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The segmentation mask is overlaid ground region (gray) is suppressed.

semi-transparently.

Fig. 3. Screenshots of the Interactive Segmentation Tool (on the Linux platform)

it is prudent to prevent users spending too much time refining a segmenta-
tion. This is justified: the primary purpose of interactive segmentation is to
provide an accurate segmentation faster than it would take to produce it by
hand. To effectively measure repeatability, we need to ensure we have a suf-
ficient number of participants; if we use enough participants to segment each
image several times, then on average algorithms with good repeatability will
benchmark higher than will algorithms with poor repeatability:.

4.1  Software

It is important to provide a single user interface with consistent capabilities
for the experiment, allowing participants to segment the relevant objects in
a uniform way using different algorithms. To this end, we developed a stan-
dalone scribble-based interactive segmentation application. The tool supports
any segmentation technique that can be adapted to use a scribble driven inter-
action paradigm for providing iterative updates. All four algorithms discussed
in section 2 are fully integrated. Screenshots of the tool are shown in Figure 3.

To extract and object from an image, users mark foreground pixels using the
left mouse-button, and background pixels using the right mouse button, or
by using the left-button while depressing the Ctrl key. As each interaction is
provided the corresponding segmentation mask is updated. The segmentation
can be visualized within the tool in various ways, including: a hybrid-view
showing the segmentation mask transparently overlaid on the image, a view
showing the object borders, and a view of the object with background elements
removed.

The tool itself was developed as a general purpose application — we envisioned
its utility would go beyond the experiment described in this paper. To sup-
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Fig. 4. Screenshot of the interactive segmentation tool in experiment mode

port the constraints of the experiment an “experiment mode” was, however,
included. In this mode the relevant algorithm is selected and locked auto-
matically for the participant. The participant is shown an image and a short
description of the object they are required to extract. When the participant
clicks on Start, a timer begins a countdown, giving the user a finite period
to extract the object as best they can using the current algorithm. The tool
stores each segmentation mask and a corresponding timestamp as new refine-
ments are added, forming a progressive collection of segmentations over time.
When the user finishes, or the time elapses, the next image and description
are displayed. The process repeats until the experiment is completed. Figure 4
shows an example of the application in experiment mode.

In addition to the base functionality required for the experiment, we also
considered it important in a realistic evaluation to provide features that are
typically found in other modern graphics packages. As such, several other
features were included, including zooming, undo/redo support, and altering
the markup brush size.

The interactive segmentation tool, complete with the four algorithms de-
scribed in the paper, is available for public download from our website. It
is compatible with Linux, Windows and Mac OS X.

4.2 Ground-Truth

The images we used to compile the dataset for the experiments were taken
from the publicly available Berkeley Segmentation Dataset [23]. The compiled
dataset consists of 100 distinct objects selected from 96 of the 300 images
in the Berkeley set. These images were chosen so that each image had one
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Table 4
Experiment variants with ground-truth set and algorithm assignments.

Variant Ground-Truth Set
A S So Ss Si
B So Ss Sy St
C Ss Sy S1 So
D Sy S So S3
Algorithm Aq Ay Az Ay

i.e., variant B uses ground-truth set S; with algorithm A;, ground-truth set S3
with algorithm As, S, with Az, and S; with Ajy.

or more objects that could be unambiguously described to participants for
extraction. Care was also taken to select images that were representative of
a large variety of segmentation challenges, such as texture, camouflage and
various lighting conditions.

To ensure the highest possible accuracy, the ground-truth was created entirely
by hand; no semi-automatic technique was used. This was also important to
avoid potential bias to any algorithmic facet of the procedure used to create it.
The object extraction was performed by marking pixels on the object border
using a graphics tablet, and subsequently filling the object interior. The result
is a series of binary masks, one for each object in the dataset, where zero
valued pixels denote the background and non-zero valued pixels denote the
object.

As noted in section 3, creating a 100% pixel accurate ground-truth is, in
general, impossible, due to the ambiguity in the true positions of the border
pixels. It is necessary, however, when creating a binary ground-truth to decide
which pixels belong to the object and which pixels belong to the background.
To handle this ambiguity in the object border pixels, a simple heuristic was
applied: retain pixels that appear to contain some of the objects color along
the object border, and that do not appear to be image compression artifacts.
This heuristic was chosen so that each pixel along the border would be, on
average half-inside and half-outside the the true form of the foreground object.

