
PREPRINT

Helge Langseth and Thomas D. Nielsen:

Latent Classification Models for Binary Data

Cite as: Helge Langseth and Thomas D. Nielsen:
Latent Classification Models for Binary Data
Pattern Recognition (To appear)

Date: 30/01 2009

"

!

Latent Classification Models for Binary Data

Helge Langseth
Department of Information and Computer Sciences,
Norwegian University of Science and Technology,

N-7491 Trondheim, Norway

Thomas D. Nielsen
Department of Computer Science,

Aalborg University,
DK-9220 Aalborg, Denmark

May 7, 2009

Abstract

One of the simplest, and yet most consistently well-performing set of classifiers is the
näıve Bayes models (a special class of Bayesian network models). However, these models
rely on the (näıve) assumption that all the attributes used to describe an instance are
conditionally independent given the class of that instance. To relax this independence
assumption, we have in previous work proposed a family of models, called latent classifi-
cation models (LCMs). LCMs are defined for continuous domains and generalize the näıve
Bayes model by using latent variables to model class-conditional dependencies between
the attributes. In addition to providing good classification accuracy, the LCM model has
several appealing properties, including a relatively small parameter space making it less
susceptible to over-fitting. In this paper we take a first-step towards generalizing LCMs
to hybrid domains, by proposing an LCM model for domains with binary attributes.
We present algorithms for learning the proposed model, and we describe a variational
approximation-based inference procedure. Finally, we empirically compare the accuracy
of the proposed model to the accuracy of other classifiers for a number of different domains,
including the problem of recognizing symbols in black and white images.

1 Introduction

Classification is the task of predicting the class of an instance from a set of attributes de-
scribing that instance, i.e., to apply a mapping from the attribute space into a predefined set
of classes. When learning a classifier we seek to find such a mapping based on a database of
labelled instances. Classifier learning, which has been an active research field over the last
decades, can therefore be seen as a model selection process where the task is to find the single
model, from some set of models, with the highest classification accuracy.

One of the simplest and yet still well-performing set of classifiers is the näıve Bayes model
[1, 2]. Generally, in the näıve Bayes models all attributes are assumed to be conditionally

1

independent given the class variable. This assumption is clearly violated in many real world
domains, and it has inspired several extensions of the basic model. These extensions can
roughly be characterized as either (i) using a set of models that admits a more general
correlation structure or (ii) relying on a preprocessing of the data. As an example of the
former, Friedman et al. [3] propose the tree augmented näıve Bayes (TAN) model; in the TAN
framework, each attribute is allowed to have at most one parent besides the class variable.
Another approach is to preprocess the data before learning the classifier s.t. the transformed
data abides to the independence assumptions of the model class. This approach has been
pursued by e.g. Bressan and Vitria [4], who consider applying a class conditional independent
component analysis [5] and then using a näıve Bayes model on the transformed data.

Transforming the data to fit the independence assumptions needs not be performed as a
filtering step (independent of the classifier), but can instead be integrated into the model
structure. This is, for example, the approach implemented in the framework of latent clas-
sification models [6]. In a latent classification model (LCM), the conditional dependencies
among the (continuous) attributes are encoded using latent variables, which allow the model
to be interpreted as a combination of a näıve Bayes model and a mixture of factor analyzers
[7]. Besides providing a high classification accuracy, the parameter space of LCMs is also rel-
atively small making the model less susceptible to overfitting [8]. Moreover, the use of latent
variables provides a well-defined semantics and a transparent model structure that admits
analysis.

In this paper we propose an extension to our previous work on latent classification models
[6]. Compared to LCMs, which target domains containing continuous attributes only, the
present paper introduces binary LCM (bLCM), which takes a first step towards general hybrid
domains by focusing on domains with binary attributes. More specifically, the bLCM model
shares the latent structure of the original LCM model, but instead of focusing on continuous
attributes the bLCM model assumes all attributes to be binary. We describe algorithms
for doing both learning and inference in bLCMs, and we present promising results from a
comparison of the classification accuracy of the proposed classifier and the accuracy of other
classifiers in these types of domains.

2 Notation

In the context of classification, we shall use {T1, . . . , Tn} to denote the attributes describing
instances to be classified; when considering continuous domains we let sp (Ti) = R and when
focusing on binary domains we let sp (Ti) = {0, 1}, for all 1 ≤ i ≤ n. Furthermore, we shall
use Y to denote the (discrete) class variable, where sp (Y) is the set of possible classes (for
notational convenience we also assume that sp (Y) = {1, 2, . . . , |sp (Y)|}).
When doing classification in a probabilistic framework, a Bayes optimal classifier will classify
a new instance t = (t1, . . . , tn) to class y∗ according to

y∗ = arg min
y∈sp(Y)

∑

y′∈sp(Y)

L(y, y′)P (y′|t), (1)

where L(·, ·) is the loss-function, see e.g. [8, 9, 10]. An example of such a loss-function is
the 0/1-loss, where L(·, ·) is defined s.t. L(y, y′) = 0 if y = y′ and 1 otherwise. When

2

learning a probabilistic classifier, the task is therefore to learn the probability distribution
P (Y = y|T = t) from a set of N labeled training samples DN = {D1, . . . ,DN}, where
Di = (ti1, . . . , t

i
n, yi) is a configuration over the attributes together with a class label.

3 Binary Latent Classification Models

As mentioned in Section 1, one approach for handling the conditional dependencies between
the attributes is to perform a data transformation within the classification model. For exam-
ple, the LCM model [6] embeds a factor analysis (FA) model, which makes a dimensionality
reduction based on the covariance structure of the data; the data relevant for classification
is thus summarized by a collection of continuous latent variables. The model proposed in [6]
is restricted to continuous domains, but in this paper we take a first step towards a gener-
alization to hybrid domains. Particularly, we shall consider the case where all attributes are
binary, resulting in the so-called bLCM model.

In what follows we give a brief description of the LCM model, and after that the bLCM model
is introduced.

3.1 The LCM Model

The LCM model can roughly be seen as combining an FA model with a näıve Bayes model.
The FA model describes the attributes, T , using a q-dimensional vector of factor variables X

(with q ≤ n) and by assuming the generative model

T = WX + ǫ,

where W is the regression matrix. In its most common setting, the FA assumes X ∼ N (0, I),
and ǫ ∼ N (0,Θ) is an n-dimensional random variable with diagonal covariance matrix Θ,
leading to the assumption that T follows a Gaussian distribution as well. In this model, the
factor variables model the dependencies among the attributes, and ǫ is interpreted as the
sensor noise associated with the attributes. In the LCM setting, the FA model was extended
to suit classification by specifying a class-conditional prior distribution for the latent variables
X, i.e., X |{Y = y} ∼ N (µy,Γy), where Γy is a diagonal matrix (see Figure 1).

X1 X2

T5T4T3T2T1

Y

Figure 1: The Bayesian network representation of an LCM with n = 5 attributes and q =
2 latent variables. Note that all latent variables as well as the attributes are continuous
(indicated by double circles).

3

3.2 The bLCM Model

The factor analysis setup used in [6] has many desirable properties, including a relative small
parameter space and a robust and simple parameter estimation procedure (based on the
maximum likelihood principle [11]). When generalizing the LCM model to discrete domains
we still assume continuous latent variables, resulting in a so-called latent trait model [12].1

That is, we assume that there exists a vector X of latent variables and local probability
distributions P (ti|X = x) such that

P (t, y) = P (y)

∫

Rq

f(x|y)

n∏

i=1

P (ti|x) dx.

Analogously to LCMs, a bLCM can be seen as combining a latent trait model with a näıve
Bayes model. Hence, the factor variables X appear as children of the class variable in the
graphical representation of the model (see Figure 2). More specifically, the variables can
be partitioned into three disjoint subsets: {Y } is the class variable, T is the set of binary
attributes, and X is the set of latent variables (X has the same role as the factor variables in
an FA). In a bLCM the class variable appear as root, T constitute the leaves with only latent
variables as parents, and the latent variables are all internal having the class variable as parent
and the attributes as children. Note that in a bLCM, the latent variables are conditionally
independent given the class, but marginally dependent (see Figure 2).

For the quantitative part of the bLCM, we assume that:

• The class variable, Y , follows a multinomial distribution, i.e., P (Y = j) = pj, where

1 ≤ j ≤ |sp (Y)|, pj ≥ 0 and
∑|sp(Y)|

j=1 pj = 1.

• Conditionally on Y = j the latent variables X, follow a Gaussian distribution with
E [X|Y = j] = µj and Cov (X|Y = j) = Γj . Moreover, it follows from the model
structure that Γj has to be diagonal (meaning that Xk⊥⊥Xl |{Y = j}, for all k 6= l and
for all j = 1, . . . , |sp (Y)|).

• For each Ti there exists a vector wi ∈ R
q and a parameter bi ∈ R that together take a

vector of (unobservable) latent variables and maps it to the log-odds of the (observable)
attribute:

wT

i x + bi = log

(
P (Ti = 1|x)

P (Ti = 0|x)

)
.

We define g(v) = (1 + exp(−v))−1, and have that

P (Ti = ti|x) = g ((2ti − 1)(wT

i x + bi)) ,

for ti ∈ {0, 1}.

1Some researchers assume the latent variables to be discrete and thereby define a discrete FA, see e.g. [13].

4

X1 X2

T5T4T3T2T1

Y

Figure 2: A graphical representation of a bLCM with d = 5 attributes and q = 2 latent
variables. Note that all latent variables are continuous, whereas the attributes are binary.

3.3 The Mixture Model

When we consider the bLCM model definition above, it is important to emphasize that
the attributes are assumed conditionally independent of the class variable given the factor
variables (T⊥⊥Y |X), and that the same mappings, wi, from the latent space to the attribute
space is used for all classes. Thus, the relation between the class variable and the attributes is
conveyed by the latent variables only, i.e., the latent variables summarize all the information
from the attributes which is relevant for classification. Unfortunately, as we shall see in the
following example, these independence assumptions may severely restrict the expressive power
of the model. As described in Section 4, the marginal distribution of X cannot be expressed
in closed form, thus making a formal analysis of model expressiblity difficult. Examples 1
and 2 are therefore used only as qualitative motivation for the forthcoming definition of the
full model.

Example 1 To illustrate the expressiveness of the bLCM model, we sample images of the
digits 0, 1, 6, and 7. We do this by first training a bLCM structure on data consisting of
binary images of these numbers, and afterwards we sample from the learned model (a method
for learning bLCMs is described in Section 5). Consider the re-sampled USPS database [14],
prepared by Rasmussen and Williams [15], which consists of 16 × 16 grey-scale images of
handwritten digits. We have binarized this data, and used the images of the digits 0, 1, 6 and
7 (the rest were discarded) to learn a model with q = 35 latent variables and n = 256 binary
attributes, one attribute for each pixel. To make the problem a bit difficult we specified two
classes by grouping together images of digits 0 and 1, and 6 and 7, respectively. Examples
of the samples generated from the learned model can be seen in the upper row of Figure 3.
From these samples we clearly see that the bLCM model has poor generative properties for the
present example; several sample images are not readable by humans.

In order to extend the expressibility of the bLCM model we propose a natural generalization,
termed mixture bLCMs or mbLCMs. Intuitively, the mbLCM can be interpreted as integrating
a näıve Bayes model with either i) a mixture of latent trait models, or ii) a combined latent
trait and latent class model. More formally, in an mbLCM we have a mixture variable M
so that for each mixture component M = m and attribute Ti there exist a vector wi,m ∈ R

q

and a parameter bi,m ∈ R that together map from the latent variables to the log-odds of the

5

Figure 3: Samples from a bLCM model with the two classes {0, 1} and {6, 7}. The images in
the upper line are generated from a standard bLCM, the bottom row shows images generated
from a bLCM with two mixture components. The same random seed was used for both
images in any given column, so comparing two images in a column gives an impression of the
expressibility of the two models.

attribute:

wT

i,mx + bi,m = log

(
P (Ti = 1|x,M = m)

P (Ti = 0|x,M = m)

)
.

Based on the specification above, the mbLCM defines a partitioning of the variables into
four disjoint subsets: {Y } is the class variable, {M} is the mixture variable, T is the set
of attributes and X is a set of latent variables. The structure of a mbLCM is identical to
the structure of the standard bLCM, except that we also have the mixture variable M as
an internal node having Y as parent and with all variables in X as children (see Figure 4).
Moreover, we assume that the mixture variable, M , follows a multinomial distribution, i.e.,

P (M = m|Y = j) = pm,j, where 1 ≤ m ≤ |sp (M)|, pm,j ≥ 0 and
∑|sp(M)|

m=1 pm,j = 1, for all
1 ≤ j ≤ |sp (Y)|.
Observe that the mbLCM model is a proper generalization in the sense that with |sp (M)| = 1
an mbLCM reduces to a simple bLCM. Thus, in the remainder of this paper, when referring
to a bLCM we mean the general mixture model that includes the simple bLCM model as a
special case.

T5T4T3T2T1

X2X1 M

Y

Figure 4: A graphical representation of a mixture bLCM with d = 5 attributes and q = 2
latent variables. Note that if |sp (M)| = 1, then the model simply corresponds to a standard
bLCM.

Example 2 In order to illustrate the impact of introducing the mixture variable, consider
again the sampling procedure described in Example 1. For this example we have learned a

6

Y = 1

Y = 2
E[T |Y] E[T |Y,M = 1] E[T |Y,M = 2]

Figure 5: The expected values for the attributes after learning a bLCM with 25 latent variables
and 2 mixture components. The first row shows the results for the first class (digits 0 and
1), the second row gives results for the class containing digits 6 and 7. The first column
gives the expected values for the attributes “overall”, whereas the second and third column
give the same results for each of the two mixture components. We can clearly see that the
mixtures are used to model the separate digits making up each class. Note that this part of
the learning is done unsupervised, as each image is only labelled by its class and not its digit.

bLCM with two mixture components and 35 latent variables. Images from this model were
sampled, and the results can be seen in the lower row of Figure 3. The results suggests that
mixture models are required if we want a sufficiently expressive class of generative models.

We further examine the bLCM by calculating the expected values for the attributes conditioned
on the class and the mixture variable. The results are shown in Figure 5, which clearly illus-
trates that the mixture variable accounts for the different digits making up each class. This
points towards a different view on mixture bLCMs corresponding to Ghahramani and Hinton’s
interpretation of mixtures of FAs [7]: A mixture of factor analyzers concurrently performs
clustering (the mixture model) and, within each cluster, local dimensionality reduction (fac-
tor analysis). Analogously, we can interpret the bLCM model as concurrently performing
clustering and, within each cluster, local classification.

With the introduction of the mixture component, we can now show that the mbLCM can
approximate any distribution over {Y } ∪ T arbitrarily well.

Proposition 1 Assume that Y is distributed as P (Y = i) = pi for i ∈ {1, . . . , |sp (Y)|}, and
let P (T1, . . . , Td = t1, . . . , td|Y = y) be given. Then the joint distribution for (Y,T) can be
approximated arbitrarily well by a bLCM model.

The proof is constructive, i.e., we will show how to construct a bLCM, which can approxi-
mate any probability distribution P (T = t|Y = y) arbitrarily well. First, however, we need
some notation: The idea of the proof is to let the mixture variable have one state for each
configuration of T , i.e., sp (M) = {0, 1, 2, . . . , 2d − 1}. Each state of M maps to a specific
configuration over T ; specifically, we use the binary representation of the state of M as the
configuration over T . If, for instance, d = 5, then M has 25 = 32 states. The configuration
t = (1, 0, 0, 1, 0) is represented by the 18th state of M , as 10010 is the binary representation

7

of 18. We use the notation t↔ m to denote that a state m coincides with the configuration
t, so in our example we have that {M = 18} ↔ {t = (1, 0, 0, 1, 0)}.

Proof 1 Consider a bLCM, where:

• The graphical structure consist of one latent variable X, d binary attributes, and a
mixture variable M .

• The size of the state space of the mixture variable is |sp (M)| = 2d

• Conditional on Y = y, X follows a Gaussian distribution with µX|y = 1 and σ2
X|y = ǫ,

for all y ∈ sp (Y).

• For a fixed m and t↔ m we set wi,m = η > 0 if ti = 1 in t and wi,m = −η otherwise.