Each object mask was annotated with a description of the object in the image
to which it relates. The full ground-truth dataset, including object masks and
descriptions, is publicly available for download from our website.
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(a) Task Image (b) Expected object

Fig. 5. Sample task image and the expected object. The task description is “Extract
the person, hat and bucket from the background.”

4.8 Setup

A total of 20 volunteers participated in the experiment. Most of the partic-
ipants were computer science or engineering graduates. Some of the partic-
ipants were familiar with image processing and information retrieval tech-
niques, however, none had any particular expertise in interactive segmenta-
tion. Each participant was given a user guide and sufficient time to familiarize
themselves and become proficient with the software that would be used for the
experiment. Sample images were provided for training, however, participants
were not given access to the experiment dataset.

We considered it overly demanding to ask each participant to extract the
entire set of 100 objects using all 4 segmentation algorithms. We therefore
divided the ground-truth randomly into 4 equally sized sets {Si,Ss,S3, S4}
each containing 25 tasks. Each participant was given the task of segmenting
the sets using a different algorithm for each set, resulting in a total of 100
tasks (as opposed to 400). Denoting the algorithms {A;, As, A3, A4}, this gives
4 experiment variants, as shown in Table 4.

By distributing experiment variants to participants equally, we ensure that
every image is segmented at least b times by each algorithm. Thus, we can
minimize the affect of an individual’s markup skills and other human influ-
enced variation by computing the average of the resulting benchmarks across
segmentations of the same image with the same algorithm by different users.
Repeatability is therefore implicitly evaluated: if a good segmentation is not
repeatable by multiple users, the average evaluation measure will be lower.

The experiment proceeds as follows. Each task is presented to the user in the
form of an image and task description. The image, of course, contains the rel-
evant object, and the task description expresses as unambiguously as possible
the part of the image to be extracted. Figure 5 presents a typical task, the cor-
responding description, and the expected object. Users are required to study
the image and description and when ready, click on a Start button, and begin
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to extract the object as accurately as they can by marking areas of the image
as foreground or background with the mouse. Since it is possible to achieve
near perfect accuracy by manually segmenting an object (i.e. without the aid
of interactive segmentation algorithms) when given an arbitrary amount of
time, the usefulness of an interactive segmentation algorithm is in its ability
to create a reasonably accurate segmentation in a significantly shorter times-
pan. For this reason, and to prevent some participants expending much more
effort in improving their final segmentation than others, it is important to
impose a reasonable time limit. We therefore restrict users to a maximum of
2 minutes per object. They may, however, proceed to the next task earlier if
satisfied with their segmentation.

After the participant has finished extracting an object, they are asked to fill
out a short questionnaire. The questionnaire was designed to coarsely assess,
in subjective terms, how difficult the users found the segmentation, what they
considered to be the primary causes of any difficulties, and how accurate they
perceived their final segmentation to be. Users are asked to rate how difficult
they considered the task on a scale of 1 to 5, rate how accurate they considered
their segmentation on a scale of 1 to 5, and to check a series of boxes indicating
what they perceived to be the primary causes of any difficulty encountered.
These checkboxes corresponded to low-level image features, such as color,
texture, and object size.

When the entire set of 25 objects are extracted, participants are requested
to rate the segmentation algorithm that they just used, again on a scale of 1
to 5. Once completed, the software automatically selects the next algorithm
and participants proceed to extracting the next 25 objects. The experiment
continues thus until all objects are extracted.

4.4 Deployment

The experiments were carried out by each user independently, and in their
own time. Experiments took about 3 hours each to complete. Participants
were permitted to take breaks between tasks: a continuous sitting was not
required.

To ease deployment of the experiment, and efficiently collect the results, a
deployment tool was created. When executed the tool prepares the user’s
system for the experiment as follows:

(1) Information identifying the participant is collected.