By marginalizing out X from the distribution specified by the bLCM we get:

P (t|y) =

∫

x
P (t|x, y) f(x|y) dx

=

∫

x

∑

m

P (t|x, y,m)P (m|y)f(x|y) dx

=

∫

x

∑

m

P (t|x,m)P (m|y)f(x|y) dx

=
∑

m

P (m|y)

∫

x

n∏

i=1

P (ti|x,m)f(x|y) dx

=
∑

m

P (m|y)P (t|m, y) (2)

Next, let η → ∞ and ǫ → 0 in Equation (2), then P (T = t|Y = y,M = m) → 1 if and only
if t↔ m and 0 otherwise. Thus, we have

P (t|Y = y) =
∑

m′

P (t|Y = y,M = m′)P (M = m′|Y = y)

= P (M = m|Y = y,m↔ t)

in the limit. The last step is to define P (M = m|Y = y), and since we have as many states
of M as there are configurations over t, we can choose P (M = m|Y = y) = P (t|y, t ↔ m),
and the result then follows. �

4 Inference in bLCM models

Making classification in a bLCM amounts to calculating P (y|t) (confer Equation (1)). As
P (y|t) = P (y, t)/P (t), where P (t) is independent of y (and therefore can be regarded as a
normalization constant), we will in the following focus on calculating

P (t, y) = P (y)

∫

Rq

{
d∏

i=1

P (ti|x)

}

f(x|y)dx, (3)

8

for a bLCM with a single mixture component, i.e., having |sp (M)| = 1.

It is, however, well known [16, 17] that this integral cannot be calculated analytically. In the
following we therefore derive a variational approximation [16, 17, 18, 19] for this expression.

As a starting-point, consider the integral

P (t|y) =

∫

Rq

{
d∏

i=1

P (ti|x)

}
f(x|y)dx

=

∫

Rq

{
d∏

i=1

P (ti|x)

}

q∏

j=1

1√
2πσj,y

exp

(
−(xj − µj,y)

2

2σ2
j,y

)

 dx, (4)

where the second equality follows when we assume that Xj |{Y = y} ∼ N (µj,y, σ
2
j,y) and

that Xk⊥⊥Xl|Y for k 6= l. This likelihood function cannot be calculated in closed form,
but fortunately Tipping [17] showed how a similar model can be handled with a variational
approximation. Following his procedure, we introduce

P̃ (ti|x, ξi) = g(ξi) exp((Ai − ξi)/2 + λ(ξi)(A
2
i − ξ2

i)), (5)

where

Ai = (2ti − 1)(wT

i x + bi) and λ(ξi) =
exp(−ξi)− 1

4ξi(1 + exp(−ξi))
.

The function P̃ (ti|x, ξi) is a variational approximation to P (ti|x), hence P̃ (ti |x, ξi) ≤ P (ti|x)
for all ξi and P̃ (ti|x, ξi) = P (ti|x) for some particular choice of ξi. It can easily be verified
that equality is obtained if and only if ξi = (2ti − 1)(wT

i x + bi).

Example 3 The left pane of Figure 6 shows the logistic function together with three varia-
tional approximations defined by ξ = 1, 2, 3. From the example, we see that for a given value
of A = wTx+b the quality of the variational approximation depends on the chosen value of ξ.
For instance, with ξ = 1, the approximation is accurate for A ≤ 1.5. The right figure shows
the variational error for P̃ (T = 1|X, ξ = 1) as a function of A (dotted line). Using N(0, 1)
as prior distribution for X, the figure also shows the resulting variational approximation for
the posterior distribution for X given T = 1 (specified below).2

Since the variational distribution is of a Gaussian shape (quadratic in xj in the exponential),
the variational approximation of the posterior of X , X|{T = t, Y = y, ξ}, is also of this type.
We use µ

p
y and Γp

y for the expectation and variance of this posterior. The updated parameters
can be found after some algebraic manipulation (see Appendix A):

Γp
y =

[
Γ−1

y − 2
d∑

i=1

λ(ξi)wiw
T

i

]−1

; (6)

µp
y = Γp

y

{

Γ−1
y µy +

d∑

i=1

[
ti −

1

2
+ 2λ(ξi)bi

]
wi

}

, (7)

2The posterior approximation is scaled to fit the graph.

9

K3 K2 K1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ξ = 1

ξ = 2

ξ = 3

g(·)

A
K3 K2 K1 0 1 2 3

0.05

0.10

0.15

0.20

A

Figure 6: The left pane shows P (T = 1|X) (solid line) and P̃ (T = 1|X, ξ) as functions of
A; for the variational approximations we have used ξ = 1, 2, 3. The right pane shows the
variational error for P̃ (T = 1|X, ξ = 1) as a function of A (dotted line), as well as the (scaled)
variational approximation for the posterior distribution for X given T = 1.

where, µy = (µ1,y, . . . , µq,y)
T and Γy = diag(σ2

1,y, . . . , σ
2
q,y) are the a priori expectation and

variance of X given Y = y.

We are also able to calculate a lower bound for the integral in Equation (4) (see Appendix B):

f(t|y) ≥
∫

Rq

{
d∏

i=1

P̃ (ti|x, ξi)

}

q∏

j=1

1√
2πσj,y

exp

(
−(xj − µj,y)

2

2σ2
j,y

)

 dx

= exp

{
−1

2
µT

yΓ
−1
y µy +

1

2
(µp

y)
T(Γp

y)
−1µp

y +
1

2
log

(|Γp
y|
|Γy|

)}
·

exp

{
d∑

i=1

{
log(g(ξi))− ξi/2 + λi(b

2
i − ξ2

i) +
1

2
(2ti − 1)bi

}}

. (8)

The approximation above depends on ξ = (ξ1, . . . , ξd)
T, but since X is not observed we cannot

directly calculate the value for ξ that maximizes the lower bound f̃(t|y, ξ). Instead we can
maximize the expected complete data log-likelihood E(log f(t,x|y, ξ)). It was shown by Mur-
phy [20] that the ξi maximizing this expression is determined by ξ2

i = E
[
(wT

i X + bi)
2|y,T

]
.

However, since this value depends on Γp
y and µ

p
y an iteration scheme is required, as shown in

Algorithm 1.

For the initial guesses on Γp
y and µ

p
y we simply use the prior covariance matrix and mean

vector. For the initial value of ξ we follow the approach by [20]: for a data case with Y = y, we
take Γy and µy and plug them into Equation (9) to estimate ξ. That is, the initial estimate
is found by only taking the state of Y into account. For instance, in Example 3 we used
N(0, 1) as prior distribution for X, which resulted in the initial estimate ξ = 1. Moreover,
by conditioning on T = 1 the iterative updating procedure above returns Γp

y = 0.812 and
µ

p
y = 0.406 after three iterations (see the right pane in Figure 6).

10

Algorithm 1 Approximate f(t|y) using the variational approximation

1: Start with initial guesses for Γp
y, and µ

p
y. w1, . . . ,wd and b are assumed to be known.

2: repeat

3: Update values for ξ by setting

ξi ←
√

E [(wT

i X + bi)2|T , y]

=
√

(µp
y)Tµ

p
y + wT

i Γ
p
ywi + 2biw

T

i µy + b2
i (9)

4: Calculate Γp
y and µ

p
y using the current ξ (Equations 6 and 7).

5: until Finished

It should also be noted that although we can always fix ξ and make the lower bound arbitrarily
tight for given values of Ai = (2ti − 1)(wT

i x + bi), the lower bound is tight only point-wise.
However, when approximating the likelihood f(t, y) variationally, we will select one value for
ξi when defining P̃ (ti|x, ξi), i.e., we treat ξi as a constant when we integrate over x. This will
give us a “variational error”; to obtain equality we would have to set ξi equal to Ai for each
x (and Ai is obviously not constant in x). This is illustrated in the right pane of Figure 6,
where the total variational error can be found by integrating the error function (with the
updated value for the variational parameter) using the prior distribution over X.

4.1 Inference in Mixture Models

When performing inference in a bLCM with a mixture variable M , we need to calculate

f(t|y) =

∫

Rq

∑

m∈sp(M)

P (y)P (m|y)f(x|y)P (t|x,m)dx

= P (y)
∑

m∈sp(M)

P (m|y)

∫

Rq

f(x|y)P (t|x,m)dx.

Evaluating the integral is done exactly as before, except that the weight vectors are also in-
dexed with m. Thus, when applying the variational approximation to evaluate the integral we
introduce a variational parameter ξi,m for each attribute Ti and for each mixture component
m ∈ sp (M).

Finally, since the variational parameters are conditioned on the mixture variable, the updating
rule in Equation (9) as well as the posterior covariance matrix (Equation (6)) and the mean
vector (Equation (7)) are of exactly the same form as before. This also means that the
complexity of performing inference in a bLCM increases only linearly in the number of mixture
components.

5 Learning bLCM models

In this section we describe a method for learning bLCMs from data. The algorithm basically
consist of two parts: a score function for evaluating the quality of a model and a search

11

strategy for investigating the space of bLCMs.

In the proposed algorithm we score a model based on its accuracy, which is estimated using
the wrapper approach [21]. That is, the score is given as the average accuracy found by
applying cross-validation over the training data.

5.1 The general structure

In order to specify a search strategy, we first note that the space of bLCMs is defined by
(i) the number of latent variables, (ii) the number of mixture components, and (iii) the
parametrization of the probability distributions.

Thus, the learning algorithm can be divided into two parts: (i) a systematic approach for
selecting appropriate values for q and the number of mixture components, |sp (M)|, and, given
such a pair of values, (ii) algorithms for learning the parameters in the model. More formally,
a general bLCM learning algorithm can be formulated as in Algorithm 2, where appropriate
values for q and |sp (M)| are selected using the wrapper approach.

Algorithm 2 Learn a bLCM classifier from a database DN using the wrapper approach.

1: for possible values of q and |sp (M)| do

2: Partition the database into W wrapper folds W1, . . . ,WW .
3: for w = 1, . . . ,W do

4: Learn a classifier from the dataset DN \ Ww.
5: Calculate the accuracy on the remaining training-set Ww.
6: end for

7: Score the parameter-pair (q, |sp (M)|) by the average accuracy obtained over the wrap-
per folds.

8: end for

9: Select the optimal values of q and |sp (M)|.
10: return classifier learned with these parameters.

5.2 The EM algorithm

The parameters in the model are estimated by applying an EM-algorithm [22] for bLCMs.
Unfortunately, taking direct outset in the bLCM specification is not possible, since the E-
step of the algorithm requires inference in the underlying model, and as we have seen, this is
not analytically available. Instead we focus on the variational approximation. By using the
variational approximation we get a lower bound f̃ on the marginal likelihood. Thus, rather
than maximizing the marginal likelihood directly, we instead maximize the expected data-
complete variational log-likelihood E log(

∏N
i=1 f̃(·|Di)), which is guaranteed never to decrease

the marginal likelihood.

In the following we let ~wi be the vector defined by ~wi = [wT

i , bi]
T, and define ~X as the

augmented column vector of factors, i.e., ~X = [XT, 1]T. Recall that we use yj to denote the
class belonging of observation Dj , and we shall use #y to denote the number of observations
in D for which Y = y.

12

The updating rules (M-step) for the EM-algorithm are given as follows (the derivations can
be found in Appendix C):

P̂ (Y = y)← #j : yj = y

N

P̂ (M = m|Y = k)←
P̂ (M = m|Y = k)

∑
j:yj=k P (tj |M = m,Y = k)

#{j : yj = k}

µ̂y ←
1

#y

N∑

j=1:yj=y

∑

m

P (M = m|Dj)E(X|M = m,Dj)

Γ̂y ← diag

(
1

#y

N∑

j=1:y:j=y

∑

m

P (M = m|Dj)·

E((X − µy)(X − µy)
T|Dj ,M = m)

)

~̂wi,m ← −

2

N∑

j=1

P (M = m|Dj)λ(ξijm) · E(~X ~X
T|Dj ,M = m)

−1

·

N∑

j=1

(
tij −

1

2

)
P (M = m|Dj)E(~X |Dj,M = m)

The E-step basically amounts to calculating E(X |Dj ,M = m) and E(XXT| Dj,M = m)
(see Appendix C). The expectation E(X|Dj,M = m) is given by Equation (7) (conditioned
on M = m) and E(XXT|Dj ,M = m) is found using

Σp = E(XXT|Dj,M = m)− E(X|Dj,M = m)E(X|Dj,M = m),

where Σp is given by Equation (6). Finally, E(~X|Dj) = [E(X|Dj)
T, 1]T and

E(~X ~X
T|Dj) =

[
E(XXT|Dj) E(X|Dj)
E(X |Dj)

T 1

]
.

It should be noticed that the updating steps above depend on the variational parameters,
which in turn depend on Γp and µp. Hence, each iteration of the EM algorithm also involves
updating the values for ξ.

We end this section by noting that as an alternative to the generative models described
here, one could also look for discriminative models inside the class of bLCM models, i.e.,
learn the parameters that maximise the conditional log likelihood, E log(

∏N
i=1 P (yi|ti)) or a

variational variant thereof. Empirical evidence [23, 24, 25, 26] support that discriminative
models generally obtain better classification results than generative models. However, learning
the parameters that maximize the descriminative likelihood is NP-hard even when all data is
observed [24], and we therefore leave learning of discriminative models as a topic for future
research.

13

6 Experimental results

6.1 Classification accuracy

In this section we investigate the classification accuracy of the proposed classifier. We start
by considering classification of handwritten digits collected in the USPS database [14]. The
results are based on the re-sampled database, prepared by Rasmussen and Williams [15].
This database consists of 4649 training examples and 4649 test-examples. The examples are
distributed unevenly among the classes, as described in Table 1.

Digit Training-set Test-set Digit Training-set Test-set

0 767 16.5% 786 16.9% 5 361 7.8% 355 7.6%
1 622 13.4% 647 13.9% 6 420 9.0% 414 8.9%
2 475 10.2% 454 9.8% 7 390 8.4% 402 8.6%
3 406 8.7% 418 9.0% 8 377 8.1% 331 7.1%
4 409 8.8% 443 9.5% 9 422 9.1% 399 8.6%

Table 1: USPS dataset

The twenty first images in the test-set are shown in Figure 7. The images are of size 16× 16
pixels; they were originally grey-scale, but have been binarized for our application. Most
digits are easily recognizable by humans, although the 16th image is difficult (it is a 4). Note
also the difference in writing style between the different images (there are, for instance, three
different ways to write the number 5 among the 20 examples).

Figure 7: The first 20 images of the test-set.

When learning the bLCM models we use Algorithm 2 with 10 wrapper folds. We report results
for bLCMs without mixtures (denoted bLCM (|sp (M)| = 1) in Table 2), as well as the general
mbLCM model.3 In order to learn the probability parameters in the models we applied the
EM algorithm with standard parameter settings: The algorithm terminates when the relative
increase in log (variational) likelihood falls below 10−3 or after a maximum of 50 iterations.
The EM algorithm was run with 10 restarts; this gives a number of different candidate models
from which we should select one. The standard solution is to choose the candidate model
with the highest log-likelihood on the training data. However, since our focus is classification
we instead pick the model that obtains the highest classification accuracy on the training-
set.4 The iterations of the variational approximation (Algorithm 1) were terminated when

3For the tests reported in this section, we have restricted q to take values form the set
{2, 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100}. We have considered a maximum of 2 mixtures.

4This is motivated by Vapnik’s bound (see, e.g., [27, Section 2]), and the fact that all candidate models per
definition have the same VC-dimension.

14

the relative increase in log (variational) likelihood of the data was less than 10−3, or when a
total of 10 iterations had been performed.5

For comparison, a number of other classification algorithms have also been tested on the same
dataset. The classification accuracies of the straw-men (further described in Appendix D) are
given in the left column in Table 2. For each classifier, we give the results for three different
classification problems for the USPS dataset: “{0, 1} vs. {6, 7}” (as presented in Example 1),
the ten-class problem of classifying all digits (denoted “{0} – {9}”), and the “{3} vs. {5}”
dataset. The results show that, except for {0} – {9}, the classification accuracy of the bLCMs
is higher than the accuracy of the other classifiers in this domain. Of particular interest is
the “{3} vs. {5}” dataset, which was singled out as being particularly difficult by Rasmussen
and Williams [15].6 The 20 images from the “{3} vs. {5}” dataset that the bLCM classified
wrongly are shown in Figure 8. Although some of the images can be classified by humans
(most notably images 1, 5, 6, and 7, 11 and 12), others are inherently difficult (i.e., images 3,
4, 9, 10, 15, 16 and 17).