(2) The image and ground truth data files are automatically downloaded from
a central server. These are placed in a known location on the participant’s
machine.
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Table 5
Overall average boundary accuracy and object accuracy

Boundary Accuracy Ap Object Accuracy Ao
Algorithm Best Final Best Final
BPT 0.78 0.78 0.93 0.92
IGC 0.78 0.77 0.93 0.92
SRG 0.70 0.70 0.88 0.88
SIOX 0.64 0.64 0.85 0.85

(3) The deployment tool contacts a web-service running on the server, which
assigns a particular experiment variant to the user. The web service main-
tains a database of participant-variant pairs, and assigns the variant using
a round-robin system, to ensure equal coverage of each of the 4 task sets
with all corresponding algorithms.

(4) Experiment files compatible with the segmentation tool are generated
and the user is instructed to begin the experiment.

The deployment tool also displays the relevant questionnaire pages to the user
at each stage of the experiment, and stores the answers. When the experiment
is complete, all data generated by the segmentation tool and the deployment
tool is automatically compressed and uploaded to the server for analysis.

5 Results & Analysis

All 20 participants completed the experiment in full, resulting in over 40 000
segmentation masks being collected for evaluation. In this section we present
the results of the evaluation, and discuss their implications. To give a high-
level idea of the accuracy and efficiency of the algorithms, we first describe the
overall average accuracy (with respect to the measures discussed in section
3) and the overall average time required to perform the segmentation with
each algorithm. We then present average accuracy as a function of time, to
attain a better understanding of the characteristics of each algorithm. Next we
discuss perceived accuracy, as specified by participants in the questionnaires,
and its significance. Finally, we show the correlations between the computed
evaluation benchmarks and perceived accuracy.
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Table 6
Average time required for users to achieve their best accuracies and average total
time used to complete a task (seconds).

Algorithm Best Ap Best Ap Final/Total
BPT 59.76 59.09 64.25
I1GC 62.93 62.53 66.43
SI0X 69.88 68.90 73.08
SRG 80.77 80.73 85.32

5.1 Object & Border Accuracy

Using the object and boundary accuracy measures discussed in section 3, for
each algorithm evaluated we measured:

e The average final segmentation accuracy: the object and boundary accuracy
measured when the participant was finished the segmentation or the allo-
cated time elapsed, averaged over all objects from the same segmentation
algorithm.

e The average best segmentation accuracy: the best object and boundary
accuracy achieved per object, averaged over all objects from the same seg-
mentation algorithm.

The resulting values are shown in Table 5. From the Table it is clear that the
best performing algorithms, in terms of measured accuracy, are the BPT and
IGC algorithms, which perform equally well on average. The SIOX algorithm
is the poorest; this is perhaps due to the difficulty, noted by some participants
in the questionnaires, of producing any reasonably accurate segmentation for
some images in the dataset.

In addition to accuracy, it is also critical to measure time when evaluating in-
teractive segmentation: given enough time arbitrary precision can be achieved
manually. Table 6 shows, for each algorithm, the average time required until
a user attains their best object and boundary accuracy for an image, and the
average total time spent per image. From this, we can see that users spent the
least amount of time with the BPT algorithm, and the most with the SRG
algorithm.

The times given in Table 6 are, however, likely achieved at varying accuracies
for each individual algorithm. Thus, the table only gives an overview of the
typical time required to achieve the best possible result with each algorithm.
By observing the average measured accuracy across time for each algorithm,
we can get a better idea of the time-accuracy characteristics of each of the
algorithms. Since time and precision are dependent, this provides the most
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useful illustration of an algorithms performance. Figure 6 demonstrates the
relationship for the each of the four algorithms.
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Fig. 6. Average accuracy displayed over time
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Fig. 7. Results of user feedback

Several observations can be drawn from the figure. We see that the SIOX
algorithm gives the best initial segmentation. After 5-10 seconds however,
the BPT and IGC algorithms surpass the performance of SIOX, obtaining
a wide margin of improved accuracy after 30 seconds. The SRG algorithm
performs poorest initially, but also obtains better accuracy than SIOX after
approximately 40 seconds. This implies that although SIOX gives a superior
initial guess, it is one of the least responsive algorithms: it tends to inhibit
iterative improvement.

The BPT and IGC algorithms have comparable performance throughout. The
IGC algorithm gives a better initial guess, but the BPT algorithm outper-
forms it marginally thereafter for a term; after approximately 50 seconds the
difference in average precision between the two is negligible.