Classifier {0&1} vs. {6&7} {0} – {9} {3} vs. {5} crude earn acq

Majority Vote 63.72% 16.91% 54.08% 93.74% 63.98% 76.18%
Winnow 61.32% 60.77% 83.83% 97.42% 97.22% 90.95%
ANN 96.27% 94.04% 95.34% 97.35% 98.51% 97.38%
ADTree 95.02% 83.63% 92.24% 97.45% 96.36% 89.89%
1-NN 98.31% 92.88% 95.73% 95.99% 95.69% 93.24%
SVM 96.27% 84.82% 95.34% 97.78% 98.51% 97.18%

Näıve Bayes 89.42% 85.33% 94.44% 95.16% 94.00% 96.95%
TAN 96.04% 88.41% 94.44% 96.36% 93.47% 96.72%
ID3 95.33% 80.68% 89.91% 96.72% 96.42% 94.10%
Logistic Regression 92.62% 79.74% 92.63% 95.43% 96.39% 94.30%
Radial Basis Functions 92.89% 88.15% 94.67% 96.55% 94.47% 96.82%
AODE 97.69% 91.37% 95.86% 97.71% 97.65% 97.12%
HNB 96.13% 87.80% 95.47% 96.58% 92.88% 96.79%
BayesNet 89.42% 85.37% 94.44% 95.20% 94.07% 96.92%
bLCM (|sp (M)| = 1) 98.84% 89.09% 97.41% 97.91% 97.55% 97.28%
mbLCM 99.20% 93.44% 97.41% 97.02% 98.38% 97.32%

Table 2: Classification results for different digit collections from the USPS database as well as
the REUTERS datasets. Both probabilistic as well as non-probabilistic classifiers are included
(separated by the horizontal line).

Next, we turn to classification of text documents, and the REUTERS-21578 dataset (Re-
lease 1.0) as used by Vomlel [28]. The split of data into training and test sets was made

5Earlier work, including [17, 19] conclude that the variational iterations converge very quickly, and that
seldom more than three iterations are required to obtain a good approximation. In our high-dimentional
data we have observed a different effect, and conclude that up to ten iterations are sometimes required for
approximations that are accurate enough for our learning procedure.

6Rasmussen and Williams [15] reported a classification accuracy of 97.28% for their Gaussian process
classifier (with expectation propagation) on the “{3} vs. {5}” dataset using the original grey-scale images;
using the the binarized data we obtained an accuracy of 95.99%. For additional comparison, we can also
mention that the accuracy of the classifier was found to be 98.71% for the “{0, 1} vs. {6, 7}” problem using
binarized data. Note that Rasmussen and Williams’ implementation only supports two-class problems, hence
fails to handle the “{0} – {9}” dataset. We were also not able to obtain results for the REUTERS datasets;
tests were terminated after 48 hrs. CPU time on a MacBook Pro 2.6GHz Intel Core 2 Duo with 4GB RAM.

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 8: The 20 images that were misclassified by the bLCM classifier.

according to the time of publication of the documents (ModApte). Classes that contained
only one document were eliminated together with the corresponding documents. The result-
ing datasets contain 7769 documents for training and 3018 documents for testing. The tests
were performed on the three classes containing the most documents, and for each document-
class we created a classification problem, where the task was to decide whether or not a
test document belonged to that particular document-class (hence, we made three two-class
classification problems). After removing function words and words that appear in only one
document, a total of 15515 words remained. The words were coded as binary attributes, were
each attribute told of the existence (or non-existence) of a specific word in a document. For
each classification task, we then selected the 500 most informative features using the expected
information gain as feature selection criteria. The results can be seen in the right column
of Table 2. In particular, we see that bLCMs and ANNs perform at comparative levels, and
that both perform better than the other classifiers within this domain. To put the accuracy
differences into perspective, we see that when the ANN obtain better results than the bLCM
the difference reduces to a misclassification of at most four instance (out of a total of 3018
test instances). As noted by, e.g., Kohavi [29], the generated accuracies are in fact estimators
with their own underlying statistical distribution. The standard deviations of the estimators
reported in Table 2 are of the order of approximately .5%. For instance, the 95% confidence
interval for the mbLCM accuracy on the earn dataset is [97.86%, 98.77%].

6.2 Generative models

The previous subsection showed that bLCMs offer classification accuracies at a comparative
or higher level than other classifiers. In this subsection we investigate another aspect of the
bLCM classifier, namely how the underlying generative model can be used for classification
and extrapolation of partially disclosed images. That is, from a partial observation, the
system will generate not only a classification, but also impute the missing part of the image
based on what is already known. We believe this to be an interesting ability for a classifier;
one potential application being a PDA that can recognize and auto-complete symbols while
they are being written. Note that this is not possible using e.g. ANNs as they do not specify
a generative model.

An example of this process is given in Figure 9. The first row of images shows how the
information is partially disclosed, and the second row shows how the probability distribution
P (y|Partial image) is changing as more information is given. The third row shows the ex-
pected completion of the image given the partial observation, and finally the last row shows
the most probable (pixel-wise) completion of the image assuming that the most probable class
is indeed the correct one.7 Notice how the system, after having seen the two first lines of

7This example is used only to illustrate how the generative properties of the bLCM may be exploited.
Ideally, one should consider the most probable configuration over all the unobserved attributes.

16

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9: Using a bLCM for classifying and extrapolating an image of the digit 7 as it is
being disclosed.

pixels (first column of images in Figure 9), is fairly convinced that the image is of a 4; only 5
and 7 are considered as possible alternative hypothesis. The reason for this is that the partial
observation is consistent with an already observed writing-style for the number 4. The second
column shows the status when two more lines of pixels are observed. The system still believes
it is a 4, but now has a different belief regarding the shape of the digit. Note how the proba-
bility for the digit being a 5 has increased considerably. For the third column, the white part
on the left-hand side of the image is not consistent with the image being a 5, so that is not
deemed as probable as before. The completion of the image is however difficult to interpret.
Next, half of the image is disclosed in the fourth column, and the system recognizes a 7 with
high confidence. When the remaining pixels in the image are observed, this hypothesis is
confirmed. For comparison, Figure 10 shows the same process for the näıve Bayes classifier.
The results of the näıve Bayes are not impressive, as the extrapolated images (bottom row)
do not look like real digits. It is also worth noticing that the näıve Bayes ends up believing
that the fully disclosed image is a 4 instead of a 7.

7 Discussion and future work

In this paper we have further developed the class of latent classification models (LCMs) [6].
Whereas the original model class were used for probabilistic classification in continuous do-
mains, the present extension focuses on binary domains, e.g. black and white pictures. A
binary LCM (bLCM) can, as the LCM model, roughly be seen as a mixture of factor analyzers
integrated with a näıve Bayes model. This combination enables concurrent clustering and,
within each cluster, localized classification. bLCMs relax the conditional independence as-
sumptions embedded in the näıve Bayes models, thereby allowing any probability distribution
over binary attributes to be approximated arbitrarily well.

In our experiments, we have demonstrated that bLCMs provide good classification results in

17

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 10: Using a näıve Bayes for classifying and extrapolating an image of the digit 7 as it
is being disclosed.

binary domains, and we found that bLCMs appear to be better than a wide range of other
probabilistic classifiers. Finally, we also showed how the generative properties of the classifier
can be exploited. In particular, we considered the classification and extrapolation of partial
images, with potential application for e.g. real-time optical character recognition.

As part of future work, we plan to extend the bLCM/LCM model class to general hybrid
domains; a process that has already started. First, we note that merging bLCMs for binary
domains with our previous work in continuous domains [6] is straight-forward using a two-pass
scheme: Using evidence from the continuous attributes only, we calculate the posterior dis-
tribution over the latent variables given this partial observation. Next, we treat the posterior
distribution as a prior distribution, when the binary variables are considered, and classifi-
cation can then proceed as previously described. The main challenge is therefore to extend
the bLCM framework to discrete variables. Näıvely, one could redefine a dataset containing
discrete variables by translating each discrete variable into a set of binary variables: Consider
the discrete variable D with r states. Then, D can be represented using ⌈log2(r)⌉ binary
variables Bi [17]. Note that the new variables Bi are conditionally dependent, and that latent
variables must therefore be introduced to model this dependency. From Proposition 1 we
know that this can be handled within the bLCM framework, but unfortunately the number of
mixture components required is exponential in the number of attributes. In total the number
of mixture components required to model D is linear in the number of states in D. This
complexity is prohibitive, and we should rather try to find a more direct representation. To
support the integration with LCMs, we want to maintain the structure of the bLCMs, and
only modify the distributional assumption for the attributes. The natural choice is to let the
conditional distribution of a discrete variable D with continuous parents X be defined by the
soft-max function. In this formulation, we have one set of parameters (w and b) per state d
of D, and use

P (D = d|x) =
exp(−(wT

dx + bd))∑
d′ exp(−(wT

d′x + bd′))
.

18

The lowerbound Equation (8) does not extend to soft-max functions [20, 30], but recent
research (see, e.g., [31]) has brought some possible solutions that we want to pursue in the
future.

A The variational posterior distribution for the latent vari-

ables

In this section we derive the posterior variational distribution of the latent variables X given
a configuration T = t and Y = y. For ease of notation we shall restrict our attention
to bLCMs having no mixture variables, however, the generalization to mixture bLCMs is
straightforward.

First of all, recall that

f̃(t,x|y) = P̃ (t|x, ξ)f(x|y)

= (2π)−q/2|Γy|−1/2 exp

(
− 1

2
(x− µy)

TΓ−1
y (x− µy)

)

d∏

j=1

g(ξj) exp((Aj − ξj)/2 + λ(ξj)(A
2
j − ξ2

j)),

where Ai = (2ti − 1)(wT

i x + bi) and A2
i = (wT

i x)2 + b2
i + 2wT

i xbi; for the latter we have used
that (2ti − 1)2 = 1.

By exploiting that

P̃ (tj|x,wj , ξj) = exp

(
log(g(ξj)) +

1

2
(2tj − 1)wT

j x +
1

2
(2tj − 1)bj −

1

2
ξj

+ λ(ξj)(w
T

j x)2 + λ(ξj)b
2
j + λ(ξj)2w

T

j xbj − λ(ξj)ξ
2
j

)

we can write P̃ (tj |x,wj , ξj) on canonical form [32]. That is, P̃ (tj |x,wj, ξj) can be written
as exp(a+

j + b+
j x − xTC+

j x), where a+
j is a constant, b+

j is a vector, and C+
j is a full-rank

square matrix. By letting aj , bj , and cj denote the contributions from a+
j , b+

j x, and xTC+
j x,

respectively, we get:8

aj = log(g(ξj)) +
1

2
(2tj − 1)bj −

1

2
ξj − λ(ξj)ξ

2
j + λ(ξj)b

2
j ;

bj =
1

2
(2tj − 1)wT

j x + λ(ξj)(2w
T

j xbj) =

(
1

2
(2tj − 1) + λ(ξj)2bj

)
wT

j x;

cj =− λ(ξj)(w
T

j x)2 = −λ(ξj)(w
T

j xwT

j x) = −xTλ(ξj)wjw
T

j x.

8For this we exploit (x − µy)TΓ
−1

y (x − µy) = xT
Γ

−1

y x + µT

y Γ
−1

y µy − 2xT
Γ

−1

y µy.

19

Similarly, f(x|y) can be written on canonical form with:

a′ =− q

2
log(2π) − 1

2
log(|Γy|)−

1

2
µT

yΓ
−1
y µy;

b′ =xΓ−1
y µy = µT

yΓ
−1
y x;

c′ =
1

2
xTΓ−1

y x.

Now, for the products P̃ (tj |x,wj , ξj)f(x|y) and
∏d

j=1 P̃ (tj|x,wj , ξj)f(x|y) we get:

a′j =− q

2
log(2π)− 1

2
log(|Γy|)−

1

2
µT

yΓ
−1
y µy + log(g(ξj)) +

1

2
(2tj − 1)bj −

1

2
ξj

− λ(ξj)ξ
2
j + λ(ξj)b

2
j ;

b′j =

(
µT

yΓ
−1
y +

(
1

2
(2tj − 1) + λ(ξj)2bj

)
wT

j

)
x;

c′j =xT

(
1

2
Γ−1

y − λ(ξj)wjw
T

j

)
x,

and

a∗ =

d∑

j=1

g′j;

b∗ =

(
µT

yΓ
−1
y +

d∑

j=1

(
1

2
(2tj − 1) + λ(ξj)2bj

)
wT

j

)
x;

c∗ =xT

(
1

2
Γ−1

y −
d∑

j=1

λ(ξj)wjw
T

j

)
x,

respectively. From a∗, b∗, and c∗ we have that the posterior for X given t and y is a Gaussian
distribution and by transforming back to moment form we get

Γp
y =

[
Γ−1

y − 2

d∑

j=1

λ(ξj)wjw
T

j

]−1

;

µp
y =Γp

y

[
µT

yΓ
−1
y +

d∑

j=1

(
tj −

1

2
+ 2λ(ξj)bj

)
wT

j

]
.

B A lower bound on f(t)

Since P̃ (t|x, ξ) ≤ P (t|x) for all ξ we have that f̃(x, t) ≤ f(x, t) and therefore f̃(t) ≤ f(t).
In order to evaluate the integral f̃(t) =

∫
x∈Rq f̃(x, t)dx we rewrite f̃(x, t) on canonical form

20

(see Appendix A):

f̃(t) =

∫

x∈Rq

f̃(x, t)dx

=

∫

x∈Rq

exp

(
a + bx− 1

2
xTCx

)
dx

= exp(a)

∫

x∈Rq

exp

(
bx− 1

2
xTCx

)
dx

= exp(a) exp

(
1

2
bC−1bT

)∫

x∈Rq

exp

(
− 1

2

(
xTCx− 2bx + bC−1bT

))
dx

= exp(a) exp

(
1

2
bC−1bT

)∫

x∈Rq

exp

(
(x−C−1b)TC(x−C−1b

)
)dx.

Since ∫

x∈Rq

exp

(
(x−C−1b)TC(x−C−1b)

)
dx = (2π)q/2|C−1|1/2

we get

f̃(t) = exp(a) exp

(
1

2
bC−1bT

)
(2π)q/2|C−1|1/2.

From Appendix A we have that

a =− q

2
log(2π) − 1

2
log(|Γy|)−

1

2
µT

yΓ
−1
y µy +

d∑

j=1

(
log(g(ξj)) +

1

2
(2tj − 1)bj

− 1

2
ξj − λ(ξj)(ξ

2
j − b2

j)

)
;

b =µp
yΓ

p−1;

C−1 =Γp
y.

hence,

f̃(t) = exp

{
−1

2
µTΓ−1µ +

1

2
(µp)T(Γp)−1µp +

1

2
log

(|Γp|
|Γ|

)}
·

exp

{
d∑

i=1

{
log(g(ξi))− ξi/2 + λi(b

2
i − ξ2

i) +
1

2
(2ti − 1)bi

}}
.

C The EM algorithm for bLCMs

In this section we derive an EM algorithm for bLCMs. Unfortunately, taking direct outset in
the bLCM specification is not possible, since the E-step of the algorithm requires inference in
the underlying model. In particular, we should be able to calculate the marginal likelihood
of the data:

f(t, y) = P (y)

∫

Rq

{
d∏

i=1

P (ti|x)

}

f(x|y)dx,

21

but this integral cannot be evaluated analytically. Instead we use a variational approximation
P̃ (ti|x, ξi) (see Equation 5) to the logistic function, which ensures that P̃ (ti|x, ξi) ≤ P (ti|x)
for all ξi and P̃ (ti|x, ξi) = P (ti|x) for some particular choice of ξi. By using the variational
approximation we get a lower bound f̃ on the marginal likelihood, and rather than maximizing
the marginal likelihood directly, we instead maximize the variational lower bound. This
operation is guaranteed to never decrease the marginal likelihood.

In order to derive the updating rules we first note that

f̃(t,x,m, y) = P̃ (t|x,m)f(x|y)P (m|y)P (y)

= P (y)P (m|y)(2π)−q/2|Γy|−1/2 exp

(
− 1

2
(x− µy)

TΓ−1
y (x− µy)

)

d∏

j=1

g(ξj,m) exp((Aj,m − ξj,m)/2 + λ(ξj,m)(A2
j,m − ξ2

j,m))

By exploiting that

(x− µy)
TΓ−1

y (x− µy) = tr(Γ−1
y xxT)− 2µT

yΓ
−1
y x + µT

yΓ
−1
y µy

and taking the logarithm we get

logf̃(t,x,m, y) = log P (y) + log P (m|y)− q

2
log 2π

− 1

2
|Γy| −

1

2
tr(Γ−1

y xxT) + µT

yΓ
−1
y x− 1

2
µT

yΓ
−1
y µy

−
d∑

j=1

log(1 + exp(−ξj,m) +

d∑

j=1

Aj,m − ξj,m

2
+ λ(ξj,m)(A2

j,m − ξ2
j,m).