It is also worth noting that the two accuracy measures are well correlated.
The Pearson correlation coefficient for the two measures, computed over all
recorded measurements, is 0.834. The measures also demonstrate high rank
correlation: Spearman’s p coefficient over all recorded measurements is 0.823.

5.2 Perceived Accuracy

To measure perceived accuracy, participants were asked to rank how accurate
they perceived their final segmentation on a scale of 1 to 5: 5 meaning highly
accurate, and 1 meaning highly inaccurate. Figure 7(a) shows the results of
the survey. The results agree with the average measured accuracies from Table
5. We also asked users to rank each of the algorithms on a scale of 1 to 5, again
higher ranks indicating better performance. The resulting average ranking is
shown in Figure 7(b).

Interestingly, more users preferred the IGC algorithm to the BPT algorithm,
despite the observation that the IGC algorithm slightly underperforms the
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Fig. 8. Preferred algorithm as voted by users

BPT algorithm for the time period shown in Figure 6. Potential reasons for
this are explored in the next section.

5.3 User Feedback

In addition to asking participants to rank the the accuracy of their final seg-
mentations in the questionnaires, we also asked participants to comment on
each of the evaluated algorithms. This included asking participants: which al-
gorithm they preferred, what they believed were the strengths and weaknesses
of each, and if they had any other general remarks or comments. Figure 8 shows
the distribution of votes given by users for their preferred algorithm.

By observing Figure 7(b) and Figure 8, it is clear that most users preferred the
IGC algorithm, despite their comparable performance in terms of their time ac-
curacy profiles (Figure 6). Analysis of the user comments revealed an interest-
ing explanation for the discrepancy — the algorithms behavioral predictability.
The IGC algorithm tends to behave more conservatively than BPT: additional
interactions tend to produce small predictable changes, whereas larger more
unpredictable changes can sometimes occur with BPT. This gives the BPT
algorithm the potential to improve its segmentation faster than IGC, but may
also induce the perception of erratic behavior.

From the comments it was clear that participants strongly preferred more
conservative algorithms. For the IGC algorithm, users remarked that the al-
gorithm “reacted well to local changes, without causing too much global de-
formation.” They liked that “small localized scribbles only have a local effect.”
Conversely, users disliked algorithms in which small additions to the markup
could cause large differences to the segmentation. Commenting on the SRG al-
gorithm one user complained that “adding one scribble can completely change
the segmentation.” This apparent erratic behavior was also noted by partic-

23



ipants with regard to the BPT and SIOX algorithm, and is likely the reason
why many participants preferred the IGC algorithm to the BPT algorithm.

Another issue commonly indicated as important in the feedback was algorithm
responsiveness. Participants, in general, disliked algorithms that made it diffi-
cult for them to refine their segmentation. This was the most common reason
that users cited for disliking the SIOX algorithm: although it was sometimes
“very quick to capture initial object,” “if it doesn’t find the correct boundary
in the beginning, then it is simply impossible to refine.” The comments re-
vealed that many users become quickly frustrated with algorithms that make
it difficult to add iterative refinements to their segmentation. This is further
reinforced by comparing the time spent on each task with the rankings given:
users prefer using algorithms that require longer to segment an object, but al-
low iterative improvements (SRG), than using algorithms that make a better
initial guess, but make improvement more difficult (SIOX).

Similar observations have also been made when evaluating other interac-
tive systems. Koenemann and Belkin [26] showed that users perform better
when using information retrieval systems if they understand the underlying
relevance-feedback mechanism. They also point out that users subjectively
preferred more transparent systems. This is related to behavioral predictabil-
ity - systems that are easier to understand are easier to predict. As a design
principal for creating semi-automatic annotation interfaces, Suh and Beder-
son [27] propose that users should be in control at all times, and that systems
should not hamper a users freedom to make manual annotations. This propo-
sition is supported by the comments made by our users when the algorithms
provided inadequate response to their attempted refinements.