The expected data-complete variational log-likelihood is now given by

Q =E log(

N∏

i=1

f̃(·|Di)) =

N∑

i=1

E log(f̃(·|Di))

=
N∑

i=1

log P (yi) +
N∑

i=1

E(log P (M |yi)|Di)−
Nq

2
log 2π −

|sp(Y)|∑

h=1

#yh

2
log |Γyh

|−

1

2

N∑

i=1

tr(Γ−1
yi

E(XXT|Di)) +

N∑

i=1

µT

yi
Γ−1

y1
E(X|Di)−

|sp(Y)|∑

h=1

#yh

2
µT

yh
Γ−1

yh
µyh
−

d∑

j=1

N∑

i=1

E(log(1 + exp(−ξi,j,M))|Di) +
d∑

j=1

N∑

i=1

E

(
Ai,j,M − ξi,j,M

2

∣∣∣∣Di

)
+

d∑

j=1

N∑

i=1

E(λ(ξi,j,M)(A2
i,j,M − ξ2

i,j,M)|Di)

(10)

The last two terms can be rewritten by first noticing that E((Ai,j,M−ξi,j,M)/2) = E(Ai,j,M/2|Di)−
E(ξi,j,M/2|Di) and E(Ai,j,M/2|Di) = E((2ti,j − 1)(wT

j,MX + bj,M)|Di). By defining ~w =

22

[wT

j,M , bj,M]T and ~X = [XT, 1]T we get

E

(
Ai,j,M

2

∣∣∣∣Di

)
=

1

2
(2ti,j − 1)E(~wT

j,M
~X |Di).

By exploiting that (2ti,j − 1)2 = 1 for ti,j ∈ {0, 1} we can rewrite Equation 10 as

Q =E log(

N∏

i=1

f̃(·|Di)) =

N∑

i=1

E log(f̃(·|Di))

=
N∑

i=1

log P (yi) +
N∑

i=1

E log P (M |yi)−
Nq

2
log 2π −

|sp(Y)|∑

h=1

#yh

2
log |Γyh

|−

1

2

N∑

i=1

tr(Γ−1
yi

E(XXT|Di) +

N∑

i=1

µT

yi
Γ−1

y1
E(X |Di)−

|sp(Y)|∑

h=1

#yh

2
µT

yh
Γ−1

yh
µyh
−

d∑

j=1

N∑

i=1

E(log(1 + exp(−ξi,j,M))|Di) +
1

2

d∑

j=1

N∑

i=1

(2ti,j − 1)E(~wT

j,M
~X|Di)−

1

2

d∑

j=1

N∑

i=1

E(ξi,j,M |Di) +
d∑

j=1

N∑

i=1

E(λ(ξi,j,M)~wT

j,M
~X ~wT

j,M
~X|Di)−

d∑

j=1

N∑

i=1

E(λ(ξi,j,M)ξi,j,M |Di).

Based on the above expression we can now derive the updating rules (the M-step) for the EM
algorithm.

∂Q
∂~wj,m

=
N∑

i=1

(ti,j −
1

2
)P (M = m|Di)E(~X |Di,M = m)+

2

N∑

i=1

P (M = m|Di)λ(ξi,j,m)E(~X ~X
T|Di,M = m)~wj,m

By setting the derivative equal to 0 we get the following updating rule for ~wj,m:

~̂wj,m ← −
[
2

N∑

i=1

P (M = m|Di)λ(ξi,j,m)E(~X ~X
T|Di,M = m)

]−1

[N∑

i=1

(ti,j −
1

2
)P (M = m|Di)E(~X|Di,M = m)

]

For µy we have

∂Q
∂µy

=

N∑

i=1:yi=y

Γ−1
y E(X |Di)−#yΓ−1

y µy,

23

which results in the following updating rule

µ̂y ←
1

#y
ΓyΓ

−1
y

N∑

i=1:yi=y

E(X |Di) =
1

#y

N∑

i=1:yi=y

E(X |Di).

Finally, for Γy the partial derivative is

∂Q
∂Γy

=− #y

2
Γ−1T

g +
1

2

N∑

i=1:yi=y

Γ−1T

y E(XXT|Di)Γ
−1T

y −

N∑

i=1:yi=y

Γ−1T

y µyE(X |Di)
TΓ−1T

y +
#y

2
Γ−1T

y µyµ
T

yΓ
−1T

y

=Γ−1
y

(
− #y

2
+

N∑

i=1:yi=y

(
− 1

2
E(XXT|Di)− µyE(X |Di)

T +
1

2
µyµ

T

y

)
Γ−1

y

)
,

which gives

Γ̂y ←
1

#y

N∑

i=1:yi=y

(E(XXT|Di)− 2µyE(X|Di)
T + µyµ

T

y) =

=
1

#y

N∑

i=1:yi=y

∑

m

P (M = m|Di)[E((X − µy)(X − µy)
T|Di,M = m)]

To estimate the probability P (y) we perform simple frequency counting in the database, and
for P (M = m|Y = y) we use

P̂ (M = m|Y = y)←
∑N

i=1:yi=y P (M = m,Y = y|Di)

#y

=
P (M = m|Y = y)

∑N
i=1:yi=y

P (ti|M=m,Y =y)

P (ti|y)

#y

In additions to the expectations (derived below), the updating rules above also require P (M =
m|Di). This probability can be found by straight-forward application of Bayes’ rule:

P (M = m|Di) =
P (Di|M = m)P (M = m)∑
m P (Di|M = m)P (M = m)

;

P (Di|M = m) can be found from Equation 8 and P (M = m) =
∑

y P (M = m|Y = y)P (Y =
y)

The E-step amounts to calculating E(X|Dj,M = m) and E(XXT|Dj ,M = m), since
E(X|Dj) =

∑
m P (M = m|Di)E(X|Dj,M = m) and E(XXT|Dj) =

∑
m P (M = m|Di)

E(XXT|Dj ,M = m). The expectation E(X |Dj ,M = m) is given by Equation 7 (condi-
tioned on M = m) and E(XXT|Dj,M = m) is found by exploiting that

Σp = E(XXT|Dj,M = m)− E(X|Dj,M = m)E(X|Dj,M = m),

24

where Σp is given by Equation 6. In addition, E(~X |Dj) = [E(X |Dj)
T, 1]T and

E(~X ~X
T|Dj) =

[
E(XXT|Dj) E(X|Dj)
E(X |Dj)

T 1

]
.

D Straw-men

In this last section we briefly describe the learning algorithms used as straw-men in Table 2.
The straw-men are all implemented in the Weka system version 3.5 [33], and all models were
learned using default parameter settings.

Majority vote: This classifier chooses the class label that is most frequent in the training
data. It is known as the ZeroR classifier in Weka.

Winnow: We used the unbalanced Winnow classifier [34] with default parameters α = 2,
β = .5, and start weight w = 2.

ANN: ANN implements a multilayer perceptron with back-propagation learning, see, e.g.,
[8]. The default model structure was used in our experiments, i.e., one hidden layer, con-
taining a number of nodes equal to the average of the number of classes and the number
of attributes. The learning rate was .3 and the momentum .2. The back-propagation
was performed for 500 epochs. The classifier is called MultilayerPerceptron in Weka.

ADTree: The Alternating Decision Tree [35] used in our experiments was based on exhaus-
tive search, and the classifier was improved using 10 boosting iterations. The ADTree
implementation currently only supports two-class problems, so for the “{0} – {9}”
dataset we used the MultiClassClas- sifier wrapper to generate 10 classification
problems (each classifier learned to separate one digit from the rest), and chose the
class that was most probable.

1-NN: This classifier, called IB1 in Weka, implements the nearest-neighbour classifier [36].

SVM: SVM denotes the support sector machines using the sequential minimal optimisation
algorithm for training the classifier [37]. The “City-block distance” was used as distance-
measure. The classifier is called SMO in Weka.

Näıve Bayes: The Näıve Bayes model [1] without virtual counts for parameter learning.

TAN: The TAN model [3] is learned in Weka by choosing the BayesianNet- work classifier
and TAN as search method. The reported results were generated using virtual count
N ′ = .5.

ID3: The ID3 decision tree [38].

Logistic Regression: The logistic regression classifier was enhanced with Ridge regression
(parameter value 10−8) to avoid local maxima [39].

Radial Basis Functions: The RBF network was generated using k = 2 clusters (found by
the k-means algorithm); thereafter logistic regression models were fit to each cluster (as
above) [40]. The classifier is called RBFNetwork in Weka.

25

AODE: The Aggregating One-Dependence Estimators-classifier [41] was learn-ed with fre-
quency limit f = 1.

HNB: The Hidden Naive Bayes classifier [42].

BayesNet: A Bayesian network structure is learned from data using the K2 search algorithm
[43]. Parameters are estimated using N ′ = .5 virtual counts.

References

[1] R. O. Duda, P. E. Hart, Pattern Classification and Scene Analysis, John Wiley & Sons,
New York, 1973.

[2] P. Domingos, M. Pazzani, On the optimality of the simple Bayesian classifier under
zero-one loss, Machine Learning 29 (2–3) (1997) 103–130.

[3] N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers, Machine Learning
29 (2–3) (1997) 131–163.

[4] M. Bressan, J. Vitrià, Improving naive Bayes using class-conditional ICA, in: Advances
in Artificial Intelligence, Vol. 2527 of Lecture Notes in Artificial Intelligence, Springer-
Verlag, Berlin, Germany, 2002, pp. 1–10.

[5] A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis, Adaptive and
learning systems for signal processing, communications, and control, John Wiley & Sons,
New York, 2001.

[6] H. Langseth, T. D. Nielsen, Latent classification models, Machine Learning 59 (3) (2005)
237–265.

[7] Z. Ghahramani, G. E. Hinton, The EM algorithm for mixtures of factor analyzers, Tech-
nical Report CRG-TR-96-1, Department of Computer Science, University of Toronto,
Canada (1996).

[8] T. M. Mitchell, Machine Learning, McGraw Hill, Boston, MA., 1997.

[9] B. D. Ripley, Pattern Recognition and Neural Networks, Cambridge University Press,
Cambridge, UK, 1996.

[10] G. J. McLachlan, Discriminant Analysis and Statistical Pattern Recognition, John Wiley
& Sons, New York, 2004.

[11] D. B. Rubin, D. T. Thayer, EM algorithms for ML factor analysis, Psychometrika 47 (1)
(1982) 69–76.

[12] D. J. Bartholomew, Latent Variable Models and Factor Analysis, Charles Griffin & Co.,
London, UK, 1987.

[13] J. D. Martin, K. VanLehn, Discrete factor analysis: Learning hidden variables in Bayesian
networks, Technical Report LRDC-ONR-94-1, Department of Computer Science, Uni-
versity of Pittsburgh, http://www.pitt.edu/~vanlehn/distrib/Papers/Martin.pdf
(1994).

26

[14] J. J. Hull, A database for handwritten text recognition research, IEEE Transactions on
Pattern Analysis and Machine Intelligence 16 (5) (1994) 550–554.

[15] C. E. Rasmussen, C. K. Williams, Gaussian Processes for Machine Learning, Adaptive
Computation and Machine Learning, The MIT Press, Cambridge, MA, 2006.

[16] T. S. Jaakkola, Variational methods for inference and estimation in graphical models,
Ph.D. thesis, Dept. of Brain and Cognitive Sciences, Massachusetts Institute of Technol-
ogy (1997).

[17] M. E. Tipping, Probabilistic visualisation of high-dimensional binary data, in: M. S.
Kearns, S. A. Solla, D. A. Cohn (Eds.), Advances in Neural Information Processing
Systems 11, The MIT Press, 1999, pp. 592– 598.

[18] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, L. K. Saul, An introduction to variational
methods for graphical models, Machine Learning 37 (1999) 183–233.

[19] T. Jaakkola, M. I. Jordan, Bayesian parameter estimation via variational methods, Statis-
tics and Computing 10 (1999) 25–37.

[20] K. P. Murphy, A variational approximation for Bayesian networks with discrete and
continuous latent variables, in: K. B. Laskey, H. Prade (Eds.), Proceedings of the Fif-
teenth Conference on Uncertainty in Artificial Intelligence, San Francisco, CA., 1999, pp.
467–475.

[21] R. Kohavi, G. H. John, Wrappers for feature subset selection, Artificial Intelligence
97 (1–2) (1997) 273–324.

[22] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from incomplete data
via the EM algorithm, Journal of the Royal Statistical Society, Series B 39 (1977) 1–38.

[23] A. Y. Ng, M. I. Jordan, On discriminative vs. generative classifiers: A comparison of lo-
gistic regression and naive Bayes, in: Advances in Neural Information Processing Systems
14, The MIT Press, Vancouver, British Columbia, Canada, 2002, pp. 841–848.

[24] R. Greiner, W. Zhou, Structural extension to logistic regression: Discriminative parame-
ter learning of belief net classifiers, in: Proceedings of the Eighteenth National Conference
on Artificial Intelligence, The AAAI Press, Menlo Park, CA., 2002, pp. 167–173.

[25] H. Wettig, P. Grünwald, T. Roos, P. Myllymäki, H. Tirri, When discriminative learning
of Bayesian network parameters is easy, in: Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence, Morgan Kaufmann Publishers, 2003, pp. 491–
496.

[26] D. Grossman, P. Domingos, Learning Bayesian network classifiers by maximizing condi-
tional likelihood, in: Proceedings of the Twenty-first International Conference on Ma-
chine Learning, ACM Press, Banff, Canada, 2004, pp. 361–368.

[27] C. Burges, A tutorial on support vector machines for pattern recognition, Data Mining
and Knowledge Discovery 2 (2) (1998) 955–974.

27

[28] J. Vomlel, Noisy-or classifier, International Journal of Intelligent Systems 21 (3) (2006)
281–398.

[29] R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model
selection, in: Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, Morgan Kaufmann Publishers, San Mateo, CA., 1995, pp. 1137–1143.

[30] C. M. Bishop, Discussion of “Bayesian treed generalized linear models” by H.A Chipman,
E. I. George, and R. E. McCulloch, in: Proceedings of the Seventh Valencia International
Meeting on Bayesian Statistics, Oxford University Press, 2002, pp. 98–101.

[31] G. Bouchard, Efficient bounds for the softmax function, applications to inference in
hybrid models, Presentation at the Workshop for Approximate Bayesian Inference in
Continuous/Hybrid Systems at NIPS-07 (2007).

[32] S. L. Lauritzen, Propagation of probabilities, means and variances in mixed graphical
association models, Journal of the American Statistical Association 87 (420) (1992) 1098–
1108.

[33] I. H. Witten, E. Frank, Data Mining: Practical machine learning tools with Java imple-
mentations, Morgan Kaufmann Publishers, San Francisco, CA, 2000.

[34] N. Littlestone, Learning quickly when irrelevant attributes abound: A new linear thresh-
old algorithm, Machine Learning 2 (1988) 285–318.

[35] Y. Freund, L. Mason, The alternating decision tree learning algorithms, in: Proceedings
of the Sixteenth International Conference on Machine Learning, 1999, pp. 124–133.

[36] D. Aha, D. F. Kibler, M. Albert, Instance-based learning algorithms, Machine Learning
6 (1991) 37–66.

[37] J. Platt, Machines using sequential minimal optimization, in: B. Schoelkopf, C. Burges,
A. Smola (Eds.), Advances in Kernel Methods - Support Vector Learning, The MIT
Press, 1998, pp. 185–208.

[38] R. Quinlan, Induction of decision trees, Machine Learning 1 (1986) 81–106.

[39] S. le Cessie, J. van Houwelingen, Ridge estimators in logistic regression, Applied Statistics
41 (1) (1992) 191–201.

[40] P. V. Yee, S. Haykin, Regularized radial basis function networks: Theory and applica-
tions, Adaptive and learning systems for signal processing, communications, and control,
John Wiley & Sons, New York, 2001.

[41] G. Webb, J. Boughton, Z. Wang, Not so naive Bayes: Aggregating one-dependence
estimators, Machine Learning 58 (1) (2005) 5–24.

[42] H. Zhang, L. Jiang, J. Su, Hidden naive Bayes, in: Proceedings of the Twentieth National
Conference on Artificial Intelligence, The AAAI Press, 2005, pp. 919–924.

[43] G. F. Cooper, E. Herskovits, A Bayesian method for the induction of probabilistic net-
works from data, Machine Learning 9 (1992) 309–347.

28