In the feedback, participants not only identified properties of interactive seg-
mentation algorithms that they felt were important, but also identified specific
image features that appeared to cause difficulties. Two image features in par-
ticular were recognized as a source of difficulty for all of the algorithms eval-
uated: texture and object-detail. Users commented that the algorithms were
often “confused by texture,” and had “difficulty with very fine details.” The
problems with texture are expected: none of the algorithms explicitly use tex-
ture features. The problems with segmenting edge detail are often related to
contour smoothing performed by algorithms to prevent jagged object bound-
aries, which tend to be visually disturbing. Interestingly, one participant rec-
ognized this link between object detail and boundary jaggedness, suggesting
that “there could be a boundary smoothness tool to control the jaggedness of
a region.”
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Table 7
Correlation of measured and perceived accuracy

Correlation Coefficient Kendall’s 7
Ag 0.679 0.494
Ao 0.669 0.516
Ap (binary) 0.606 0.445
Pr 0.564 0.448
Re 0.469 0.382
RI 0.375 0.350

5.4 Validation

To demonstrate the benefits of the proposed measures we compare our sug-
gested benchmarks, and several other popular measures, with perceived ac-
curacy as indicated by the participants. For the comparison, we computed
two measures of correlation between measured accuracy and perceived accu-
racy, specifically: the (Pearson product-moment) correlation coefficient, and
Kendall’s tau [28] rank correlation coefficient. Kendall’s tau is a measure of
the strength of association of cross tabulations, and has values in the interval
[—1,1], where 1 indicates perfect agreement and -1 perfect disagreement.

Instead of computing the correlation coefficients directly against all the per-
ceived and measured accuracies for all final segmentations, we first average the
values for the same segmentation of the same image (with the same algorithm)
for different users. This pre-averaging helps to mitigate outliers, and was moti-
vated by the fact that participants expressed that they had either made some
errors in the questionnaires, or had mis-read some of the task descriptions.

The resulting correlation values are shown in Table 7. The values show that the
suggested object and boundary accuracy measures are more closely correlated
with human perception than are the other tested measures, with boundary
accuracy Apg having a higher correlation coefficient and object accuracy Ag
having a higher value of Kendall’s tau. Furthermore, the proposed fuzzy ver-
sion of boundary accuracy is also better correlated with perceived accuracy
than the binary case Ap for both coefficients.

6 Conclusion & Future Work

In this paper we have presented a comparative evaluation of four interactive
segmentation techniques. This evaluation was carried out in the form of a
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user experiment in which 20 participants were asked to segment objects using
different interactive segmentation algorithms. To support the experiment, we
developed a consistent user interface for hosting scribble driven interactive
segmentation algorithms, that also supports the most important features of
other image editing tools. We selected a set of 100 objects from a publicly
available dataset, containing a good cross-section of segmentation challenges.
These images were then manually segmented, and annotated with unambigu-
ous descriptions of the desired objects.

We selected two measures for evaluation: the Jaccard index to measure object
accuracy, and a new fuzzy Jaccard index to evaluate boundary accuracy. Ob-
ject segmentation masks were stored after each participant performed a new
interaction, and the accuracy benchmarks were computed against each stored
mask. The resulting plots of average accuracy over time demonstrated that
the two most effective techniques were the interactive graph cuts algorithm
and the binary partition tree algorithm.

In addition to measuring accuracy against a ground-truth, participants were
asked to rank the accuracy of each final segmentation. The results of this
ranking was observed to correspond well with the average measured accu-
racy. Furthermore, the correlation between perceived accuracy and measured
accuracy was shown to be higher for the proposed measures than for other
commonly used measures, including precision, recall and the Rand index.

The interactive segmentation tool, complete with the four algorithms from
this paper, and the ground-truth dataset have been made available online for
download. We hope that others will find these resources valuable, and allow
authors to more easily evaluate their interactive segmentation algorithms in
the future. The website URL is given in the appendix.

In the future, we would like to expand on the work presented here by develop-
ing a new interactive segmentation technique. Specifically, one that explicitly
considers texture, a feature neglected by the algorithms tested, and to de-
termine if this new algorithm is an improvement on the state-of-the-art by
evaluating it with the described framework.

Additionally we would like to further explore the influence of the bandwidth
parameter on the fuzzy boundary accuracy measure. In particular, it may be
useful make the parameter a function of object size.
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Appendix

To download the interactive segmentation tool or the ground-truth dataset,
please visit:
http://kspace.cdvp.dcu.ie/public/interactive-segmentation.
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